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Abstract
Medical practice has different forms of treatments for cancer. Different challenges are presented in chemotherapy, limited therapeutic
efficacy as single drugs, needed to increase doses or co-administration with other cytotoxic, high frequency and severity of adverse events,
due low selectivity of drugs. Researchers have innovated in the treatment of cancer, either by creating selective drug delivery systems
or by drugs specifically designed to a unique target site of action. This has not just improved the therapeutic efficacy but also limited the
adverse events. Some innovations have been focused on exploiting the selectivity properties of the antigen-antibody reactions, which
has allowed the development of therapeutic antibodies. Antibodies can destroy cancer cells by different mechanisms. Some can activate
apoptosis pathways directly. Other are linked with cytotoxic drugs that are released into the tumor cells when they have been
incorporated by the process of endocytosis (Trojan horse phenomenon). Lymphoproliferative syndromes have gotten benefit from these
innovations. Most of the treatment regimens use “traditional” drugs on combinations (i.e., CHOP= cyclophosphamide, doxorubicin,
vincristine, prednisone for Non-Hodgkin's lymphoma or ABVD = doxorubicin, bleomycin, vinblastine, dacarbacyne; for Hodgkin's
lymphoma) that have good therapeutic efficacy but low selectivity. The introduction of monoclonal antibody therapy (mAb) or conjugated
antibody therapy (ADCs) have increased disease-free survival and some types of lymphoma overall survival. In this review we make a great
approach to mAb and ADC, from the development of these innovative drugs to the clinical use of them, showing the results obtained
in different trials, as well as their adverse effects and monitoring as part of pharmacovigilance which they must have.
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INTRODUCTION

Until the second middle of the nineteenth century,
concepts as potency and specificity were used to explain
pharmacological effects of drugs, any of them of natural
origin. These important effects could be explained vaguely by
the properties that changes in their chemical structures have
on affinity to certain organs and tissues1,2.

Pharmacology as a scientific discipline was born in the
mid-19th century, amid of a huge biomedical resurgence of
that period. In 1860’s the relationship between the chemical
structure of a drug and its pharmacologic action were studied
systematically2-4. Later, the same concepts were applied to
explain how endogenous substances different could produce
several effects according to the organ involved or how they
participate    in     various     biological,     physiological   and
pathophysiological   processes     at     the     same    time5.
Physiologically, chemical signaling is the principal mechanism
by which biological functions are controlled, from a single cell
to the whole organism. So for pharmacological/therapeutic
effects always to exert an effect, chemical recognition is
always  needed.  In  classical  pharmacology  proteins  or
receptors are used as an experimental or therapeutic target;
this paradigm has to change6.

From  pharmacodynamics  point  view,  the  use  of
substances  to  generate  pharmacological  effects  and
potentially therapeutic effects depends mainly on that
chemical recognition between substance (drug) and the
target protein, enzyme, transporter or receptor7-9. However, in
the therapeutic process, not only the recognition between
drug and protein receptor o enzyme are important but also
pharmacokinetic processes. Pharmacokinetic is the process
that directs the drug to the site where it should act. Currently,
Pharmacokinetics  is  defined  as  the  study  of  the  time
course of a drug since administration, absorption, distribution,
metabolism and elimination (ADME). This definition does not
include pharmacological or therapeutic effects but those
processes are imperative to reach drug concentration
appropriately10.  Clinically  this  process  is  critical  although
pharmacokinetic processes should guarantee sufficient
concentration in the active site to enhance clinical response
and reduce concentration on other sites to decreases drug
toxicity11. The drug molecules, however, may pass through the
body several times before ultimately leaving the system by
metabolism or excretion or whether that arrive at target site
could have the most of the times is a stochastic process11.

In cancer treatment, pharmacokinetic is of particular
importance because therapy should be focused on having

selective toxicity but if cytotoxic effect depends on of tissue
target concentration more than plasma concentration, how
could we have selectivity distribution to maximize cytotoxic
effect without o reducing its adverse effects? The idea behind
targeted anticancer therapies originates from the ‘magic bullet
concept’ which was introduced at the beginning of the 20th
century by Paul Ehrlich, the father of modern immunology and
chemotherapy. Ehrlich proposed that to reduce adverse
effects of toxic molecules on healthy tissues drugs should be
selectively delivered to disease-causing cells “magic bullets” 12.
This concept could be referred to as “selective distribution”
and is useful not only for cancer treatment but also for other
pathologies treatment that requires more selective effects13,14.

Therapeutic challenges in cancer treatment: Cancer is a
major   public   health   problem   worldwide   and   is  the
second-leading cause of death in the United States15.
Radiation and chemotherapy are standards for cancer
treatment; however, traditional radiation and chemotherapies
have many limitations. Although radiation therapy is focused
on the cancer tumor, therapy risks severe damage to
nonmalignant tissues that are in the path of the radiation
beam16. Recently, more accurate equipment has been
developed to apply radiotherapy in a more secure and
convenient way, reducing significantly treatment-related
adverse effects17,18. Radiation also has reduced effectiveness to
treated metastases because it would require localization of
metastatic tumors for treatment. Sometimes, a comprehensive
irradiation approach has been used, principally when cancer
is in advanced stages (spinal metastases)19, when is
untreatable   by    surgical    or    chemotherapy   (inoperable
non-small-cell lung cancer)20 or for some kinds of cancer
(Ewing's sarcoma or rhabdomyosarcoma)21.

The other therapeutic approach is drug-mediated
treatment. Chemotherapy is a systemic treatment that
typically targets to highly proliferative cells. Systemic delivery
exposes all cells to the drug. However, the lack of specificity
also results in damage to highly proliferative non-malignant
cells, in bone marrow, gonads, gastrointestinal mucosa and
hair follicles, resulting in acute complications and systemic
toxicity22,23. Systemic toxicity sometimes limits treatment,
reduces drug effectivity, contributes to drug resistance and
facilitates recurrence. Traditional chemotherapy would also be
ineffective in overcoming multidrug resistance, responsible for
early or late recurrence. However, adverse effects are also
increasing in frequency and severity. Thus there is an urgent
need for a more targeted approach that will increase
treatment efficacy and reduce treatment adverse effects23.
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Fig. 1: Advantages selective distribution in cancer treatment. The figure depicts improvements in selective cancer distribution.
Panel A: In traditional chemotherapy, the drug is widely distributed in the human body according to its physicochemical
properties. This process reduces the available concentration of the drug and its therapeutic effect. Panel B: Improvements
in drug delivery have made possible to obtain better distribution of antineoplastic drugs increasing drug concentration
in areas next to tumor, this reduces no specific distribution to healthy tissue. Panel C: 3rd generation of system delivery
(functionalization-based nanoparticles) have increased selective distribution and therapeutic efficacy against cancer cells.
However, this process represents a big challenge

Improving selectivity of cytotoxic drugs: To improve
selective distribution process of drugs and optimize
pharmacotherapy of cancer. Researchers have begun to find
strategies to improve the selective distribution of cytotoxic
and thus optimize chemotherapy, maximizing the therapeutic
effects and decreasing its adverse effects24. The goals of
targeted cancer therapy design are: (1) selectively deliver a
high dose of an anticancer drug directly to the site of a tumor
using low systemic doses, (2) enhance drug uptake by
malignant cells or its microenvironment and (3) reduce drug
absorption and effects on nonmalignant cells23. An approach
for designing targeted cancer therapies is exploited features
that are unique to tumor cells and propose drug delivery
systems directed to tumor tissues or its microenvironment.
Targeted delivery research has been focused on unique
features of the tumor microenvironment, such as leaky
vasculature, overexpressed cell surface receptors and proteins
and intratumoral pH differences, metabolic changes and
adaptations as well as features of the cell uptake process23,25,26.
An important issue in chemotherapy is to solve the particular
distribution of anticancer drugs, according to its
pharmacokinetic properties. Consequently, this lack selectively
is responsible for the adverse effects of the anticancer
treatment27-30 (Fig. 1 panel A).

Nanoparticle in cancer: Recent interest has been focused on
developing nanoscale delivery vehicles capable of controlling
the release of chemotherapeutic agents directly inside cancer
cells. To make this delivery vehicle, natural or synthetic
polymers or both are combined with a drug in a way that it
becomes encapsulated into the polymeric system31,32.
Polymeric drug delivery vehicles that are designed as particles
can range in size from 50 nm to over 10 µm and can release
encapsulated  drugs  through  surface  or  bulk  erosion,
diffusion, or swelling followed by diffusion, in a time-or
condition-dependent manner31 (Fig. 1 panel a).

Some of these improvements are the development of
novel forms of cytotoxic administration, which not only
improve and facilitate the administration process but also
allow to confine and direct the compounds limiting the
appearance of adverse effects. Examples of these novel forms
of administration are carbon nanoparticles or nanotubes33,34,
magnetic nanoparticles35, polymeric nanoparticles36,37,
liposomes and biocompatible lipids nanoparticles38-40,
chitosan nanoparticles41,42, metallic nanoparticles43-45 or silica
derived nanoparticles46 (Fig. 2). Current nanoparticles are
loaded with several anticancer drugs like doxorubicin,
mifepristone, paclitaxel39,42,47,48, antiangiogenic agents as
endostatin peptide49-52, novel adjuvant for cancer treatment as
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Fig. 2: Nanoparticles for cancer. Different drug delivery systems have been developed to optimize cancer treatment. New
functional or multifunctional nanoparticles have been developed. The yellow dots indicate drug/gene incorporation. The
approximate size of each nanoparticle is given in the figure

phenformin, ferrocifen, cathepsin B or curcumin40,44,53,
peptidomimetic-drugs as integrin peptide41,54 and recently as
systems  for  delivery  of  mRNAi  Therapeutic  as  miR-34a,
miR-143 or miR145 for hematological cancers35,38 55-57.

As expected, these systems for the transport of drugs, not
only improve the effectiveness of the treatment but also
significantly reduce the development of toxicity or adverse
effects in preclinical or clinical trials24. However, at the
beginning of the development of these new carriers, the
common problem was the targeting of the drug to the tumor
cells or the nearby microenvironment to guarantee its
cytotoxic effect58. In some cases, nanoparticulate systems use
simple strategies to release drugs, such as low pH activation,
as is present in the tumor microenvironment, or by enhancing
its permeability and retention effect59. Both methods have a
disadvantage that is non-selective and can generate the
nonspecific release of drugs and toxic effects in sites with
infectious or inflammatory active processes 47,60 another factor
is   that   vascularization   and   angiogenesis   are   different
according  to  tumor  type,  localization  and  development
stage61,62.

To reduce the selectivity difficulties, many of the
nanoparticulate systems have been functionalized placing on
its surface, molecules that guide it to find its specific target to
improve their therapeutic target54 (Fig. 1c, Fig. 2b). For
example, nanoparticles have been developed using an
integrin-target peptide. In particular, "<$3, "<$5, "<$6 and
"5$1, integrins involved in tumor angiogenesis and
metastasis,  have  been  the  subject  of  studies  aimed  at  the

discovery of novel cancer therapeutics54. Likewise, pancreatic
ductal adenocarcinoma (PDAC) that is cancer with unmet
medical  needs.  There  is  an  abundant  expression  of  the
anti-phagocytosis signal CD47 that has also been observed in
pancreatic cancer cells, in particular, a subset of cancer stem
cells (CSCs) responsible for resistance to standard therapy and
metastatic potential not only for pancreatic cancer but also for
others63-65. Nanoparticles for this cancer have been developed
to carry gemcitabine or abraxane and were functionalizing
using antibodies or protein fragments directed to the CD47
receptor. These particles have shown a promissory therapeutic
effects in animal models of this disease66. 

Antibody-driven cancer therapies: Another approach to
reduce the problem of selective toxicity for cancer therapy is
based on the ability of high selectivity of the immune system.
The German physician and scientist, Paul Ehrlich, is considered
the pioneer of targeted therapy as more than a century ago
suggested the expression “magic bullet” in the early 1900s67.
Ehrlich proposed a concept of selectively delivering cytotoxic
agents to a target and also suggested the use of an antibody
conjugated to diphtheria toxin68. Although this theory was
proposed more than 100 years ago, it was not since relatively
a few years ago that the immunology era applied to cancer
drug therapy began, starting until scientific and technological
advances allowed it to69.

In the beginning, the antibodies generated by the
recombinant technology were murine and they were obtained
from mice using hybridoma techniques70.  The  first  antibody
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Fig. 3: Immunological-driven selective drug distribution in cancer treatment. The figure depicts a schematic representation of
particular distribution and drug action of two immunologic cancer therapies. Rituximab and Brentuximab Vedotin play
a therapeutic role in lymphoma cancer cells subtyped CD20+ or CD30+, respectively. After being administrated, each
antibody (separately) travels through the bloodstream until they find its antigen. Panel A: Cellular processes controlled by
CD20 receptor (a) and pro-apoptotic mechanism activated by rituximab (b)72, 73 Panel B: Mechanism of action proposed
to ADC Brentuximab Vedotin (BV) (a) BV binds to the CD30 receptor on the cell membrane. (b) The CD30-BV complex is
internalized into the cell, it is directed to the lysosome where the enzyme cleaves the linker between the antibody and the
monomethyl aurastatin E (MMAE). (c) MMAE is released into the cell and binds to the tubulin, (d) Upon binding to the
tubulin, MMAE stops the cell division process and leads the cell to G2 / M arrest. This results in the promotion of apoptosis
of the cancer cell and (E) MMAE is released from dead cells to the extracellular space. As a result, it can penetrate into near
tumor cells

clinically available was muromonab-CD3, a murine antibody
that has been effective in reversing corticosteroid-resistant
acute rejection in renal, liver and cardiac transplant recipients.
This antibody had the main disadvantage that it was able to
develop reactive human antimurine antibodies that, over time,
may lead to tachyphylaxis and neutralization of the murine
antibody. Muromonab could be removed by opsonization by
the reticuloendothelial system when it was bound to T
lymphocytes, or by neutralization for human antimurine
antibody production, which shortened its therapeutic
properties71.

As the biotechnology processes were improved,
humanized chimeric antibodies were produced increasing the
clinical application success to be introduced into the drug
market. Advantages of this new antibodies were that they had
a lower activation of immune response than before, thereby
reducing the rate of elimination and improving the duration
of their effects and reducing its adverse effects23. These

biotechnological improvements made possible to produce
two types of chimeric antibodies. The first that have been able
to activate cell death mechanisms (Abs Non-immunotoxin
type) (Fig. 3a) and a different kind that is loaded with cytotoxic
compounds. This Ab is carried into the cells and cytotoxic
compounds are released, finally promoting cell death
(Immunotoxins or ADCs) (Fig. 3b).

Tumor-associated antigens as therapeutic targets: A
fundamental challenge to develop Abs has been to identify
antigens that are suitable for antibody-based therapeutics.
Such therapeutics can function through mediating alterations
in antigen or receptor function (such as agonist or antagonist
functions) modulating the immune system (for example,
changing Fc function and T cell activation) or being subjects
to rapid internalization through a process called endocytosis.
These processes let us have more specificity in drug action
through a highly selective recognition of specific targets74.
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Therapeutic  monoclonal  antibodies  (mAbs)  recognize
Tumor-associated antigens, the antigens can be divided into
different categories according to its localization or function.
Hematopoietic differentiation antigens are glycoproteins that
are usually associated with a cluster of differentiation (CD)
groupings and include CD20, CD30, CD33 and CD5274. CD20
is a surface antigen expressed on the surface of all B-cells
which is expressed at certain stages of B-cell differentiation. It
has been used as a target with mAbs. Clinically it has been an
effective   strategy    in    the    treatment    of   hematologic
malignancies such as non-Hodgkin's lymphoma (NHL) and
chronic lymphocytic leukemia (CLL)75. The expression of CD20
is regulated by the chemokine signaling through the
CXCR4/SDF1 axis and this can be impaired by drugs interfering
with microenvironmental interactions76.

It has been shown that inhibition of BCR signaling
pathway by ibrutinib affects the expression of CD20 and the
efficacy of anti-CD20 antibodies like rituximab, ibinutuzumab
and recently tositumomab76. CD30 was originally described as
a marker of Hodgkin's and Reed-Sternberg cells in Hodgkin's
lymphoma. Molecular cloning and characterization of cDNAs
encoding CD30 and its ligand (CD30L) established these
proteins as members of the tumor necrosis factor receptor
(TNFR) and tumor necrosis factor (TNF) superfamilies,
respectively. The expression is mostly restricted to virus-
infected T cells and resting B cells granulocytes as well as
various leukemia cells77, however, its presence helps to define
a novel subgroup of Diffuse Large B-Cell Lymphoma (DLBCL)
with favorable prognosis in combination with a distinct gene
expression signature78. This receptor is a positive regulator of
apoptosis by activation of NF-kappaB79 and also has been
shown to limit the proliferative potential of autoreactive CD8
effector T cells and protect the body against autoimmunity.
CD33 is a transmembrane receptor expressed on cells of
myeloid lineage. It is usually considered myeloid-specific.
However, it can also be found on some lymphoid cells80. The
intracellular portion of CD33 contains immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) that are implicated in
inhibition of cellular activity81. The CD52 is present on the
surface of mature lymphocytes but not on the stem cells from
which these lymphocytes were derived. It is also found on
monocytes and dendritic cells. Furthermore, it is found in the
male genital tract and is present on the surface of mature
sperm cells82. It is a peptide of 12 amino acids anchored to
glycosylphosphatidylinositol and it has been associated with
certain types of lymphoma83. It has been demonstrated that
when a humanized monoclonal antibody (mAb) recognizes
CD52, it directs cell-mediated cytotoxicity and induction of
apoptosis by complement-induced cell lysis84,85.

Cell surface differentiation antigens are a diverse group of
glycoproteins and carbohydrates that are found on the surface
of both normal and tumor cells. Antigens that are involved in
growth and differentiation signaling are often growth factors
and growth factor receptors74. Growth factors that are targets
for antibodies in cancer patients include CEA, epidermal
growth factor receptor (EGFR; also known as ERBB1), ERBB2
(also known as HER2), ERBB3, MET (also known as HGFR),
insulin-like growth factor 1 receptor (IGF1R), ephrin receptor
A3 (EPHA3), tumor necrosis factor (TNF)-related apoptosis
inducing ligand receptor 1 (TRAILR1, also known as
TNFRSF10A), TRAILR2 (also known as TNFRSF10B) and receptor
activator of nuclear factor-6B ligand (RANKL, also known as
TNFSF11)74,86.

Angiogenesis antigens involved in angiogenesis are
usually proteins or growth factors that support the formation
of new microvasculature, including Vascular Endothelial
Growth Factor (VEGF), VEGF receptor (VEGFR), integrin "V$3
and integrin "5$187. Tumor stroma and the extracellular matrix
are necessary to support structures for a tumor. Stromal and
extracellular matrix antigens that are therapeutic targets
include Fibroblast Activation Protein (FAP) and tenascin74,86, as
it was previously described. Each day, novel antigens are
identified as biomarkers for different groups of cancer. Using
a proteomic-based approach has made possible to identify
different antigenic proteins88 that can be utilized not only for
diagnosis,  classify  subtypes  of  cancer  or  better
understanding  of  cancer  biology  but  also  to  be  targeted
in immunotherapies89,90. 

Antibodies for cancer treatment, non-immunotoxin: Since
the initial description by Köhler and Milstein, mAbs have
increased the clinical use for diagnosis and treatment of
malignant diseases70. Antibody-based therapy for cancer has
become to be established over the past 15 years and is now
one of the most successful and influential strategies for
treating patients with hematological malignancies and solid
tumors68,74,91.   There   are   different   mechanisms  through
antibodies can kill neoplastic cells through antibodies. Some
involve direct action of the antibody on cancer cells.
Antibodies can act as an antagonist or as an agonist to
activate   apoptosis   pathway   (according   to   the  receptor
bound   and    its    transductional    mechanism).   Other 
immune-mediated cell killing mechanism includes
Complement-Driven Cytotoxicity (CDC), Antibody-Directed
Cellular Cytotoxicity (ADCC) and regulation of T cell function,
each one through specific effects on tumor, vasculature or
stroma74.
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Rituximab: Rituximab (Rituxan®) was the first monoclonal
antibody developed and approved for cancer therapy and the
first single-agent approved as a treatment for lymphoma. An
important target for Rituximab is the CD20 B-cell lineage
antigen located on the surface of malignant and normal B
lymphocytes92. Mechanisms of cell destruction have been
demonstrated to be activated by rituximab binding to CD20
include direct signaling of apoptosis, complement activation
and cell-mediated cytotoxicity (Fig. 3a)93. Rituximab has
rapidly become the most immunotherapeutic drug used. If
used in combination with CHOP, rituximab is the only drug
that has been shown to improve survival of a subpopulation
of patients with diffuse large cell lymphoma during the last
three decades. The FDA approved it for the treatment of
patients with relapsed or refractory low-grade or follicular,
CD20-positive, B-cell non-Hodgkin’s lymphoma in 1997.
Rituximab is also being studied in many other B-cell
malignancies alone and combination with other agents.
Furthermore, it is currently being evaluated in several
nonmalignant diseases, such as autoimmune disorders94,72.
Recently rituximab has been used experimentally in other
various  immune-related   diseases   such   as   immune
thrombocytopenic purpura, systemic lupus erythematosus,
myasthenia gravis and rheumatoid arthritis but controlled
clinical trials are needed to support new therapeutic uses95.

Trastuzumab: Trastuzumab (Herceptin®), a humanized
monoclonal antibody specifically developed to target human
epidermal growth factor receptor 2 (HER2), is regarded as
standard treatment in those patients with HER2-positive
tumors96. It was the first antibody authorized and registered
for use in patients with HER2-overexpressing breast cancer96,97.
As an antibody, one of the major mechanisms of trastuzumab
is to attract immune cells to tumor sites that overexpress
HER2, by a mechanism called Antibody-Dependent Cellular
Cytotoxicity (ADCC). After treating patients with trastuzumab
and docetaxel, tumor samples showed an increase in the
number of both natural killer cells and cytotoxic proteins98.

Cetuximab:    Cetuximab     Erbitux  (R)   is     a    recombinant,
human-murine chimeric monoclonal antibody targeted
specifically to the Epidermal Growth Factor Receptor (EGFR).
This binding inhibits receptor phosphorylation and activation
and it leads to receptor internalization and degradation.
Cetuximab biological effects are linked to inhibition of cell
cycle, tumor progression, neo-angiogenesis, invasion and
metastasis, as well as increase and activation of pro-apoptotic
molecules99. Moreover, numerous clinical trials demonstrated
cetuximab efficacy in different tumor types. It has been
approved by Food and Drugs Administration for the treatment

of metastatic colorectal cancer as a single agent or
combination with chemotherapy, in locally and regionally
advanced head and neck squamous cell carcinoma in
combination with radiation and as monotherapy for recurrent
and metastatic head and neck squamous cell carcinoma after
failing platinum-based chemotherapy99.

Ipilimumab: Ipilimumab (Yervoy, Medarex and Bristol-Myers
Squibb) is a human mAb against cytotoxic T-lymphocyte
antigen   4,    which    enhances    co-stimulation    of   cytotoxic
T-lymphocytes,   resulting    in    their    proliferation    and   an
anti-tumor response100. It was licensed for the treatment of
unresectable or metastatic malignant melanoma, while
multiple clinical trials using this medication in the treatment
of other malignancies are ongoing. As a clinical response to
ipilimumab results from immune stimulation, it predictably
generates autoimmunity as well, causing immune-related
adverse events in the majority of patients101. Phase II trials of
ipilimumab in advanced melanoma showed objective
responses but a greater number of patients had disease
stabilization. In a phase III trial, ipilimumab was the first agent
to demonstrate an improvement in overall survival in patients
with previously treated, advanced melanoma. The adverse
event profile associated with ipilimumab was primarily
immune-related.     Adverse     events     can     be     severe   and
life-threatening but most were reversible using treatment
guidelines100.

Antibodies-drug-conjugated (ADCs): ADCs have become a
promising targeted drive therapy for cancer. This strategy
combines the specificity of antigen-antibody reaction that
increases       pharmacokinetic             properties        particularly
antibodies-drug     biodistribution         increasing     destructive
potential of new and more potent cytotoxic drugs that directly
payload delivery on the tumor.

The   first    generation    of    monoclonal    antibodies
drug-conjugated (ADC) became available in the 1970s (ADCs).
Researchers aimed that these strategies would allow to
enhance the tumor specificity and clinical benefits of the
current     drug        if        they        were        combined    with
immunotherapy102,103. The first cytotoxic, used to load
antibodies, were drugs with current clinical use not only  with
well-established   mechanisms   of   action   but   also  with
well-known toxicity profiles. The drugs used were:
antimetabolites (methotrexate MTX and 5-fluorouracil), DNA
cross-linkers (mitomycin C) or anti-microtubule agents
(vinblastine)102,103.    Today,     the     main     advantages   of
antibody‒drug conjugates are that they have the highest
tumor selectivity and cytotoxic potency that is not achievable
with conventional drugs104 (Fig. 3b).
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Challenges in ADC design: The first generation of ADCs
encountered some problems105 such as an insufficient potency
of the effector molecule, limited expression of the antigen,
internalization mechanisms of antibodies that were inefficient,
the localization rate of the antibodies at the tumor in patients
was too low and problematic linker stability106.

Antibody type: The first challenge to be solved was the
immune response resulting from the use of a murine origin or
chimeric monoclonal antibodies when it was used in human
beings and the generation of human anti-murine antibodies
(HAMA) which levels arose with repeated cycles of therapy104.
This problem was partially solved replacing murine antibodies
with humanized chimeric or fully human antibodies to prevent
immunogenicity106.    However,     it     was     despite   change
production of antibodies. Also, antigen-binding affinity can be
improved by using phage display libraries to isolate antibodies
with strong affinities for specific antigens. In some cases, when
antibodies with a lower affinity for the antigen are required to
allow better penetration of a tumor, changes in the Abs
structure   quaternary    can    be    designed    by   genetically
engineering to improve the Fc region recognition through
point mutations or glycan modifications107.

Development of defucosylated antibodies have increased
affinities    for     the     Fc(RIIIa     receptor     and   enhanced
Antibody-dependent cell-mediated cytotoxicity (ADCC). This
change not only has an effect on therapeutic efficacy but also
it provides changes in pharmacokinetic properties into the
human body108. Cytotoxic Compound Conjugated: Other
lessons learned from these early efforts led to improvements
in technology and renewed interest in antibody-drug
conjugates. The cytotoxic potency of the drug was improved
by using other cytotoxic compounds that are 100-1000 times
more potent than those currently used in chemotherapy.
Thereby methotrexate, 5-fluorouracil, mitomycin C and
vinblastine, were substituted by more powerful drugs (Some
them without therapeutic use at the time) that were too toxic
to use in an untargeted manner and have now been more
promising than ADCs109. Most drugs used in ADC production
are highly cytotoxic agents with IC50 values in subpicomolar
to   subnanomolar   range   in   cell   culture110.   These   include
aurastatins and calicheamicins. Auristatins (natural products
originally isolated from the Indian Ocean sea hare Dolabella
auricularia) and maytansines both exert their cytotoxic effects
by binding to tubulin, causing G2/M cell cycle arrest and
subsequently leading to apoptosis111.

Duocarmycins,         pyrrolobenzodiazepines        and
calicheamicins. Duocarmycin is a sequence-selective alkylator
of adenine-N3 in the minorgroove of DNA thereby inducing
apoptotic cell death112,113. Calicheamicins alquilant agents that

target the minor groove of DNA causing DNA double-strand
break   by   irreversible   alkylation   leading   to   cell  death
likely   cyclophosphamide   but   at   too   low  doses110.
Pyrrolobenzodiazepines (PBDs), currently in phase II clinical
trials114,  which  as  dimers  binds   sequence-selectively   in  the
minor groove of DNA forming a covalent bond with the N2 of
guanine on opposing DNA strands thus cross-linking the
strands and producing highly malignant lesions115,116. Antigen
Target Selection: For a better selection of a target, researchers
must understand cell biology and how different cell tumor
biology is. It can help to have a better selection using the most
appropriate target.

For some ADCs internalization process is crucial for its
therapeutic effect, while for others unconjugated mAb, CDC
or ADCCs do not have relevance. It has been observed that
internalization rate differs between antibodies. Some are
internalized faster than others. For some antigens, ADC has
been observed to internalize much more efficiently than
unconjugated mAb109. Careful target and antibody selection
must be made to improve selectivity and efficiency of
internalization and the project success.

Antibody-drug linkers: Other challenges in the
development of ADCs has been the generation of suitable
linkers for conjugating the antibody and the cytotoxic agent.
The linker connects the cytotoxic drug covalently to the mAb
and it is a determinant of ADC activity. The linker must have
enough stability because it prevents the premature
spontaneous release of the drug which will cause damage to
normal tissues and enable the ADC to circulate in the
bloodstream for a while before reaching the target tumor
site104. However, upon reaching the target cells, the linker
must also be able to efficiently release the drug in its active
form to allow the drug to effect cell killing. Several strategies
have been employed to produce linkers that satisfy both of
these criteria117.

Currently, different types of linkers are released by diverse
mechanisms.

Acid sensitive linkers: This class takes advantage of
intracellular conditions such as the low-pH environment in
lysosomes  and  endosomes,  which  can  trigger  hydrolysis  of
an  acid-labile  group  such  as  a  hydrazone,  resulting  in drug
release.  However,  this  linker  is  unstable  up  to  48-72  h  in
plasma118.

$-glucuronide linker: The $-glucuronide linker provided for
facile drug release and was highly stable in rat plasma. This
linker is easily breakdown by the proteolytic activity of
cathepsin B, once the antibody-drug has entered into the
cancer cells112. Importantly, the resulting ADCs that uses this
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linker were non-aggregated and monomeric even when
heavily loaded (8 drugs/mAb) with hydrophobic anticancer
drugs. This linker also helps to solubilize ADC. 

Lysosomal protease sensitive linkers: Cathepsin B (CatB),
recognizes and cleaves a dipeptide bond. Valine-citrulline is a
dipeptide linker, imparting greater stability in plasma and
increased exposure to the conjugated drug after intravenous
delivery. This is the linker used in Brentuximab vedotin. This
linker is more resistant in plasma because it is released by an
enzyme pathway118,119.

Glutathione sensitive linkers: Disulfide bonds within the
linker are relatively stable in circulation but into the cancer
cell, this could be reduced by the higher levels of intracellular
glutathione allowing the release of the loaded drug. This linker
has been tested in clinical trials to be used with several drug
candidates for hematological cancer treatment. One example
has been tested as part of SAR3419, a maytansine glutation
sensitive linker anti-CD19 conjugate, recently in phase II
clinical  trial120.  Also,  it  has  been  tested  in  IMGN901,  an
anti-CD56 maytansine conjugate, recently in phase, I clinical
trials121 or AVE9633, an anti-CD33 maytansine conjugate in
2012 was in phase I clinical trials. This pair of studies were early
discontinued because of the drug did not show important
anticancer activity even at high doses122. All projects were
developed by ImmunoGen and its partners.

Peptide linkers: This kind of linker has been recently
developed. One example is triglycyl peptide linker (CX). This
was designed to be used in antibody-Drug Conjugates (ADC).
The purpose of this linker was to provide an efficient release
and lysosomal efflux of cytotoxic catabolites within targeted
cancer   cells123.    The    ADC-CX    was    more    active   that
non-cleavable linker or another tested. Possibly it was due that
its chemical structure is less affected even in the acid tumoral
microenvironment. This linker is even in preclinical evaluation.

Metallic linkers: Another kind of linker is a bifunctional
platinum (II). The ethylenediamine platinum (II) moiety, herein
called Lx, was coordinated to Desferal (DFO) or Auristatin F
(AF) to provide storable intermediate products, which were
directly conjugated to unmodified mAbs. This procedure was
able to give a mAb conjugation of approximately 85% to de Fc
region, presumably to histidine residues124. The mAb loaded
has   similar   cytotoxic   efficiency   as   trastuzumab   in  a
xenograft  mouse  model  of  gastric  cancer  (NCI-N87)  or  an
ado-trastuzumab      emtansine-resistant          breast      cancer
(JIMT-1)124.

Conjugation methods: Another critical process is how a
cytotoxic drug is loaded to an antibody. This process needs to
be calculated with a precise stoichiometry. Standardization of
a conjugation method is required to obtain better result both
in a homogeneous Abs-Drug conjugated product and
reproducible therapeutic responses. After that the Abs is
loaded with the drug, it must maintain its pharmacokinetic
properties but most important its pharmacodynamics
properties. However, conventional conjugation methods are
complex and they can result in a heterogeneous mixture of
ADCs, which can cause changes that can lead to significant
therapeutic liabilities125.

For example, studies of molecular characterization of
ADCs production and in vitro test have been demonstrated
that ADC composed by monomethyl auristatin E (MMAE) and
anti CD30 Ab cytotoxic effects arises with increasing drug
load117. However, antitumoral activity in vivo of Abs containing
4 MMAE was not different against mAbs containing 8 MMAE
molecules126. Otherwise, with higher drug load species
exhibited faster renal clearance than lower drug load117.

The most important techniques used for drug loading are:

C Antibody engineering methods
C Reducing  the  number  of  sulfhydryl  groups  to  control

the   amount   of   drug   loaded   through   of  fixed
stoichiometry127,128.

C Engineered cysteine mutants to reduce the number of
cysteines available for loading

C The addition of unnatural amino acids129

C Incorporation of selenocysteine to specify the site and
number for drug loading

C Enzymatic methods
C Apply glycosyltransferase to attach to site-specific130,131

C Transglutaminases
C Formylglycine-generating enzyme
C Chemical approaches
C Photoactive protein Z

Drug pipeline of brentuximab vedotin: Biological therapies
play an increasing role in cancer treatment. Although a high
number of antibodies have shown clinical efficacy, their use as
single agent therapy remains limited today23. Once a
therapeutic goal is identified to improve clinical care of cancer
patients,   if   ADC   could   be   a  possible  solution,  the  ACD
development project should be planned to attain it. Oncology
is the main focus of mAb development with approximately
50% of the total in pipeline132. This is because of a high
number of patients, the increased growth rate and the clinical
troubles that have not solved by conventional therapy23. For
a new drug development, different stages must be carried out
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to accomplish regulatory requirements to obtain FDA
approval133. TNF receptor superfamily was recognized and
involved in immune regulation processes. Natural ligands
were recognized to possess cytokine-like activities134. Human
TH1 and TH2 cells exhibit not only different functional
properties but probably also distinct surface markers; TH2 but
not TH1, clones express membrane CD30 and release the
soluble form of CD30, a member of the TNF receptor
superfamily135.

Hodgkin Disease (HD) is characterized by the presence of
a small number of the typical Hodgkin and Reed-Sternberg
cells   (H-RS)   in   a   hyperplastic   background   of  reactive
lymphocytes and other cells. CD30 antigen was recognized
and characterized as a marker present on H-RS cells, it has a
critical pathophysiological role in malignant lymphomas,
particularly Hodgkin disease, large cell anaplastic lymphomas
and Burkitt lymphomas, as well as in the activation and
functioning of the T cell-dependent immune system136.
Originally, the presence of this protein appears to be an
important prognostic factor and, combined with an age-
adjusted  International  Prognostic  Index,  allowed researchers
to design more specific clinical trials aimed at finding new,
more efficacious and less toxic treatments137. CD30 appears to
be expressed (restricted expression) on T and B Cell
subpopulation on activated blasts in parafollicular areas of
lymphoid tissues and thymic medulla138. Signaling pathway
through the TNFR superfamily affects cellular proliferation,
survival and differentiation are mediated by cytoplasmic
domains. CD30 does not contain a death domain but can
produce an apoptotic stimulus, the mechanism of this appears
to be related to the degradation of TRAF2, which enhances
death  signaling  (Fig.  3,  panel  b)139.  To  improve  lymphoma
treatment CD30+ an ADC was developed to augment the
antitumor activity and selectivity using anti-CD30 based
therapies140. This drug, identified as cAC10-vcMMAE (SGN-35),
has     an       antiCD30       antibody       conjugated    with
monometilaurastatin E (MMAE)141. The antibody was
synthetically modified to include maleimide and facilitate
conjugation with MMAE. SGN-35 uses a protease cleavable
Val-Cit peptide as a linker to a specific release of drug from
ADC128140. The in vitro and in vivo activity was evaluated
using an H-RS lymphoma cells (L540cy cell line). After binding
CD30, the antibody-drug conjugate is internalized and
transported to lysosomes, where the peptide linker is
specifically cleaved and selectively releases the cytotoxic
agent142. It has been demonstrated that intracellular MMAE
concentration and effects are concentration dependent and
time dependent mode. The top concentration found is about
1000nM within 24-72 h after incubation140. MMAE released
into cells the cell, binds tubulin and prompts arrest of the  cell

cycle between the gap 2 phase and mitosis (G2/M) and cell
apoptosis143. Initial in vivo evaluation was done using a disease
model of anaplastic large-cell lymphoma, using Karpas-299
cells that were implanted under the skin of C.B-17 SCID
mice143. Efficacy and security were evaluated. SNG-35 showed
a complete cure of 100% on tumor regression (at the
beginning 50-100 mm 3 volume). Ac10 (SGN-30) did not
produce equivalent results compared with SGN-35
treatment140, 143. Nonimportant signs of toxicity were detected
in this animal model141. 

Clinical experience for use an ADC (Brentuximab vedotin):
Brentuximab Vedotin (BV) is a quimeric anti-CD30 monoclonal
antibody (mouse variable region/constant human region). This
antibody has attached a Monomethyl Aurastatin E (MMAE)
molecule, which exerts the cytotoxic action144. It is important
to recognize that despite having an abundant CD30 receptor
on the surface of certain lymphomas (Hodgkin’s lymphoma
and anaplastic T-cell lymphoma), the first naked anti-CD30 did
not have a favorable outcome145,146. Probably due to the
existence of abundant serum soluble CD30 on patients or the
generation   of   anti-CD30   antibodies   since   they  were
completely murine; with a significant decrease in its
antineoplastic effect. An alternative way to improve its action,
thus, was linked to the anti-CD30 a cytotoxic molecule like
MMAE (a). In this way, the anti-CD30 antibodies are used as a
Trojan horse, where it is introduced into the neoplastic cell
and using the lysozyme itself releases the synthetic inhibitor
of microtubules causing cell death.

Clinical finding and pivotal studies: BV has been assessed
initially in a phase 1 study with a group of heterogeneous
lymphomas expressing CD30 on its Surface147. The primary
objectives of the study were to define the safety profile of BV
and to determine the maximum tolerated dose (the highest
dose that would not produce unacceptable toxic effects). This
was characterized as being a phase 1, open-label, multicenter
dose-escalation study, where BV was administered at a dose
of 0.1-3.6 mg per kilogram of body weight every 3 weeks.
Where the majority were Hodgkin's lymphoma (93%) and 7%
cases  of  T-cell  lymphoma  (2  cases  of  systemic  anaplastic
T-cell lymphoma and 1 angioimmunoblastic lymphoma).  The
authors observed dosse-limiting toxic effect (grade 4
thrombocytopenia)   in    1    of    6    patients    who    received
1.8 mg kgG1, 1 of 6 patients presented acute renal failure who
received 2.7 mg kgG1 and one patient was deceased due to
sepsis who received a dose of 3.6 mg kgG1. The expansion
cohort   was   using   the   1.8   and   2.7   mg   kgG1   doses.   The
2.6 mg kgG1 cohort, there were 3 episodes of limiting toxic
effects (grade 3 hyperglycemia, prostatitis and grade 3
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neutropenia  fever).  Thus,  the  researchers  set  the  dose  of
1.8 mg kgG1 as the most effective with less limiting toxic
effects147. The most common adverse events, grade 1 or 2 in
severity, were fatigue (36%), pyrexia (33%) and diarrhea,
nausea, neutropenia and peripheral neuropathy (22% each).
The objective response was noted in 38% of patients,
interestingly. 88% of responders did within the first 4 weeks147.
The following phase II studies were divided into patients with
Hodgkin's lymphoma and systemic anaplastic T-cell
lymphoma.

BV in systemic anaplastic T-cell lymphoma: Systemic
anaplastic large T-cell lymphoma (sALCL) is an aggressive
lymphoma with a surface expression of the CD30 receptor in
abundant form and which in turn can be divided into positive
ALK and negative ALK protein (the most common in adults);
this protein gives a good prognostic if present. This kind of
lymphoma corresponds 3% of all lymphomas in adults and up
to 30% in children. Dr. Pro and colleagues conducted the
multinational open-label, phase 2 pivotal study for the
approval of BV for the Food and Drug Administration (FDA)
and European Medicine Association (EMA) in this pathology148.
BV was administered intravenously at the dose of 1.8 mg kgG1

every 21 days up to 16 total cycles to 56 patients. The median
age was 52 years, with poor prognostic characteristics such as
ALK-negative, 50% were relapsed, 62% were considered
refractory to the first line of treatment, where 91% of patients
had 2 or more chemotherapy regimens including autologous
stem cell transplantation. The efficacy assessment was done
by an independent committee where the overall response was
86%, the complete response was assessed at 57 and 29%
partial response; interestingly, the overall tumor reduction was
97%, where those who achieved a complete response did so
at 12 weeks of treatment. When we observed the duration of
the response, in those, who had an objective response the
median duration of response was 12.6 months, while in those
who obtained CR, this was 13.2 months in overall. When we
analyzed thirty-two patients who achieved CR, 22 continued
with BV and had a median response duration of 12.6 months;
in 6 patients who were undergone to an allogeneic transplant,
the median was 13.2 months and in 5 patients who were
undertaken to autologous stem cell transplant the median of
duration has not been reached148. The latter is an important
fact since patients with systemic anaplastic T-cell lymphoma
can be rescued with BV and serve as a bridge to be
consolidated with an autologous stem cell transplant.
Obviously, by the number of cases, it should be explored in
new trials. About the allogeneic transplantation group, an
update was recently published, where a total of 8 patients
were finally included in phase II pivotal study149, [2 patients

more   than   6   were   included   in   the  original   paper  by
Pro et al.149. The 87% of patients with sALCL achieved a post-
BVC CR and allogeneic transplantation (median time between
the last dose of BV and conditioning therapy to perform the
transplant was 1.4 months). The median Progression Free
Survival (PFS) has not yet been reached (95% CI: 14.6, -), the
estimated PFS rate at 24 months was 66% (95% CI: 36%, 84%).
The median overall survival was 33.1 months (95% CI: 21.3, -)
(range, 9.4‒34.2+ months)149.

Front-line treatment phase 1 has recently been published
comparing two arms in peripheral T-cell lymphomas CD30+.
Where patients received subsequent treatment characterized
by 2 cycles of BV at 1.8 mg kgG1 followed by 6 cycles of
traditional CHOP or BV at doses of 1.8 mg kgG1 plus CHP
(withdrawn vincristine) for 6 cycles, both arms every 21 days.
Responders received single-agent brentuximab vedotin for 8
to 10 additional cycles (for a total of 16 cycles). The primary
objective was an assessment of safety; secondary end points
included objective response rate, Complete Remission (CR)
rate, progression-free survival rate (PFS) and OS. Lymphomas
that were included were adult T-lymphoma/leukemia (n = 2),
sALCL (n = 32), angioimmunoblastic T lymphoma (n = 2),
enteropathy-(N = 2)150. The results showed that after
subsequent treatment, 11 (85%) of 13 patients achieved an
objective response (CR rate, 62%, estimated 1-year PFS rate,
77%).  Grade  3/4  adverse  events  occurred  in  eight  (62%) of
13 patients. At the end of combination treatment, all patients
(n = 26) achieved an objective response (CR rate, 88%,
estimated 1-year PFS rate, 71%). All seven patients without
anaplastic large-cell lymphoma achieved CR. Grade 3/4
adverse events (10%) in the combination-treatment group
were febrile neutropenia (31%), neutropenia (23%), anemia
(15%) and pulmonary embolism (12%). The authors concluded
Brentuximab vedotin, administered sequentially with CHOP or
in combination with CHP, had a manageable safety profile and
exhibited substantial antitumor activity in newly diagnosed
patients with CD30 PTCL. A randomized phase III trial is
underway, comparing BVCHP to CHOP (clinical trial No.
NCT01777152).

Hodgkin’s lymphoma: Hodgkin's lymphoma, which used to
be called Hodgkin's disease, is the third in frequency, just
behind diffuse large B-cell lymphomas and follicular
lymphoma,   respectively.   It   is   divided   into   classical   and
non-classical, being the most frequent the classic type. Its
incidence is bimodal, affecting young people between 15 and
20 years, as well as those over 60 years. It is a lymphoma that
expresses the CD30 protein on its surface, in addition to CD15.
We talked about phase 1 and now we will talk about the
pivotal study in Hodgkin lymphoma. Younes et al. published
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the pivotal phase 2 study in refractory or relapsed HL152. This
multinational, open-label, phase II study, the efficacy and
safety of brentuximab vedotin were evaluated in patients with
relapsed or refractory Hodgkin's lymphoma (HL) after
autologous stem-cell transplantation (auto-SCT). Patients had
histologically documented CD30-positive HL by central
pathology review. A total of 102 patients were treated with
brentuximab vedotin 1.8 mg kgG1 by intravenous infusion
every 3 weeks. The overall response rate was 75% with CR in
34% of patients. The median progression-free survival time for
all patients was 5.6 months and the median duration of
response for those in CR was 20.5 months. The most common
treatment-related adverse events were peripheral sensory
neuropathy, nausea, fatigue, neutropenia and diarrhea151, as
seen in phase 1 adverse events148. The 5-year follow-up of
the pivotal phase 2 study of BV was recently published153.
Overall patient population (N = 102) had an estimated Overall
Survival (OS) rate of 41%. Following the pivotal study, other
studies have been reported within the Name Patient Program
(NPP) for non-US or Canadian patients with similar outcome
among patients affected by HL152,153.

Brentuximab vedotin as monotherapy has been used in
different scenarios of relapsed/refractory patients such as
post-transplant consolidation treatment in high-risk
patients154, As rescue treatment before autologous stem cell
transplantation155,156; Retreatment157; As a bridge for allogeneic
stem   cell     transplantation149     allogeneic    post-transplant
relapse158. The use of BV combined with chemotherapy in
subgroups with relapse/refractories has also been reported.
Different stages of research (1 and 2) have been developed
using drugs such as bendamustine at standard doses of both
[bendamustine 90 mg/m2 on days 1 and 2; BV 1.8 mg kgG1 on
day 1] and in the case of response an ASCT with 16 more BV
cycles after ASCT were done. The clinical response was good
(ORR 93% and CR74%); the 12-months PFS was 80%. However,
the data needs to more time of follow-up159.

Because    of     the     good     results     observed   in
relapsed/refractory patients, BV has been explored in addition
to   conventional   first-line   chemotherapy   such   as  ABVD
(doxorubicin, bleomycin, vinblastine, dacarbacin). In a study of
51 patients with intermediate/advanced stage HL, they
received escalated doses of BV (0.6.0.9 and 1.2 mg kgG1) every
2 weeks for 6 cycles, in addition to ABVD initially and then only
AVD, without bleomycin) by a high percentage of pulmonary
adverse effects160. The Maximum Tolerable Dose (MTD) was
not reached, CR was 95% and 96% in the arms of ABVD and
ADL respectively. The 3-year failure-free survival and OS were
96  and  100%  respectively,  in  the  BV+ AVD arm161.
Abramson  et  al.162  reported  the  results  of  phase  2  with  BV
(1.2 mg kgG1) + ADL for 4-6 cycles (depending on an interim

PET) in HL located not bulky. Where, CR was 91% but with a
high incidence of neuropathy and fever-neutropenia162.
Currently, the same group is recruiting patients with localized
non-bulky HL, for a second study, without vinblastine as a
chemotherapy regimen (BV+AD) (NCT02505269). Also,
Takeda/Millennium company has another Phase 3 study under
way in advanced HL, where it will be compared to upfront
ABVD treatment in one arm and BV+AVD in another. This
study is important because it will define a paradigm shift in
treatment for advanced HL (NCT01712490).

An interesting subgroup is the elderly patients (> 65
years), who practically do not have tolerance to multiple drug
chemotherapy and is an unmet need issue. Therefore, BV was
tested as upfront monotherapy at standard doses and
although the clinical response was good, PFS was not (median
10.3 months) and there was a short duration of reaction
(median 9.8 months) 163. Therefore, BV was combined with just
one drug (dacarbacin 375 mg/m2 or bendamustine at a dose
of 70-90 mg/m2), obtaining ORR 100% and CR 62 and 78%,
respectively. Of note, bendamustine had to be withdrawn
from the treatment due to poor tolerability. The patients
finished with BV as monotherapy164.

In conclusion, BV has come to change the treatment
paradigm    for      CD30+      hematological      diseases;    both
T-cell lymphomas, as well as in HL and has improved results in
patients with very poor prognosis such as refractory/relapsed
disease. Its use as monotherapy or in combination with other
drugs gives greater possibilities to patients who were
previously destined to a poor outcome. Now awaiting results
combined with first-line chemotherapy to know if they will
produce a change in the standard care of patients with
CD30+.

CONCLUSION AND FUTURE

The clinical approval of the treatment for hematological
cancer or solid tumor by therapies directed by antibodies,
(rituximab or brentuximab), have shown therapeutic benefits
that have allowed to improve the efficiency of the
antineoplastic treatment. Many clinical benefits have brought
these therapies, among them a particular distribution and a
very high selectivity of effects that increases the efficacy and
safety of treatments. Today, these novel approaches are not
only used to develop non-immunotoxin, ADC, or inclusive
immuno-radiotherapy (antibodies linked to an isotope) but
also for advance in chimeric proteins engineered the design to
treat cancer. These advances have allowed to propose the
development of new drugs or interventions those are in
preclinical or clinical phases (Table 1). The most recent
advances are biotech proteins as chimeric proteins. Chimeric
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proteins are biotech-designed and constructed with a mixture
of fragments of antigen binding (Fab) of specific antibodies
and fragments of receptors. These mixed structures allow to
recognize different cells (natural killer T-cells and cancer cells
for example) and optimize the activation of different
immunological cell types that can improve patient's immune
response against cancer. In some cases, other chimeric
constructions are made directly on cells. In cancer, for
example, ex-vivo patients circulate T-cells could be removed,
modified and reintroduced to the bloodstream to increase
immunological response to cancer and kill more efficiently
targeted cells. However, these new therapeutic approaches
present new challenges. The most important are development
and strength of pharmacovigilance programs worldwide.
These programs are necessary to prevent or generate timely
warnings about serious adverse effects caused by these
medications or interventions.
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