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Abstract
In the past few years, both phytase and phytate have gained a special place in the biotechnological sector at large and biomedical sector
in particular. Phytase belongs to a group of novel organic phosphorus-containing compounds which are widely distributed in nature. The
scientific literature is witnessed of a significant landmark in phytase research with the discovery that not all phytases share identical
catalytic mechanisms. In this context, many research scientists or research based organizations, around the globe, have already been or
being directed or redirecting their research interests on designing and engineering ideal phytase-based bio-products for targeted
applications in various sectors of the modern world. Many efforts have been made on the biotechnological valorization of this potent
enzyme. However, the current literature still lacks with its biomedical valorization. Though, the information on medical perspectives of
phytase and phytate is very scarce and scattered. Therefore, herein an effort has been made to discuss the anticancer and nutraceutical
potentialities of phytase or phytate at one place. Besides from the anticancer potential, phytase/phytate also have numerous health
benefits e.g. the physiological presence of phytate in our body, close association of phytate-rich diet with low incidence of numerous
diseases and vice versa.
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INTRODUCTION

Phytase  belongs  to  a  group  of  novel  organic
phosphorus-containing  compounds  which  are  widely
distributed  in  nature.  Historically,  the  first  phytase  activity
was from rice  bran  and  reported  in  the  literature  by  Suzuki
and co-workers in 19071. Specifically, phytase is a mixture of
phytic acid (myo-inositol 1, 2, 3, 4, 5, 6-hexakis dihydrogen
phosphate)  and  mixed  cations  of  phytic  acid.  In  recent
years, phytases are of supreme interest as phosphorus in
terms of bioavailability features among different sources
including  plants,  animals  and   microbes2-6  and  considered
as  a  vital  constituent  for  growth.  Phytase  (myo-inositol
hexakisphosphate phosphohydrolase) is a generic term used
to describe a stepwise removal of inorganic orthophosphates
from phytic acid (myo-inositol hexakisphosphate) or its salt
phytate7,8.  Phytase  is  a  complex  of  different  phytases  and
has    been    classified    as    (1)    Three-phytases,    EC    3.1.3.8,
(2) Six-phytases, EC 3.1.3.26 and (3) Five-phytases EC 3.1.3.72.
This specific classification is based on the position of specificity
of the initial hydrolysis of phytate. Whereas, based on reaction
environment, phytases are widely classified into two major
groups i.e., (1) Alkaline phytases and (2) Acidic phytases. From
the catalytic point of view, phytases have been categorized
into various classes i.e., (1) Cysteine phytases or protein
tyrosine phytase (PTPhy), (2) Histidine acid phosphatases
(HAPhy), (3) $-propeller phytases (BPPhy) and (4) Purple acid
phosphatase (PAPhy)5,7-10.

The past many years are witnessed of a significant
landmark in phytase research with the discovery that not all
phytases share identical catalytic mechanisms. Among all
phytases, the foremost and extensively investigated phytase
group belongs to the class HAPhy8. Consequently, a
commonly accepted phytase nomenclature has been
proposed to outline the corresponding three-dimensional
structures and catalytic mechanisms for HAPhy, BPPhy, PAPhy,
PTPhy, respectively11,12. Ultimately, the proposed phytase
nomenclature  further  expands  the  potential   applications
of phytases subject to the distinct catalytic mechanisms5,6,8.
The distribution, physicochemical, structural and catalytic
characteristics of various phytases have been reviewed
elsewhere5,6,8,13, thus only a concise description is given in this
review work. The present review main focuses on an area that
has not been comprehensively reviewed so far. The main focus
has been given to biomedical applications of phytase and
phytate with special emphasis to anticancer and
biotechnological  roles  of  phytase  and  phytate  with  special

reference to nutraceutical. As mentioned earlier, up till now,
many comprehensive reviews with special emphasis on
nutritional or anti-nutritional impacts of phytase or phytate
have been published but the recent literature still lacks the
medicinal valorization of this potent source. Since the
information on medical perspectives of phytase and phytate
is very scarce and scattered, thus an effort has been made to
discuss such useful aspects at one place, in this review. 
 
Biomedical and biotechnological applications of
phytase/phytate: From the application viewpoint, a wider
spectrum of phytase sources including plants, animals and
microbes is available and following a careful evaluation and
characterization, it offers numerous applications in the
biomedical and biotechnological sector of the modern world.
During the past years, a considerable improvement in many of
the processes related to phytase and phytate has appeared
and triggered in-depth studies of enzyme-based novel
constructs and their vital position in the modern era of
biotechnology. Owing to those mentioned above unique
structural, physicochemical and diverse catalytic
functionalities, phytase has approved as a potential candidate
for a range of biomedical, pharmaceutical and nutraceutical
applications. In this context, many scientists, around the
globe, have already been or being directed or redirecting their
research interests on designing and engineering ideal 
phytase-based   bio-products   for   targeted   applications.
Figure 1 illustrates various biomedical applications of phytase.
Among them, many biomedical and biotechnological
applications of phytase have not been reviewed yet,
comprehensively.

Biomedical applications: In the past few years, both phytase
and phytate have gained a special place in the biomedical
sector. Many monogastric animals suffer from no or low
phytase activity level in their gastric tracts, thus cannot
digest/mineralize the portion of phytate available in the
food5,14. Besides other negative impact/influence on human
health, the phytate consumption has some favorable aspects
too. For example, the phytate containing vegetarian-based
diet has shown a lower incidence of cancer, thus act as an
anticarcinogenic15,16. The available dietary phytate also
support in lowering the blood glucose response by reducing
the rate of starch digestion17 and also has considerable
potential to regulate insulin secretion18, thus has been found
beneficial for diabetic patients. Also, phytate has considerable
potential to regulate/reduces  blood  clots,  lowers  cholesterol
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Fig. 1: Biomedical and biotechnological applications of phytase/phytate

and  triglycerides  and  thus  prevents  heart  diseases19,20.  Its
other  biological  activities  include  antioxidant  function,
reduce/prevents renal stone development, prevent dental
cavities and inhibiting the production of hydroxyl radicals,
etc21-23. A few decades back, in-vitro  studies have indicated
that phytic acid incubated with HIV-1 infected T cells inhibits
the replication of HIV-124,25. 

Anti-cancerous role: The anti-cancerous role of phytate also
termed as phytic acid, IP6 or inositol hexaphosphate is
considered one of its most significant beneficial activities.
Moreover, IP6 (consisting of one inositol and 6 phosphate
groups) acts as a broad-spectrum antineoplastic agent and is
assimilated by different cells types, including tumor cells16. The
antiproliferative potential of IP6 has been demonstrated in
various in-vitro studies using various cancer cells. For example,
human  colon  cancer  HT-29  cells26,  human  leukaemic
hematopoietic cell lines, such as K-56227, human normal and
leukaemic hematopoietic cells27, breast cancer cells28, cervical
cancer29, prostate cancer30,31 and HepG2 hepatoma cell lines32

have been treated/inhibited via phytate administration. The
action mechanism by which IP6 exerts its anti-cancer activity
is not clear yet. One possible exception could be through its
antioxidant activity.  Besides  its  direct  action  on  tumor  cells,
IP6 stimulates the immune system by increasing the activity of
natural killer cells. Tumors stimulate the formation of
endothelial cells resulting in the formation of blood vessels.

These blood vessels provide the necessary supply of nutrients
required for tumor growth. Studies have shown that IP6
inhibits  the  formation  of  endothelial  cells16.  Aisde  from
phytate, phytates have been shown to inhibit the growth of
human leukemia cells, colon cancer cells, both estrogen
receptor-positive and negative breast cancer cells, voicebox
cancer, cervical cancer, prostate cancer, liver tumors,
pancreatic,    melanoma    and    muscle    cancers.    Recently,
Soni et al.33 developed a novel phytase enzyme based
nanospheres with anticancer potentialities. According to the
authors, a controlled self-assembly of phytase enzyme in an
Ionic Liquid 1-butyl-3- methylimidazolium tetrafluoroborate
led to the formation of therapeutically active phytase
nanospheres.   The   newly    developed    Pt-coated    hybrid
bio-macromolecular phytase nanospheres following curcumin
loading were subjected to their anticancer efficacy against
three different cancer cell lines i.e., MCF-7, Hep-G2 and THP-1
derived human macrophages33. Very recently, Barahuie and
co-workers (2017) reported a sustained release of anticancer
agent phytic acid from its chitosan-coated magnetic
nanoparticles  for  drug-delivery  system.  A  3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay
was used to evaluate the anticancer potential of newly
developed phytic acid-chitosan-iron oxide nanocomposite
against HT-29 colon cancer cells. Comparative cytotoxic
evaluation was also performed with no cytotoxic effect on
normal cells (3T3 fibroblast cells)34. 
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Colon cancer or colorectal cancer (CRC): Colon cancer, a
major neoplastic disease, also known as bowel cancer and
colorectal cancer (CRC). The CRC is considered one among the
major morbidity and mortality issues in western countries.
According to a recent report from the American Cancer
Society in 2017, 95,520 new cases were registered with colon
cancer only, Whereas, up to 50, 260 death incidents occurred
collectively because of the colon and rectal cancers in the
United States (ACS35). Apart from the very obvious risk factor
i.e., increasing age, likewise other most cancers, following risk
factor majorly contributes in CRC cancer:

C The family history of CRC (especially in the first-degree
relative)36

C The personal history of CRC37-39

C Hereditary conditions (hereditary nonpolyposis colorectal
cancer [HNPCC])40

C Overdose alcohol consumption41

C Tobacco smoking42

C Obesity43

C Race/ethnicity: American, African, etc44,45

Most of the epidemiological and animal-based research
have shown an inverse relationship between colon cancer and
consumption of high-fibre foods13. Among major dietary fibers
constituents, a great deal of scientific investigation has been
given to phytate due to its anti-cancerous activity against
CRC46. In an in-vitro study, Yang and Shamsuddin47 showed an
IP6-induced growth inhibition and differentiation of HT-29
human colon cancer cells.

Prostate cancer (PCA): The PCA is the most common, invasive
and frequently diagnosed cancer type among men, after skin
cancer. Among the majority of cases, the PCA starts in the
prostate (a gland in the male reproductive system) and the
condition is known as adenocarcinoma. In the USA, it is the
second leading cause of cancer deaths in men48. In another
study, Zi et al.49 observed that epidermal growth factor
receptor (EGFR or erbB1) endocytosis and associated
mitogenic signaling occur in human DU145 prostate cancer
cells. It further suggests that erbB1 endocytosis might be
involved in advanced and androgen-independent PCA
growth. In their study, phytate impaired both receptor-
mediated and fluid-phase endocytosis, resulting in the
inhibition of mitogenic signals associated with growth and
proliferation of human prostate carcinoma DU145 cells. The
results obtained further suggest a novel molecular pathway be
further explored for the intervention of advanced and
androgen-independent human PCA by phytate.

Threatening key facts about PCA50:

C After skin cancer, PCA is the most common cancer among
men in the US

C PCA is one of the leading causes of cancer death among
men of all races and Hispanic origin populations

C In the US around 209,292 men are diagnosed with
prostate cancer per year

C Around 27,970 men die from prostate cancer in the US
each year

C According to the American Cancer Society, about 1 man
in 7 will be diagnosed with prostate cancer during his
lifetime

C Prostate cancer mainly occurs in older men-about 6 cases
in 10 are diagnosed in men 65 years or older

C Almost all prostate cancers are adenocarcinomas-cancers
that begin in cells that make and release mucus and other
fluids

C Prostate cancer often has no early symptoms
C Advanced prostate cancer can cause men to urinate more

often or have a weaker flow of urine
C Most men diagnosed with prostate cancer do not die

from it. More than 2.9 million men in the US diagnosed
with prostate cancer at some point are still alive today

Apart from another obvious risk factor, following risk
factor majorly contributes in PCA.

C Age (primary risk factor): Prostate cancer is rare among
men under the age of 45 but much more common after
the age of 50

C Genetics (definite risk factor): Studies indicate that the
two faulty genes-BRCA 1 and BRCA 2-which are important
risk factors for breast cancer and ovarian cancer, have also
been implicated in prostate cancer risk

C Diet (secondary risk factor): The diet lacks with vitamin D
and a diet high in red meat may raise a person's chances
of developing prostate cancer

C Medication (secondary risk factor): Concerning additional
medication, there might be a link between the daily use
of anti-inflammatory medicines and prostate cancer risk

C Obesity (definite risk factor): There is a clear link between
obesity and raised prostate cancer risk, as well as a higher
risk of metastasis and death among obese people who
develop prostate cancer

C Sexually transmitted disease (STDs)
C Agent Orange (Depending upon exposure concentration,

a higher risk factor)
C Enzyme PRSS3. PRSS3, an enzyme, changes the

environment of prostate cancer cells, making cancer
much more likely to metastasize
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Efficacy against Parkinson’s disease: The phytic acid also
termed as IP6 or inositol hexaphosphate is considered one of
the most significant beneficial agent that can target
Parkinson’s and Alzheimer’s disease. Apart from other useful
aspects,  the  IP6  has  following   unique   characteristics   i.e.,
(1) Strong anticancer activity, (2) Protective effect against
neurons from cell death, (3) Chelates iron, (4) It is cheap and
safe and (5) Could help in preventing Parkinson’s disease.
Evidently, according to the literature, IP6 has been proposed
to treat Parkinson’s disease51. Parkinson’s is a second most
common neurodegenerative disorder after Alzheimer’s52. This
neurodegenerative disorder is specifically characterized by a
selective dopamine neurons degeneration in the substantia
nigra,   resulting   in    irreversible    motor    dysfunction53.   The

substantia nigra part of the mammalian part has substantial
quantities of iron which is believed to be a significant
contributor to Parkinson’s disease. One possible reason for this
dopamine neurons degeneration is closely related to the free
iron content in those parts of the brain. The induced cell
damage including apoptosis caused by an oxidative stress also
plays a critical role in the neurodegeneration associated with
the Parkinson’s disease54. It is, therefore, the proficiency of
unbound iron to generate free radicals and induce oxidative
stress,  which  is  at  the  center  of  their  deleterious  effects.
Figure  2  illustrates   a  comprehensive  overview  of  this
relationship.  For  instance,  Xu  et  al.53  reported  the
neuroprotective  influence  of  the  natural  iron  chelator  i.e.,
IP6 or phytic acid in a cell culture model of Parkinson's disease.

Fig. 2: Iron-mediated cell death in PD. Reduced storage capacity in PD due to decreased ferritin expression and degeneration of
nigral melatonin-containing neurons causes an increase in the reactive Fe2+ iron pool. Age-related increases in iron and
a leaky BBB cause further iron accumulation. The transfer of the free iron to ferric iron, Fe3+, in the hydrogen peroxide-
mediated Fenton reaction produces the highly toxic hydroxyl radical. A compromised level of glutathione exacerbates the
levels of free radicals, whilst the deamination and autoxidation of dopamine produces further H2O2. The subsequent
oxidative stress can then elicit a range of cytotoxic reactions including protein misfolding, lipid peroxidation (which, in turn,
can cause "-synuclein aggregation), mitochondrial dysfunction and activation of glial cells. These various insults can induce
cell death by apoptosis, causing further degeneration (Reproduced from Ref. Mounsey and Teismann51, an open access
article distributed under the Creative Commons Attribution License)
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 Authors have reported disrupted iron metabolism and excess
iron accumulation in the brains of Parkinson's disease patients.
Besides  an  excellent  chelator  particularly  for  divalent
minerals and reduce their absorption, IP6 has significantly
considerable ability to alter cell signaling pathways and/or
antioxidant  catalysts  (enzyme)  that  are  responsible  for  ROS
detoxification55. Figure 3 shows an action of iron chelators
targeting Parkinson’s disease. A plethora of research studies
have shown/reported anticancer role of IP6, however, the data
on its effect on neurodegenerative diseases are limited53.
Considering the above factors and outcomes from various
studies, it could be helpful for Parkinson’s disease patients to
consume high IP6/phytic acid containing natural products
e.g., cereals and legumes, etc. However, future animal based
models or human-related studies are needed to confirm the
exact mechanism of action of IP6 under various conditions.
 
Biotechnological applications 
Nutraceutical potential for animals: From the past several
decades,   the   scientific   literature    is    evidenced    that    the

supplementation of phytase and their determinants in
different diets for various species56-60. Phytase enzyme
hydrolyzes phytic acid from cereals and releases bound
Phosphate61,62. The addition of phytase in poultry rations can
remove the inorganic P63. The activity of this extracellular
phytase breaks down the bound phytate-P as well as releases
the micronutrients (Zn, Iron) and reduces the excretion of P in
feces64. The use of enzymes in poultry and animal diets
improves  digestibility  and  availability  of  nutrients.  There  is
an economic, environmental and sustainable, for reuse of
P65,66.  Two  types  of  phytases  are  3-phytase  (myo-inositol
hexakisphosphate-3-phosphohydrolase, E.C. 3.1.3.8) that
remove phosphate from the 3-position of phytate and a 6-
phytase (myo-inositol hexakisphosphate 6-phosphohydrolase,
E.C. 3.1.3.26) that removes phosphate from the 6-position of
phytate67. Microbes extracellularly secrete the 3-phytase.

The use of phytase in nutrition supplements decreases
the viscosity and increases the absorption of nutrients by
ruminant which also reduces the number of feces68,69.
Microbes   are    attracting   significant   industrial   interest   for

Fig. 3: Action of iron chelators targeting PD. All iron chelators mop up excess free, reactive iron, thus reducing the reduction of
Fe2+ to Fe3+; a reaction that produces various ROS, such as the hydroxyl radical. Oxidative stress resulting from the
generation of ROS produces a range of deleterious insults, which can be targeted with the multiple actions of inhibitors.
This can attenuate the cell death that these events induce. Chelators with antioxidant properties inhibit the production
of ROS, in an environment of diminished antioxidant activity. The dopamine-oxidising enzyme MAO-B, which resides in
the outer membrane of mitochondria, can also be inhibited by some chelators (Reproduced from Ref. Mounsey and
Teismann51, an open access article distributed under the Creative Commons Attribution License)
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extracellular secretion of phytases both for environmental and
economic reasons70. The net effect of using the enzyme in the
diet increased the weight of the animal. Spray food processing
enzymes just before feeding provides greater flexibility of
management71. Feeding a treatment with enzymes in this
manner can improve the digestibility of food through some
different mechanisms72,73, including direct hydrolysis,
improved palatability, viscosity changes of the intestine69.

Supplementation of diets with exogenous enzymes
enhances the efficiency of poultry by increasing digestion of
low-quality products and reducing nutrient losses with
possible economic benefits. Enzymes increase digestibility,
remove anti-nutritional factors and increase nutrient
availability. In the current scenario, there is a need to develop
versatile  enzymes  as  a   sustainable   solution   to   problems
of  poor  nutrient  digestibility  and  bioavailability.  The
sustainability of phosphorus is emerging as a major societal
goal to secure future food and water security for a growing
population. The production systems can be redesigned to
facilitate  recovery  and  recycling  of  P.  Phytase  added  in
crops,  which  improve  phytate  phosphorous   uses,  reduces
environmental  pollution,  making  poultry  husbandry
ecologically more attractive. Looking at the big picture, it will
help meet the new global targets for improving people’s lives
around the world as an unprecedented push to tackle the root
causes of poverty. It embraces the need for economic
development that leaves no one behind and gives every
human being a fair chance of leading a decent life thus to
protect future generations by limiting climate change,
adopting renewable energy and managing resources
sustainably.

Concluding remarks: In summary, many research scientists,
entrepreneurs and research-based organizations have been
focused or be focusing their attention on phytase or phytate
and their considerable exploitation for various fields  including
human  health  from  biomedical  and  human  and  animal
nutrition  from  nutraceutical.  The  above-discussed  data
suggest that a noteworthy potential exists for the use of
phytase in various biotechnological applications at large and
biomedical in particular. However, up to now, no single
phytase based product for biomedical application has found
its way to the market. Besides its antinutrient activity, dietary
phytate displays advantageous health-related aspects, for
example, higher protection efficacy against various cancer
types and health-related diseases including Parkinson’s,
Alzheimer’s, diabetes mellitus and renal stones. Considering
the       above-mentioned       useful       health       effects,       the

phytase/phytate can play a highly significant role for
populations in developed countries, because of the greater
frequency of cancer particularly colon cancer which is related
to the higher fat and lower fibre-rich food intakes.

SIGNIFICANCE STATEMENT

Phytase/phytate containing natural products have some
inherent characteristics that make them potent candidate for
biomedical and pharmaceutical applications. Within the last
15 years, the phytate has shown extraordinary potentialities
though at laboratory level studies e.g., (1) To halt abnormal
cell proliferation, (2) To treat various cancer types, (3) To alter
cell signaling pathways and/or antioxidant catalysts (enzyme)
that  are  responsible  for  ROS  detoxification.  Considering  all
the normal physiological facts present in our body, the
phytase/phtate supplementation strongly argue in favor of its
inclusion as an essential nutrient.
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