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Abstract
Background and Objective: Hepcidin as iron hormone regulator was shown to be responsible for the hemostatic balance of iron content
in liver cells. It shows significant role in the prognosis of fibrosis in iron overloaded hepatic tissues. In excess iron treated models, Taurine
(TAU) was shown to play a protective role against hepatic fibrosis. However, little is known about the effect of  TAU on hepcidin expression
and its correlation with collagen content in hepatic tissues. Thus, the current study evaluated the protective role of TAU and its effects
on the regulation of hepcidin expression, oxidative stress and apoptosis in iron overload induced liver cell fibrosis in rat models.
Methodology: Iron overloaded rats were administered TAU therapy (40 mg kgG1/day) in drinking water for 4 months. Histochemical and
biochemical analysis were performed to estimate fibrosis score, iron content, hepcidin and 8-OHdG, TAC and bcl-2 as markers of oxidative
stress and apoptosis respectively pre and post TAU therapy. Results: The data showed significant improvements in the levels of hepatic
iron content, hepcidin, 8-OHdG, TAC and bcl-2 in both fibrotic (score: 2-3) and non-fibrotic (0-1) iron treated rats. Liver fibrosis scores
correlated positively with the levels of hepatic iron, hepcidin and negatively with HPX content as marker of collagen, bcl-2 as a marker
of liver cell apoptosis and TAC and 8-OHdG as oxidative stress markers. Conclusion: Present study showed that TAU therapy improves
liver fibrosis via antioxidant and anti-apoptotic pathways as well as down regulation of hepcidin expression. This may prove the
prophylactic role of TAU against early liver fibrosis.  In addition, hepcidin was shown to be closely associated with liver fibrosis and cloud
be used as a diagnostic marker in evaluating new therapeutic strategies against liver diseases.
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INTRODUCTION

Taurine  is one of the most sulfur containing $-amino
acids that  showed  a  wide  range  of  vital  biological
functions especially  neuro-modulation  and cell membrane
stabilization1-5.  In various cells and tissues, taurine behaves as
an antioxidant and free radical scavenging agent6,7. In
addition,  previous  research  works  suggested the
accessibility of taurine as a chemo protective agent against
carcinogenesis8-10, especially hepatocarcinogenesis11-15.

The  protective  activity  of  taurine  may  related to its
anti-oxidant, anti-inflammatory as well as anti-apoptotic
activities2,15-18, towards cytotoxicity and oxidative stress
produced in hepatocytes or other tissues19-23, that produced
following the treatment with specified cytotoxic agents24-26.
Because of hepatotoxicity, more taurine was produce from
liver tissues and subsequently leakage from damaged cells
into plasma and urine. Thus, the levels of the released taurine
in plasma or urinary could be a useful marker for evaluation of
hepatic damage27. Previous research studies revealed that Fe
containing enzymes, ferritin, hemosiderin and heme were the
main sources of Iron (Fe) storage in hepatocytes28,29.

Excess iron in hepatic cells of acute and chronic liver
diseases  induces  severe  liver  cell  damage,  death of
hepatocytes and finally produces cirrhosis and hepatocellular
carcinoma via iron-catalyzed oxidative stress mechanism30-33.
Previously, it was reported that hepatocytes with excess iron
stressed with excessive production of ROS, which produces
subsequent damage of liver tissues34. The prognosis of liver
fibrosis  shown  to  be  closely  associated  with iron toxicity
and its concentration (IC) in liver cells35,36, which produce
significant hepatocyte apoptosis, which accelerates the
fibrogenesis and carcinogenesis of liver tissues33,37.

Hepcidin comprises of a small peptide of 25-amino acid,
which produced in liver cells, it considered as iron hormone
regulator in most tissues and biological systems38,39.  Whereas,
both down expression and up expression of hepcidin levels
estimated in subjects with excess iron content and in those
who had severe iron deficiency, respectively38-42. This may be
to make a hemostatic balance for iron content within cells and
tissues.

In many liver diseases, the expression of hepcidin easily
estimated in serum, urine or tissue samples. Lower levels of
serum hepcidin/ferritin ratio were significantly estimated in
chronic hepatitis C patients with severe iron overload38,43,44.
Thus hepcidin could be useful as prognostic diagnostic
markers for staging of liver fibrosis39,40,42 and to measure the
efficacy of new therapeutic regimen against liver fibrosis. Also,
dys regulated iron absorption or disorders in iron homeostasis

was shown to be associated with hepcidin deficiency or
alterations in its target, ferroportin especially in patients with
hereditary hemochromatosis, anemia’s associated with
inflammation, chronic kidney disease and some cancers45-47.
Although, hepcidin, ferroportin and their regulators consider
potential targets for the diagnosis and treatment of iron
disorders and anemias45-47, recent findings on therapeutic
studies targeting hepcidin expression or its downstream
signaling have no promising or little data on the role of
hepcidin expression  in liver cell fibrosis and its correlation
with the biological activity of taurine against liver fibrosis
induced by iron overloaded8-23,45-47. Thus this current study
may be the first to evaluate the effect of taurine on liver
fibrosis through targeting hepcidin expression as well as other
cellular biomarkers relating to liver fibrosis.

Therefore, the aim of the current study was to evaluate
the hepatoprotective effects of taurine on regulation of
hepcidin expression in liver cell fibrosis. For this, levels of
hepcidin, taurine, hydroxyproline (HPX), total anti-oxidant
capacity, 8-OHdG and bcl-2 as oxidative, liver fibrosis and
apoptotic markers were estimated in serum and liver tissues
of iron overloaded rat models.

MATERIALS AND METHODS

Animals and experimental design: A total of 45 albino
Sprague Dawley male rats weighing 180-250 g were
maintained in clear healthy atmospheric conditions, normal
feeding, drinking and medical care based on the guidelines of
the experimental animal care, College of Science, King Saud
University, Riyadh, Saudi Arabia. The Ethics Committee of the
Experimental Animal Care Society at King Saud University
approved the experimental procedures (Permit Number: PT
1012).  The    animals   divided  randomly  into  three  groups
(n = 15), Control group (rats feed on normal diets without
iron), Iron overloaded group (rats feed with iron in a drinking
water for 2 month  and then left without treatment for
another 2  month) and taurine treated group (rats feed with
iron  in  a  drinking  water  for  2   month   then   treated  with
40 mg kgG1/day taurine was administered daily by oral gavage
prior  to iron-overload administration 6 weeks and throughout
the course of the experiments. Iron was added to drinking
water in a quantity exceeds the maximum permissible
concentration (MPC, Fe2+ is 0.3 mg LG1) for this chemical in
Ministry of Health. Thus, rats of control group supplemented
only tap water, whereas iron overloaded and taurine groups
provided   with  drinking water containing 3 mg LG1/day of
Fe2+ (using 8.3 mg LG1/day of FeSO4). The dose of taurine
selected based on previous research study48.
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After 4 months, rats sacrificed under ether anesthesia.
Blood and liver tissue samples collected and subjected for
subsequent  histological  and  biochemical analysis. Liver
tissue samples divided into two parts. One part immediately
frozen at !80EC for biochemical analysis and the other part
fixed in 10% neutral buffered formalin for histological
examination.

Estimation of iron concentrations and indices of liver injury:
An auto-analyzer (Cobas Integra 400, Roche, Holliston, MA,
USA) and reagent diagnostic kits from Roche Diagnostics
(Indianapolis,  IN,  USA)  were  used  to  measure serum AST
and ALT activities. Iron concentration were estimated 
spectrophotometrically at 535 nm in both serum and liver
tissues as described previously49, the assay based on the
generation  of  an  iron-ferrozine  complex and the
concentration was expressed as micrograms of iron per gram
of dry weight of liver following reaction with 2 mM
bathophenanthroline disulfonic acid50.

LW/BW (liver weight/body weight) calculated according
to the formula:

LW Liver weight (g)
= 100

BW Body weight (g)


A validated ELISA kits used to estimate hepcidin
concentration in serum and tissue samples as already
previously reported in the literature51,52.

Estimation of oxidant -antioxidant status: Both total
antioxidant capacity (TAC) and 8-Hydroxyguanine (8-OHdG)
were determined as markers relating to oxidant-antioxidant
status in serum of iron-overloaded rats treated with taurine
(TAU). Serum samples used to determine TAC by using
colorimetric assay Kit (Bio-Vision Incorporated, CA, USA). The
concentrations of anti-oxidant capacity measured at 570 nm
using a spectrophotometer. Based on manufacturer's
instructions equivalents, the results were calculated as a
function of Trolox concentration according to the formula: 

1 Sample amount
nmol µL =

Undiluted sample volume


or  mM  Trolox  equivalent50. Serum 8-OHdG as a marker of
DNA damage  was estimated  by using immunoassay
technique with the help of a commercially available ELISA kit
(DNA Damage ELISA Kit, Product #: EKS-350, Stressgen Co.,
USA)53.

Estimation of   liver apoptosis and fibrosis: Serum bcl-2
concentrations as marker for liver cell apoptosis were
determined  using  a  commercially available, non-isotropic
bcl-2 ELISA kit (Cat# QIA23, Oncogene Research Products,
Germany) as previously reported54. Hydroxyproline (HPX)
concentrations measured in serum and tissue samples using
colorimetric assay kits (Hyp, Cat. No. E0621Hu, Uscn Life
Science Inc. Wuhan) and commercially available bioassays. The
absorbance  values  of  the  solutions  were  determined  at
557 nm in ultraviolet (Systronics-2203) spectrophotometer
and    the      HPX      concentrations      calculated      from    the
L-hydroxyproline standard curve.

Histological analysis: Liver tissues of both iron overloaded
and TAU treated rats were investigated histologically and liver
cell fibrosis was scored as previously reported in literature55,
into no fibrosis (0-1) and fibrosis (2-3).

Statistical analysis: The data of this study had been analyzed
using SPSS version 17. All data tabulated as Mean±SD. The
statistical differences performed by using one-way analysis of
variance (ANOVA) and Student’s t-test.  The p<0.05 considered
statistically significant.

RESULTS

Table 1 showed successful increment in serum and
hepatic iron concentrations reported in rats following iron
treatment course for 4 months in drinking water.  Compared
to control group, rats with excess iron showed a significant
increase in LW/BW, serum ALT and AST levels as markers of
cellular  liver  damage.   Oral  administration  of  TAU (40 and
30 mg kgG1/day) significantly improved the developed liver
damage, resulting in decreases of LW/BW, serum ALT and AST
levels (both at p<0.001). In addition, TAU significantly effects
on  serum  and  hepatic  iron  concentrations  as shown in
Table 1.

In iron treated rats, significant increment (p <0.01) in the
levels of HPX content, 8-OHdG and hepcidin expression levels
along with a decrement (p<0.01) in the level of bcl-2 and TAC
activity  were  reported  compared  to that of control rats
(Table 2). Whereas in TAU treated rats, serum and hepatic
tissue samples showed significant decrease (p<0.001) in the
levels of HPX content, 8-OHdG and hepcidin expression
respectively compared to that of iron-treated rats as shown in
Table 2.

Based on histological scoring analysis, iron and TAU
treated  rats  were  diagnosed and classified according to liver
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Table 1: Regulation of liver-to-body weight ratio, iron concentration and levels of ALT and AST in serum and hepatic tissues of iron-overloaded rats treated with taurine
(TAU)

Parameters CON (n=15) Iron treated  (n = 15) Iron+TAU  (n = 15)
LW/BW (mg gG1) 38.9±3.1 125.8±5.3a 65.90±2.8a,b

Serum iron concentration (mol LG1) 28.9±1.6 485.8±15.8a 415.70±17.4a,b

Hepatic iron concentration (mg gG1 dry weight) 0.089±0.005 1.8±0.058a 1.45±0.039a,b

ALT (U LG1) 29.5±1.45 265.3±9.76a 135.60±4.7a,b

AST (U LG1) 56.8±3.7 385.3±11.5a 185.80±8.6a,b

Fibrosis score: (N, %)
No fibrosis (0-1) - 6.0 (40%) 5.0 (33.3%)
Fibrosis (2-3) - 9.0 (60%) 10.0 (66.7%)
Data are expressed as the mean±standard error of the mean (n = 15), ap<0.01 vs. Control group, bp<0.001 vs. Iron group. ALT: Alanine transaminase, AST: Aspartate
transaminase, LW: Liver weight, BW: Body weight

Table 2: Profile of bcl-2, TAC, 8-OHdG, hydroxyproline (HPX) and hepcidin markers, in serum and hepatic tissues of control, iron overloaded and taurine (TAU) treated
rats

CON (n = 15) Iron treated  (n = 15) Iron+TAU (n = 15)
--------------------------------------------------- -------------------------------------------------- -------------------------------------------------

Parameters Serum Hepatic tissue Serum Hepatic tissue Serum Hepatic tissue 
Bcl-2 (µg mLG1) 5.90±0.45 2.80±0.28 1.2±3.5a 0.78±1.2a 3.1±2.3b 1.4±0.32b

HPX (ng mLG1) 1.50±0.84 0.56±0.48 8.7±3.9a 5.30±2.6a 4.3±1.69b 2.7±0.96b

TAC (nmol LG1) 35.10±3.80 18.60±2.60 19.7±3.7a 7.30±1.48a 28.9±2.9b 12.9±1.6b

8-OHdG (ng mLG1) 0.56±0.35 0.45±0.25 9.3±3.8a 4.90±1.8a 3.8±1.56b 2.3±0.86b

Hepcidin (ng mLG1) 18.50±3.70 10.90±3.70 32.4±3.7a 18.20±3.7a 21.6±2.4b 12.8±1.9b

Data  are  expressed  as  the  mean±standard  error  of  the  mean  (n =  15), ap<0.01 vs. Control group, bp<0.001 vs. Iron group. Bcl-2: B-cell lymphoma gene 2, HPX:
Hydroxyproline, TAC: Total antioxidant capacity, 8-OHdG: Serum 8-Hydroxyguanine

Table 3: Correlation between scores of liver cell fibrosis and iron toxicity measured by hepatic hepcidin, iron, bcl-2 levels in iron overload and taurine (TAU) treated
rats

Liver cell fibrosis
------------------------------------------------------------------------------------------ -----------------------------------------------------------
Iron overload TAU treated (20 mg kgG1/day)
----------------------------------------------------------- -------------------------------------------------------

Variables 0-1 (n = 6) 2-3 (n = 9) 0-1(n = 5) 2-3 ( n = 10)
Hepatic iron 0.516** 0.681*** 0.250** 0.257***
Hepatic hepcidin levels 0.315** 0.246*** 0.378** 0.156***
Bcl-2 (µg mLG1) -0.718** -0.251*** -0.258** -0.240**
HPX (ng mLG1) -0.280** -0.147*** -0.220** -0.185**
Oxidative stress -0.145** -0.211*** -0.178** -0.196***
*p<0.05, **p<0.01, ***p<0.001

fibrotic  score  into  two  groups, no fibrosis (0-1) and fibrosis
(2-3).  Significant  fibrosis  (score:  2-3)  was  reported  in 60%
(n = 9) vs 66.7% (n = 10) in iron and TAU treated rats,
respectively and only 40% (n = 6) vs. 33.3% (n = 5) of the rats
of both  iron  and  TAU treated rats had no fibrosis (Table 1).
The TAU  treated  rats  with or without significant fibrosis
showed a specified  fold  increase  in  the  levels  of TAC
activity and bcl-2 protein  along  with  a  reduction  in  the
levels of HPX content, 8-OHdG and hepcidin expression
towards normal levels compared to that reported in iron
treated  rats  with  the  same  degree  of  fibrosis score as
shown in Fig. 1.
Correlation analysis reported a significant association

between excess iron toxicity a specified as a change in hepatic
iron content, hepcidin and anti-apoptotic bcl-2 protein
expressions. Liver cell fibrosis in iron and TAU treated rats,

correlated positively with the levels of hepatic iron, hepcidin
and negatively with HPX content as fibrotic marker, bcl-2 anti-
apoptotic protein as a marker of liver cell apoptosis and
oxidative stress  markers  (Table  3).   The  data showed that
TAU  therapy   improve  liver  fibrosis  via  anti-oxidant  and
anti-apoptotic pathways as well as down regulation of
hepcidin expression.

DISCUSSION

Previous research studies have concluded that excess iron
deposition in human and animals’ hepatic cells significantly
produce severe liver cell damage, initiation of reactive oxygen
species (ROS) which leads to severe cellular oxidative stress
and subsequent prognosis of liver fibrosis via apoptosis30-38.
The  effects  of  taurine  as  a   hepatoprotective   agent   in  the
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Fig. 1(a-b): Effect of excess iron deposition on oxidative stress
measured by 8-OHdG; DNA damage relating
marker and TAC activity, HXP content (fibrotic
marker), bcl-2 anti-apoptotic related biomarker,
and hepcidin expression, iron regulator marker in
hepatic tissues and potential effects of TAU
treatments against iron loads, (a) Fold change in
HPX content, bcl-2, TAC, 8-OHdG and hepcidin
levels as markers of fibrosis towards improved
levels in rats treated with TAU-course for 4 months
compared to iron treated rats with the same
fibrotic scores (0-1) and (B) Fold change in HPX
content, bcl-2, TAC, 8-OHdG and hepcidin levels as
markers of fibrosis towards improved levels in rats
treated with TAU-course for 4 months compared
to iron treated rats with the same fibrotic scores
(2-3)
All values represent Mean±SD. *p<0.05, **p<0.01, ***p<0.001
compared to iron treated group, Student’s t-test

regulation  of  hepcidin,  iron  regulator protein and apoptosis
pathways remains unknown or needs more elucidation.
In this study,  excess iron deposition in the liver tissues of

rats showed significant increase in liver and body weights,
higher levels of serum AST, ALT with a reduction in the levels
of antiapoptotic bcl-2 protein marker which supports that iron
produces liver damage via apoptotic mechanism. Similarly,
other studies showed that excess iron in liver tissues was
significantly associated with severe liver damage, increase in
cell apoptosis and subsequently liver fibrosis47,53-56.

In addition to that, the rats treated with TAU therapy for
4 months  showed  significant reduction in the levels of
hepatic  iron concentrations with an improvement in the
levels of both AST  and  ALT,  respectively. In the same time,
bcl-2 as anti-apoptotic regulating protein was significantly
increased in TAU treated rats compared to those with iron
toxicity. These data supports that TAU protective activity
against liver cell fibrosis proceeds via anti-apoptotic pathways.
The  effect  of  TAU  is  specified  based up on its anti-oxidation
and  anti-apoptotic    activities    which   are   in   consistent 
with  previous  studies   confirmed    that   anti-oxidant  and
anti-apoptotic potency of TAU protects against liver damage
in iron-overloaded mice models53-55, via reduction in oxidative,
nitrosative stresses, apoptosis as well as necrosis of lever
cells57.

Bcl-2 as anti-apoptotic marker showed to regulate the
intrinsic apoptotic pathway and consequently protect cells
from a broad range of apoptotic stimuli58-61. Thus, reduction in
the expression of bcl-2 in our study following iron loads
promotes the induction of hepatocyte apoptosis as shown
previously that excess iron deposition in isolated hepatocytes
can  cause  apoptotic  cell  death  and  generation of ROS,
which proceeds to other changes related to oxidative
stress62,63.   Thus  significant  increase  in  the  expression  of
bcl-2   potentially  signifies  more  persistent  against many
pro-apoptotic physiological parameters such as serum
deprivation, F as-ligand and high toxic levels of bile acids62,63.

Thus in this study, the improvement in bcl-2 protein
following TAU treatment may be due to a reduction in
oxidative  stress  or by indirect activation and over expression
of  the pregnane X receptor (PXR), which is required for
protection of liver cells against chemicals by simultaneously
regulating detoxication and enhance the apoptotic pathway
via up-regulation of bcl-2 protein expression64.

In this study, TAU treatment for 4 months significantly
suppressed the excessive production of oxidative free radicals
induced by iron overloads in rat livers. Previous research
studies concluded that compounds with anti-oxidant capacity
like TAU are capable of neutralizing generated oxidative free
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radicals (ROS) and counteract the harmful effects of ROS which
significantly initiated following  over deposition of iron in liver
tissues65-70.

Similarly,  in  the  iron treated rats, lower TAC and higher
8-OHdG values were estimated in serum and hepatic tissues
compared to control group.  Whereas, rats treated with TAU
for 4  months showed significant increase in the levels of TAC
activity with a reduction in the levels of 8-OHdG , a predicting
marker of liver DNA damage. Taurine was shown to have
several physiological roles in biological systems as strong
antioxidant protective agent, this owing to its chemical
structure that formed of essential amino acid with a sulfonic
acid group71-75.
The data of this study suggested that taurine was able to

decrease the toxic effects of iron as previously reported76-78.
Previously, it was concluded that the potential anti-oxidant
activity of taurine may be associated with its structure activity
containing sulfur moiety and that the modulation of TAC as a
marker of increasing liver antioxidant capacity by taurine
supported its critical role in the cellular defense against
oxidative stress71-75,79,80. Thus findings of this current study also
may explained the pleiotropic and beneficial effects of taurine
following an increase in oxidative stress77,78, whereas
administration of taurine may repaired the shifted redox
balance occurred during iron overload toxicity.
Chronic liver damage was associated with inflammation,

excessive  deposition of extracellular matrix (ECM) proteins
and consequently  prognosis  of  liver   fibrosis   which  leads
to serious cirrhosis1,81-85. Hydroxyproline (HPX), the most
important amino acids present in ECM, it produced as result of
hydroxylation of proline moiety and was shown to preserve
the integrity and function of liver cells.  The levels of HPX in
liver tissues, serum and urine comprises a superior limiting
factor which could signify correctly the rates and progression
of liver fibrogenesis86-89.

In this study, the HPX content as marker of liver cell
fibrosis was estimated in serum and hepatic tissues of all rats.
The HPX content was significantly reduced (improved) in TAU
treated rats with both fibrotic (score: 2-3) and non-fibrotic
(score: 0-1), respectively. However, more improvement was
observed in rats with low or no fibrosis compared to those
with fibrosis (score 2-3). The data obtained were in consistent
with previous research studies which confirmed that TAU
potentiates an improvements or reduction in the production
fibrogenic mediators such as HXP, hepatic collagen I, III, IV,
laminin and hyaluronic acid in different models of iron
overloaded with liver fibrosis. These studies proposed that the
improvements in liver fibrosis, may be due to the reduction in
the levels of pro inflammatory mediators such as interleukin-6

(IL-6) and tumor necrosis factor-" (TNF-")  as well as 
reduction  oxidative  stress  which  markedly reduced
following treatment with TAU68-75,90,91. Recently, it was
concluded that taurine besides its anti-fibrotic, preserved
effect against liver injury and abnormal liver function, it
prevents hyper secretions of ammonia as serious collateral
causes of acute and chronic liver injury92.
In many liver diseases, up and down expression levels of

hepcidin easily estimated in serum, urine or tissue samples
and showed to be associated with the status of iron loads38-44.
Thus hepcidin could be useful as prognostic diagnostic
markers for staging of liver fibrosis38,40,42 and to measure the
efficacy of new therapeutic regimen against liver fibrosis.
Thus in this study, the effect of TAU on the expression rate

of hepcidin  and its association with liver fibrosis was
estimated in all treated rats. TAU treated rats showed
significant decrease in the levels of hepcidin compared to
those  obtained  in  serum  and  hepatic  tissue  samples of
iron-overloaded rats. Correlation analysis reported that liver
cell fibrosis correlated positively with the levels of hepatic iron,
hepcidin and negatively with HPX content as marker of
collagen deposition, bcl-2 as a marker of liver cell apoptosis
and TAC and 8-OHdG as oxidative stress markers.  Consistent
with  previous  research  reports,  the  data  of the current
study showed that TAU therapy improves  liver  fibrosis via
anti-oxidant and anti-apoptotic pathways as well as down
regulation of hepcidin expression. Whereas the activity TAU
may be attributed with its sulfur moiety, which significantly
increases antioxidant capacity of liver cells and subsequently
protect liver cells against inflammatory mediators and free
radical oxidative parameters, which produce severe injury,
DNA damage and subsequently apoptosis71-75,79,80.  In addition,
the present findings of this study may explain pleiotropic and
beneficial effects of taurine following an increase in oxidative
stress77,78,  whereas  administration  of taurine may repaired
the sifted redox balance occurred during iron overload
toxicity30,93-97.
Finally,  the data showed significant link between

hepcidin  expression,  bcl-2  and hydroxyproline in
contribution with early  and  chronic  liver fibrosis and that
TAU treatment therapy  for  4  months improves liver fibrosis
via antioxidant,  anti-apoptotic  and  down  regulation  of
hepcidin expression in iron overloaded experimental models.

CONCLUSION

Current study showed that Taurine (TAU therapy improve
liver fibrosis via anti-oxidant and anti-apoptotic pathways as
well as down regulation of hepcidin expression. In addition,
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hepcidin was shown to closely associated with liver fibrosis
and cloud be used as a diagnostic marker in evaluating new
therapeutic strategies against liver diseases.

SIGNIFICANCE STATEMENT

Hepcidin as iron hormone regulator was shown to be
responsible for the hemostatic balance of iron content in liver
cells. It shows significant role in the prognosis of  fibrosis in
iron overloaded hepatic tissues. TAU therapy showed to
improve liver fibrosis via antioxidant and anti-apoptotic
pathways as well as down regulation of hepcidin expression.
This may prove the prophylactic role of TAU against early liver
fibrosis. In addition, hepcidin was shown to be closely
associated with liver fibrosis and cloud be used as a diagnostic
marker in evaluating new therapeutic strategies against liver
diseases.
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