

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2019.926.932

Research Article Effect of *Datura stramonium* on Cyclophosphamide-induced Oxidative Stress in Albino Rats: Study on Kidney Markers

¹Parker Elijah Joshua, ¹Rita Onyekachukwu Asomadu, ²Chuma S. Eze, ¹Ikenna Vitus Nnamani, ¹Chizoba Ogugofor Kingsley, ³Chukwuemeka Paul Nweje-Anyalowu, ¹Victor Jason Patrick and ¹Seanpaul Amobi Obe

Abstract

Background: Cyclophosphamide is a chemotherapeutic agent, whose activation induces oxidative stress, causing nephrotoxicity. The present study ascertained the effect of the aqueous extracts of *Datura stramonium* seeds and leaves on cyclophosphamide-induced oxidative stress in rats. **Materials and Methods:** Twenty-four Wistar albino rats were divided into 6 groups of 4 rats each. All groups, except group 1, were induced with cyclophosphamide at a dose of 150 mg kg⁻¹ b.wt. Group 1 was the normal control, group 2 (positive control) was left untreated, group 3 and 4 were administered 200 and 400 mg kg⁻¹ b.wt., of the seed extract respectively, while group 5 and 6 were administered 200 and 400 mg kg⁻¹ b.wt., of the leaf extract respectively, after cyclophosphamide induction. **Results:** Administration of the extracts caused significant (p<0.05) decreases in catalase and glutathione peroxidase, glutathione, malondialdehyde and urea concentrations compared to group 2. The extract also led to significant (p<0.05) increases in albumin, globulin, total protein, vitamins C and E concentrations compared to group 2. However, there was no significant difference in vitamin A concentration after extract administration. **Conclusion:** This study showed the ability of *Datura stramonium* in restoring oxidative stress induced by cyclophosphamide, though not all indices considered were significantly reversed.

Key words: Datura stramonium, cyclophosphamide, malondialdehyde, nephrotoxicity, glutathione peroxidase, oxidative stress

Citation: Parker Elijah Joshua, Rita Onyekachukwu Asomadu, Chuma S. Eze, Ikenna Vitus Nnamani, Chizoba Ogugofor Kingsley, Chukwuemeka Paul Nweje-Anyalowu, Victor Jason Patrick and Seanpaul Amobi Obe, 2019. Effect of *Datura stramonium* on cyclophosphamide-induced oxidative stress in albino rats: Study on kidney markers. Int. J. Pharmacol., 15: 926-932.

Corresponding Author: Rita Onyekachukwu Asomadu, Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria Tel: +2347032466512

Copyright: © 2019 Parker Elijah Joshua et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

²Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Enugu State, Nigeria

³Department of Biological Sciences, Biochemistry Unit, Faculty of Science, Clifford University, Owerintta, Abia State, Nigeria

INTRODUCTION

Oxidative stress is the disproportion between oxidants and antioxidants in favour of oxidants, potentially leading to the generation of highly reactive free radicals^{1,2}. It is created when these excessive free radicals react with proteins, cell walls and nucleic acids, causing damage to cell structures and thereby leading to degenerative diseases³. Oxidation to macromolecules due to reactive oxygen species (ROS) has been implicated in diseases such as cancer, myocardial infarction, rheumatoid arthritis and degeneration process of aging^{4,5}. The ROS are generated internally as by-products of aerobic metabolism in the mitochondrion or externally through tobacco smoke, UV radiation and other environmental pollutants⁶. The physiologically important intracellular levels of ROS are maintained at low levels, under normal conditions by enzyme systems participating in the in vivo redox process of homeostasis, or by non-enzymatic

compounds. However, during oxidative stress, the level of ROS

increases and overwhelms the antioxidant systems resulting

in damage to tissues^{7,8}.

Plants have always been used in the treatment of human traumas and diseases worldwide. They represent important source of antioxidants due to their inherent phytochemical constituents². Datura stramonium, known as Jimson weed, belonging to the family Solanaceae, is a plant native to the tropics9. It is also commonly found growing as a weed by roadsides, undisturbed sites¹⁰, grass fields and brushwood. It has small, ovate to sub ovate leaves which have long, stout petioles, coarsely serrate margin, 5-20 cm (2-8 inches) long and acuminate at their tips. The leaves have an unpleasant scent when crushed or bruised¹¹. It has medium-sized fruits with several slender spines. Its seed capsules are located at the forks between branches and split open into four segments when matured. They are ovoid in shape, 3-5 cm (1-2 inches) long and are covered in prickles; containing dark, wrinkled seeds¹². The toxicity of alkaloids isolated from the seeds has been demonstrated 13. The plant has anti-microbial, antifungal and anti-inflammatory properties¹⁴⁻¹⁶. Previous studies have also demonstrated the in vitro anti-oxidant activity of Datura stramonium leaves and seeds 17-20. Since induction of cyclophosphamide causes oxidative stress, affecting the kidneys²¹⁻²³ and owing to the antioxidative capacity of the plant, the present study determined the ability of the plant to reverse oxidative stress induced by cyclophosphamide, by determining its effect on some antioxidant indices and kidney function markers.

MATERIALS AND METHODS

This study was carried out at the Department of Biochemistry, University of Nigeria, Nsukka from April to June, 2017

Instruments/equipment: Rotary evaporator (Model Modulyo 4K, Edward, England), water bath (Gallenkamp, England), chemical balance (Gallenkamp, England), conical flasks (Pyrex, England), hotbox (Gallenkamp, England), centrifuge (PIC, England), digital photo calorimeter (El 312 model, Japan), adjustable micropipette (Perfect, USA), pH meter (Pye, Unicam 293, England), multi-well microtiter plate reader (Tecan, Austria), refrigerator (Kelvinator, Germany) and electrical grinder.

Identification and extraction of plant materials: Fresh leaves and seeds of *Datura stramonium* were obtained from Calabar, Nigeria and were identified by a taxonomist-Mr. Alfred Ozioko of International Centre for Ethno medicine and Drug Development (InterCEDD), Nsukka, Enugu State, Nigeria. The leaves and seeds were air-dried at room temperature and ground separately to powdery form using an electrical grinder. The ground samples were extracted with water by maceration and subsequently filtered. The filtrates were concentrated using rotary evaporator, producing the aqueous leaf and seed extracts which were used for analysis.

Animals: Adult male Wistar rats with average weight of 160 ± 15 g were obtained from the Animal House of the Faculty of Veterinary Medicine, University of Nigeria, Nsukka. The animals were acclimatised for one week under standard environmental conditions and maintained on a regular feed (vital feed) with water *ad libitum*. Ethical approval on the use of these animals was obtained from the University of Nigeria committee on the care and use of laboratory animals, in accordance to the revised National Institute of Health Guide for Care and Use of Laboratory Animal (Pub No. 85-23, revised 1985).

Experimental design: Twenty-four male wistar rats were divided into six (6) groups of four (4) rats each and treated as shown below:

Group 1 : Normal control (No induction, no treatment)

Group 2: Positive control (Cyclophosphamide-induced,

untreated rats)

Group 3 : Cyclophosphamide+200 mg kg⁻¹ b.wt., aqueous

seed extract of Datura stramonium

 $Group\,4\ :\ Cyclophosphamide+400\,mg\,kg^{-1}\,b.wt., aqueous$

seed extract of Datura stramonium

Group 5 : Cyclophosphamide+200 mg kg⁻¹ b.wt., aqueous

leaf extract of Datura stramonium

Group 6 : Cyclophosphamide+400 mg kg⁻¹ b.wt., aqueous

leaf extract of Datura stramonium

Lipid peroxidation assay: Lipid peroxidation assay was done by determining the concentration of malondialdehyde (MDA) formed using the method of Wallin *et al.*²⁴.

Assay of superoxide dismutase activity: Superoxide dismutase (SOD) activity was assayed using the method of Woolliams *et al.*²⁵ as contained in the Randox commercial kit.

Assay of catalase activity: Catalase (CAT) activity was assayed using the method of Aebi²⁶.

Assay of glutathione peroxidase activity: This was done according to the method of Paglia and Valentine²⁷.

Estimation of reduced glutathione: This was achieved by following the method of Exner *et al.*²⁸.

Estimation of vitamin A: The method of Subramanyam and Parrish²⁹ was used to determine the vitamin A concentration.

Estimation of vitamin C: The method of Baker *et al.*³⁰ was used to determine vitamin C (ascorbic acid) concentration.

Estimation of vitamin E: Vitamin E content was estimated by the method of Pearson³¹.

Determination of urea concentration: The concentration of urea was determined using the modified diacetyl monoxime method as described by Wybenga *et al.*³².

Determination of creatinine concentration: The concentration of creatinine was determined by means of the alkaline picrate method as described by Henry *et al.*³³.

Determination of total protein concentration: Total protein concentration was determined through the Biuret's reaction as described by Henry *et al.*³³.

Determination of albumin concentration: Albumin concentration was determined using the bromocresol green (BCG)-dye binding reaction as described by Doumas *et al.*³⁴.

Determination of globulin concentration: Serum globulin was estimated indirectly by subtracting the albumin concentration from the total protein concentration.

Albumin/globulin ratio: This was obtained by dividing the concentration of albumin by that of globulin.

Statistical analysis: Data from the experimental study were analysed using one-way analysis of variance (one-way ANOVA) in statistical products and service solutions (SPSS), version 20. Results were expressed as Mean \pm Standard deviation. Values with different superscripts were considered statically significant at p<0.05.

RESULTS

Effect of *D. stramonium* seed and leaf extracts on antioxidant Indices in cyclophosphamide-induced rats:

There were significant (p<0.05) decreases in the catalase, gluthathione, gluthathione peroxidase and MDA concentrations of group 3-6 rats compared to group 2. SOD activity showed a significant (p<0.05) decrease in only group 4 rats compared to group 2 (Table 1).

Effect of *D. stramonium* seed and leaf extracts on antioxidant vitamins concentration in cyclophosphamide-induced rats: Results in Table 2 shows significant (p<0.05)

Table 1: Effect of seed and leaf extracts of *D. stramonium* on antioxidant status of experimental rats

Groups	SOD (IU L ⁻¹)	CAT (IU L ⁻¹)	GPx (IU L ⁻¹)	GSH (mg dL ⁻¹)	MDA (mg dL^{-1})
1	10.93±0.70 ^b	1.47±0.24 ^a	10.14±0.44°	2.72±0.45°	1.45±0.30 ^a
2	11.36±0.11 ^b	3.65±0.70 ^b	14.01±1.78 ^b	3.61±0.57 ^b	2.98±0.59b
3	10.99±0.26 ^b	1.53±0.35ª	10.56±1.09°	2.72±0.29 ^a	1.72 ± 0.18^{a}
4	10.38±0.12°	1.84±0.13°	10.56±1.30°	2.57±0.32°	1.53±0.29ª
5	11.05±0.20 ^b	1.38 ± 0.23^{a}	10.56±0.83°	2.97±0.57 ^{ab}	1.36 ± 0.36^{a}
6	10.91±0.27 ^b	1.69 ± 0.29^{a}	10.34±0.71°	2.47 ± 0.26^{a}	1.45 ± 0.35^{a}

Results are Mean \pm SD (n = 4), values with different superscripts (a, b) down the column are significant at p<0.05, Group 1: No induction, no treatment (normal control), Group 2: Cyclophosphamide-induced untreated rats (positive control), Group 3: Cyclophosphamide-induced+200 mg kg⁻¹ b.wt., aqueous seed extract, Group 4: Cyclophosphamide-induced+200 mg kg⁻¹ b.wt., aqueous leaf extract, Group 6: Cyclophosphamide-induced+400 mg kg⁻¹ b.wt., aqueous leaf extract

increases in vitamin C and E concentrations of group 3-6 rats compared to group 2. However, there was a non-significant (p>0.05) increase in vitamin A concentration of groups 3, 4 and 6 rats compared to group 2.

Effect of leaf and seed extracts of *D. stramonium* **on kidney markers in cyclophosphamide- induced rats:** There was a significant (p<0.05) increase in albumin, globulin and total protein concentration and a non-significant (p>0.05) increase in albumin/globulin ratio and creatinine concentration of treated rats compared to group 2. However, there was a significant (p<0.05) decrease in the urea concentration of treated groups compared to group 2 (Table 3).

DISCUSSION

The protective effect of the aqueous extracts of Datura stramonium seeds and leaves against cyclophosphamide-induced oxidative stress in rats was ascertained in this study. Induction with cyclophosphamide led to an increase in GSH concentration, SOD, CAT and GPx activities, which could be a protective response of the body to the oxidative stress induced by cyclophosphamide³⁵. This was however not in consonance with the findings of Mahmoud³⁶ and Germoush³⁷ as they demonstrated increase in the activity of antioxidant enzymes after cyclophosphamide induction. Administration of the extracts restored the altered anti-oxidant defence system to normal. One of the major alterations that also occur in the components of a cell after cyclophosphamide administration is lipid peroxidation^{38,39}, leading to an increase in the lipid peroxidation product, MDA as observed in this research. The administration of the aqueous extracts of Datura stramonium seeds and leaves significantly (p<0.05) restored the concentrations of MDA, signifying inhibition of peroxidation of membrane lipids. Cyclophosphamide induction led to decrease in anti-oxidant vitamins due to the increased levels of free radicals generated as a result of acrolein-induced lipid peroxidation. The decrease in vitamin C concentration is corroborated by the report of Olayinka *et al.*²³. Compared to cyclophosphamide group, the extract increased the concentration of antioxidant vitamins, which could scavenge free radicals generated due to cyclophosphamide induction.

Anticancer drugs, such as cyclophosphamide have been associated with renal dysfunction due to damage to the structure of the kidneys⁴⁰. In this study, this was shown by the significant (p<0.05) increase in serum concentration of urea, although there was no significant (p>0.05) difference in serum creatinine concentration. The significant increase in the level of urea after cyclophosphamide induction is in tandem with the result of an earlier study⁴¹. Urea and creatinine are waste products eliminated from the blood, through the kidney by a blood filtration process. Injury in the renal tubule due to the effect of cyclophosphamide on the kidney, affecting tubular transport and increasing oxidative stress^{42,43} reduced the glomerular filtration rate, hence, increasing serum urea concentration. The non-significant changes in serum creatinine level after cyclophosphamide induction could be because the level of serum creatinine does not rise until at least half of the kidney's nephrons are damaged or destroyed44 by cyclophosphamide. This is substantiated by the report of Sugumar et al.45. The extract restored the observed changes in urea concentration, shown by the significant (p<0.05) decrease in the treated groups compared to the cyclophosphamide group. Also, the non-significant difference in serum creatinine observed for the extract group is supported by the study of Benouadah et al.46 which showed that long-term administration of alkaloids from D. stramonium does not have effect on urea and creatinine concentration. However, these findings are contrary to those

Table 2: Effect of seed and leaf extracts of *D. stramonium* on antioxidant vitamins status of experimental rats

	Vitamin A	Vitamin C	Vitamin E				
Groups		(mg dL ⁻¹)					
1	4.29±1.17 ^b	2.65±0.50 ^b	1.65±0.10°				
2	2.32 ± 0.79 ab	1.32 ± 0.33^{a}	0.95 ± 0.04^{a}				
3	2.94±1.39ab	2.93±0.29bc	1.49±0.07 ^b				
4	3.01 ± 1.90 ab	3.18±0.10 ^{cd}	1.52±0.09bc				
5	2.03 ± 1.19^{a}	2.72±0.33bc	1.52±0.11bc				
6	3.37 ± 0.21 ab	3.52 ± 0.26^{d}	1.47±0.15 ^b				

Results are Mean \pm SD (n = 4), values with different superscripts (a, b, c) down the column are significant at p<0.05

Table 3: Effect of seed and leaf extracts of D. stramonium on kidney markers in cyclophosphamide-induced rats

	Albumin	Globulin	Alb/glob	Urea	Creatinine	Total protein
Groups	$(g dL^{-1})$	$(g dL^{-1})$	ratio	$(g dL^{-1})$	$(g dL^{-1})$	$(g dL^{-1})$
1	4.54±0.48 ^b	1.96±0.45ab	2.44±0.77°	26.18±5.91 ^a	0.50±0.22°	6.50±0.57 ^b
2	2.21 ± 0.71^{a}	1.34 ± 0.36^{a}	1.85 ± 1.01^{a}	45.67±5.65 ^b	0.33 ± 0.13^{a}	3.55 ± 0.35^{a}
3	4.49±0.34 ^b	2.17±0.61ab	2.28 ± 0.97^{a}	27.61 ± 5.09^a	0.45 ± 0.26^a	6.66±0.53 ^b
4	4.48±0.48 ^b	2.69±0.83 ^b	1.89 ± 0.96^{a}	25.18±5.68 ^a	0.61 ± 0.28^{a}	7.17±0.59 ^b
5	4.68±0.12 ^b	1.89 ± 0.69 ab	$2.95 \pm 1.75^{\circ}$	32.05 ± 5.64^{a}	0.61 ± 0.52^{a}	6.57±0.57 ^b
6	4.12±0.50 ^b	2.60±1.11 ^b	1.85 ± 0.84^{a}	24.20±5.28°	0.72 ± 0.34^{a}	6.72±1.06 ^b

Results are Mean \pm SD (n = 4), values with different superscripts (a, b) down the column are significant at p<0.05, Alb/glob: Albumin/globulin

of Gidado *et al.*⁴⁷ and Hamidu *et al.*⁴⁸, who revealed significant changes in creatinine concentration and non significant difference in urea concentration after extract administration.

The significant (p<0.05) reduction in serum concentrations of albumin observed in this research after cyclophosphamide induction was due to the fact that albumin trapped the released free radicals, as more than 70% of the free radical-trapping activity of serum was due to serum albumin⁴⁹. Induction of cyclophosphamide also suppresses the humoral immune system⁵⁰, leading to the decrease in immunoglobulins and subsequently, globulin in the serum. Administration of different doses of the seed and leaf extracts significantly (p<0.05) restored total protein concentrations in the serum. Total protein level is also indicative of kidney disease, as albumin/globulin ratio is an index of disease state. Study showed that serum albumin is lower in malnutrition, inflammation, renal and hepatic disorders⁵¹.

CONCLUSION

The present study demonstrated the anti-oxidative potentials of the aqueous extracts of *Datura stramonium* seeds and leaves against cyclophosphamide-induced oxidative stress and gave credibility to the traditional claim of the use of the plant in managing kidney disorders. The plant restored the enzymatic antioxidant defense systems, decreased MDA and urea concentration, increased antioxidant vitamins and total protein concentration.

SIGNIFICANCE STATEMENT

This research established the antioxidant activity of *Datura stramonium* during cyclophosphamide-induced oxidative stress. Antioxidant principles in *Datura stramonium* scavenged the reactive oxygen species released during the activation of cyclophosphamide. This research will therefore enable further studies on characterizing the antioxidant principles in *Datura stramonium*, which could serve as successful drug leads. In the long run, the side effect of cyclophosphamide-a chemotherapeutic agent-on the kidneys could be ameliorated.

REFERENCES

 Rahal, A., A. Kumar, V. Singh, B. Yadav, R. Tiwari, S. Chakraborty and K. Dhama, 2014. Oxidative stress, prooxidants and antioxidants: The interplay. BioMed Res. Int., Vol. 2014. 10.1155/2014/761264.

- 2. Iqbal, E., K.A. Salim and L.B.L. Lim, 2015. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of *Goniothalamus velutinus* (Airy Shaw) from Brunei Darussalam. J. King Saud Univ. Sci., 27: 224-232.
- Singh, T., S.B. Kasture, P.K. Mohanty, Y. Jaliwala, M.S. Karchuli, A. Agarwal and Y. Yadav, 2011. Cyclophosphamide-induced oxidative stress in brain: Protective effect of *Garcinia indica* fruit extract. Int. J. Pharm. Life Sci., 2: 1035-1040.
- 4. Kshirsagar, A.D., R. Mohite, A.S. Aggrawal and U.R. Suralkar, 2011. Hepatoprotective medicinal plants of Ayurveda: A review. Asian J. Pharm. Clin. Res., 4: 1-8.
- Weidinger, A. and A. Kozlov, 2015. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules, 5: 472-484.
- 6. Murillo, E., G.B. Britton and A.A. Durant, 2012. Antioxidant activity and polyphenol content in cultivated and wild edible fruits grown in Panama. J. Pharm. Bioallied Sci., 4: 313-317.
- 7. Yoshikawa, T. and Y. Naito, 2002. What is oxidative stress? Jap. Med. Assoc. J., 45: 271-276.
- 8. Kratchanova, M., P. Denev, M. Ciz, A. Lojek and A. Mihailov, 2010. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Polonica, 57: 229-234.
- Babiker, F., P. Jamal, M.E.S. Mirghani and A.H. Ansari, 2017. Characterization, purification and identification of some alkaloids in *Datura stramonium*. Int. Food Res. J., 24: S540-S543.
- 10. Arik, U.O., 2017. The antifungal effects of *Datura stramonium* L., *D. metel* L., *D. innoxia* Mill. in flora of Turkey. Mugla J. Sci. Technol., 3: 96-103.
- 11. Madungurum, M.A. and Y.Y. Muhammad, 2015. Toxicological effect of aqueous seed extract of *Datura stramonium* on liver of experimental rats. Int. J. Innov. Sci. Res., 4: 170-175.
- 12. Das, S., P. Kumar and S.P. Basu, 2012. Phytoconstituents and therapeutic potentials of *Datura stramonium* Linn. J. Drug Delivery Ther., Vol. 2. 10.22270/jddt.v2i3.141.
- 13. Bouzidi, A., N. Mahdeb and N. Kara, 2011. Toxicity studies of alkaloids of seeds of *Datura stramonium* and synthesis alkaloids in male rats. J. Med. Plants Res., 5: 3421-3431.
- 14. Sharma, M.C. and S. Sharma, 2010. Phytochemical, preliminary pharmacognostical and antimicrobial evaluation of combined crude aqueous extract. Int. J. Microbiol. Res., 1:166-170.
- Usha, K., B. Singh, P. Praseetha, N. Deepa, D.K. Agarwal, R. Agarwal and A. Nagaraja, 2009. Antifungal activity of Dhatura stramonium, Calotropis gigantean and Azadirachta indica against Fusarium mangiferae and floral malformation in mango. Eur. J. Plant Pathol., 124: 637-657.
- 16. Sonika, G., R. Manubala and J. Deepak, 2010. Comparative studies on anti-inflammatory activity of *Coriandrum sativum*, *Datura stramonium* and *Azadirachta indica*. Asian J. Exp. Biol. Sci., 1: 151-154.

- 17. Sharma, P., R. Bardwaj, A. Yadav and R.A. Sharma, 2014. Study of antioxidant activity of *Datura stramonium* Linn. Res. J. Phytochem., 8: 112-118.
- 18. Ananth, A. and S. Rajan, 2015. *In-vitro* antioxidant activity of *Datura stramonium* L. leaves. Adv. Applied Sci. Res., 6: 147-151.
- Ganesan, K., S.K.P. Nair, H.G. Azalewor, N. Letha and S.B. Gani, 2016. Preliminary phytochemical screening and *in vitro* antioxidant activity of *Datura stramonium* L. collected from Jimma, South West Ethiopia. Int. J. Pharm. Bio Sci., 7: 261-266.
- 20. Iqbal, S., C. Sivaraj and K. Gunasekaran, 2017. Antioxidant and anticancer activities of methanol extract of seeds of *Datura stramonium* L. Free Radicals Antioxidants, 7: 184-189.
- 21. Rehman, M.U., M. Tahir, F. Ali, W. Qamar and A. Lateef *et al.*, 2012. Cyclophosphamide-induced nephrotoxicity, genotoxicity and damage in kidney genomic DNA of Swiss albino mice: The protective effect of Ellagic acid. Mol. Cell. Biochem., 365: 119-127.
- Singh, M., N. Kumar, M. Shuaib, V.K. Garg and A. Sharma, 2014.
 A review on renal protective agents for cyclophosphamide induced nephrotoxicity. World J. Pharm. Pharm. Sci., 3: 737-747.
- 23. Olayinka, E., A. Ore, O. Ola and O. Adeyemo, 2015. Ameliorative effect of gallic acid on cyclophosphamide-induced oxidative injury and hepatic dysfunction in rats. Med. Sci., 3: 78-92.
- 24. Wallin, B., B. Rosengren, H.G. Shertzer and G. Camejo, 1993. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: Its use for evaluation of antioxidants. Anal. Biochem., 208: 10-15.
- 25. Woolliams, J.A., G. Wiener, P.H. Anderson and C.H. McMurray, 1983. Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res. Vet. Sci., 34: 253-256.
- 26. Aebi, H.E., 1983. Catalase. In: Methods of Enzymatic Analysis, Bergmeyer, H.U., J. Bergmeyer and M. Grable (Eds.)., 3rd Edn., Verlag Chemie, Weinheim, Germany, pp: 273-285.
- 27. Paglia, D.E. and W.N. Valentine, 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158-169.
- 28. Exner, R., D.J. Wessner, N. Manhart and E. Roth, 2000. Therapeutic potential of glutathione. Weinklin Wochenschr, 112: 610-616.
- 29. Subramanyam, G.B. and D.B. Parrish, 1976. Colorimetric reagents for determining vitamin A in feeds and foods. J. Assoc. Official Anal. Chem., 59: 1125-1130.
- Baker, E.M., R.E. Hodges, J. Hood, H.E. Sauberlich, S.C. March and J.E. Canham, 1971. Metabolism of ¹⁴C and ³H-labelled L-ascorbic acid in human scurvy. Am. J. Clin. Nut., 24: 444-480.

- 31. Pearson, D., 1976. Chemical Analysis of Foods. 6th Edn., Churchill Livingstone, Edinburgh, London, New York.
- 32. Wybenga, D.R., J. Di Giorgio and V.J. Pileggi, 1971. Manual and automated methods for urea nitrogen measurement in whole serum. Clin. Chem., 17: 891-895.
- 33. Henry, R.J., D.C. Cannon and W. Winkelman, 1974. Clinical Chemistry Principles and Techniques. 11th Edn., Harper and Row Publishers, New York, Pages: 1629.
- 34. Doumas, B.T., W.A. Watson and H.G. Biggs, 1971. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta, 31: 87-96.
- 35. Abraham, P. and I. Kanakasabapathy, 2008. Alterations in antioxidant enzyme activities and increased oxidative stress in cyclophosphamide-induced hemorrhagic cystitis in the rat. Cancer Ther., 6: 563-570.
- 36. Mahmoud, A.M., 2014. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARy and abrogation of oxidative stress and inflammation. Can. J. Physiol. Pharmacol., 92: 717-724.
- 37. Germoush, M.O., 2016. Diosmin protects against cyclophosphamide-induced liver injury through attenuation of oxidative stress, inflammation and apoptosis. Int. J. Pharmacol., 12: 644-654.
- 38. Ray, S., B. Pandit, S. Das and S. Chakraborty, 2011. Cyclophosphamide-induced lipid peroxidation and changes in cholesterol content: Protective role of reduced glutathione. Iran. J. Pharm. Sci., 7: 255-267.
- 39. Ince, S., I. Kucukkurt, H.H. Demirel, D.A. Acaroz, E. Akbel and I.H. Cigerci, 2014. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere, 108: 197-204.
- 40. Kintzel, P.E., 2001. Anticancer drug-induced kidney disorders. Incidence, prevention and management. Drug Safety, 24: 19-38.
- Shabana, M.B., H.M. Ibrahim, S.E. Khadre and M.G. Elemam, 2012. Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. J. Basic Applied Zool., 65: 299-308.
- 42. Abraham, P. and B. Isaac, 2011. The effects of oral glutamine on cyclophosphamide-induced nephrotoxicity in rats. Hum. Exp. Toxicol., 30: 616-623.
- 43. Shahrbaf, F.G. and F. Assadi, 2015. Drug-induced renal disorders. J. Renal Inj. Prev., 4: 57-60.
- 44. Bhattacharya, H. and L. Lun, 2005. Biochemical effects to toxicity of CCl₄ on rosy barbs (*Puntius conchonius*). Our Nature, 3: 20-25.
- 45. Sugumar, E., I. Kanakasabapathy and P. Abraham, 2007. Normal plasma creatinine level despite histological evidence of damage and increased oxidative stress in the kidneys of cyclophosphamide treated rats. Clin. Chim. Acta, 376: 244-245.

- 46. Benouadah, Z., N. Mahdeb and A. Bouzidi, 2016. Evaluation of acute and sub-acute toxicity of alkaloids from *Datura stramoniums*p. in mice. Int. J. Pharmacogn. Phytochem. Res., 8: 1759-1766.
- 47. Gidado, A., A.A. Zainab, M.U. Hadiza, D.P. Serah, H.Y. Anas and M.A. Milala, 2007. Toxicity studies of ethanol extract of the leaves of *Datura stramonium* in rats. Afr. J. Biotechnol., 6: 1012-1015.
- 48. Hamidu, J.L., A.B. Adelaiye and T.W. Jacks, 2007. Effects of ethanolic extract of *Datura stramonium* leaves on the histomorphology and biochemical indices of liver and kidney functions in rats. Kanem J. Med. Sci., 1: 14-19.
- 49. Sitar, M.E., S. Aydin and U. Cakatay, 2013. Human serum albumin and its relation with oxidative stress. Clin. Lab., 59: 945-952.
- 50. Wojcik, R., 2014. Reactivity of the immunological system of rats stimulated with Biolex-Beta HP after cyclophosphamide immunosuppression. Central-Eur. J. Immunol., 39: 51-60.
- 51. Sirico, M.L., B. Guida, A. Procino, A. Pota and M. Sodo *et al.*, 2012. Human mature adipocytes express albumin and this expression is not regulated by inflammation. Mediat. Inflam., Vol. 2012. 10.1155/2012/236796.