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Abstract
Background  and  Objective:  Depression  is  one of the most frequent mental illnesses all over the world. Gastrodiae rhizoma  (GR) has
been  used  as  both  herbal  medicine  and  functional  food  in  China.  Herein,  we  aim  to decipher the pharmacological targets and
active  components  of  GR  against  depression  by  using  network  pharmacology, bioinformatic analysis and molecular docking.
Materials and Methods: GR active components were screened based on in silico  prediction models of pharmacological properties. The
potential targets of GR active components were predicted. Protein-protein interaction networks were constructed using the STRING
database. Hub genes were identified by the cytoHubba plugin in Cytoscape. Functional enrichment analysis were carried out using the
“clusterProfiler” package in R software. Molecular docking simulation was conducted to evaluate the binding affinity between the active
components and hub targets. Results: A total of 24 active components and 38 targets were identified to interpret the anti-depressive
effect GR. Functional enrichment analysis showed that the anti-depressive activity of GR may be associated with various biological
processes such as regulation of neurotransmitter levels and monoamine transport, as well as multiple pathways such as neuroactive
ligand-receptor interaction and dopaminergic synapse. SLC6A3, SLC6A4, CNR1 and MAOA were identified as hub targets and they had
a good binding ability with the GR active components. (-)-Variabilin, bis-(4-hydroxybenzyl) sulfide and 6-ethoxysanguinarine may be
promising anti-depressive leading compounds. Conclusion: This study uncovers the synergistic anti-depressive effect of multiple active
components in GR and provides a scientific basis for developing GR as complementary medicine or functional food in depression
prevention and treatment.
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INTRODUCTION

Depression, which accounts for 1.7% of disability-adjusted
life-years worldwide, is one of the most common and
debilitating mental disorders1. The estimated lifetime
prevalence of depression was 11.1 and 14.6% in the low-
middle income and high-income countries, respectively2.
Additionally, depression  is  associated with an increased risk
of chronic conditions such as coronary heart disease, diabetes
and cancer3-5. Even worsen, depression accounts for at least
half of suicide deaths, thereby further increasing its
harmfulness6.

Despite great advances that have been achieved in the
pharmacotherapy of depression over the past decades, many
depressed patients could not obtain satisfactory effects after
anti-depressant treatment. According to the Sequenced
Treatment Alternatives to Relieve Depression trial report, only
36.8% of depressed patients were remitted with 12-14 weeks
of treatment of citalopram7. Furthermore, the rates of
tachyphylaxis ranged from 9-57% in patients during long-term
anti-depressants therapy8. Additionally, the currently available
antidepressants were involved in considerable adverse drug
reactions, such as gastrointestinal symptoms, headaches,
dizziness, weight gain and sexual dysfunction9. It is, therefore,
of great significance to discover a new therapeutic regimen
with a safety profile for the treatment of depression.

Gastrodiae rhizoma (GR), the dried tuber of Gastrodia
elata Blume, has been used as herbal medicine in many
eastern Asian countries, including China, Japan and Korea10.
GR has effectively been used for treating many neurological
conditions, including epilepsy, headache, dizziness, stroke,
convulsions and so forth11. Additionally, GR is commonly used
to make medicinal food in Chinese folk, such as “Stewed
chicken with GR”, a dish that is supposed to have the effect of
treating dizziness and headache.

Many  studies   in   recent   years   have    revealed  the
anti-depressive effect of GR. Zhou et al.12 had, firstly,
demonstrated that the anti-depressant-like effect of 75%
ethanol extract of GR was not inferior to fluoxetine in the
mouse depression model. Later, other studies have
documented that the GR water extract can improve the
depressant-like symptoms in rats exposed to unpredictable
chronic mild stress or forced-swimming13,14.  A recent study
has indicated that GR water extract improves depressive-like
behaviors in the chronic stress model of rats by modulation of
inflammatory response15. Although the above-mentioned
studies have revealed the anti-depressive effect of GR, the
active components and anti-depressive targets of GR remain
poorly understood.

Fig. 1: Flowchart of this study

Network pharmacology was proposed as a new paradigm
in drug discovery by Hopkins A.L.16. It offers a brand-new
perspective to understand the multi-targets and multi-
pathways mode of action of drugs. By adopting the network
pharmacology approach, we have successfully revealed the
active components and anti-depressive mechanisms of
Gardeniae fructus17. Herein, we utilized the network
pharmacology method to uncover the candidate active
components of GR and its anti-depressive targets and
conducted molecular docking simulation to verify the
interaction between GR active components and it’s targets.
The flowchart of this study was illustrated in Fig. 1.

MATERIALS AND METHODS

Study area: The present study was carried out at the
Department of Pharmacy, Shanghai University of Medicine
and Health Sciences Affiliated Sixth People's Hospital South
Campus, Shanghai, People,s Republic of China, between
January-September, 2020.

Screen GR active components: The GR chemical ingredients
were comprehensively collected from Traditional Chinese
Medicines    Integrated   Database   (TCMID)18,   Natural
Product Activity  and  Species Source Database (NPASS)19, the
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Encyclopedia of Traditional Chinese Medicine Database
(ETCM)20 and  Database of Medicinal Materials and Chemical
Compounds   in    Northeast    Asian   Traditional   Medicine
(TM-MC)21.

Absorption, Distribution, Metabolism, Excretion and
Toxicity (ADMET) are important properties for evaluating the
potential efficacy and safety of a certain chemical compound.
In this study, four ADMET parameters, namely Human
Intestinal Absorption (HIA), Caco-2 permeability (Caco-2),
Blood-brain Barrier Permeability (BBB) and Oral Bioavailability
(OB) were used to screen the GR active components. The
ADMET Structure-Activity Relationship Database (admetSAR22),
a free web service for the prediction of chemical ADMET
profiles, was used to calculate the ADMET properties of GR
chemical  ingredients  herein.  Prediction  results  of  the
above-mentioned four parameters were classified as positive
(+) or negative (-) by the admetSAR.

Drug-likeness (DL), which is considered as to whether a
chemical compound has the physicochemical properties
similar to known drugs, was also adopted for screen the GR
active components. A metric called the Quantitative Estimate
of Drug-likeness (QED) was used to calculate the DL of GR
chemical ingredients23. Drugs with high QED scores are more
likely to exhibit a higher fraction absorbed, resulting in higher
oral bioavailability, decreased dose size and food effect24.
Molecules with a score of less than 0.600 are often considered
“bad” in the literature25. The drug-likeness tool (DruLiTo,
software, an open-source virtual screening tool, was used to
calculate the QED scores.

Additionally, we found that 27 of 29 available
antidepressants were HIA+, Caco-2+ and BBB+ properties
according to admetSAR calculation. Thus, those chemical
ingredients with HIA+, Caco-2 permeability+, BBB+ and QED
score$0.600 properties were considered as GR active
components with anti-depressive potential.

Target fishing and diseases enrichment analysis: Since the
polypharmacology browser 2 (PPB2)26 and the Similarity
Ensemble Approach (SEA)27 showed the best quality and
quantity for the accurate predictions among nine target
prediction tools28, the potential targets of GR active
components were predicted by using PPB2 and SEA. All the
protein names of predicted targets were converted to their
unique gene names in the UniProt database. Subsequently,
diseases enrichment analysis of predicted targets was
conducted by using WebGestalt, a web tool of functional
enrichment analysis29. In the WebGestalt, the “DisGeNET” and
the “affy hugene 2.0 st v1” were selected as disease database
and reference gene set, respectively.

Collection of genes associated with depression: The term
“depressive disorder” was used as a keyword to retrieve the
DisGeNET database30 and Genecards31 to gather genes
associated with depression. The inclusion criteria for
depression-related genes screening through DisGeNET and
GeneCards database were a gene-disease association score
greater than 0.1 and a gene score greater than 10,
respectively.

Protein-protein Interaction (PPI) network construction and
hub genes identification: The overlap of GR active
components targeted genes and depression-related genes,
which were regarded as anti-depressive targets of GR, were
obtained by using InteractiVenn32. To reveal the interaction
among GR anti-depressive targets, the PPI network was
constructed by using the STRING database33, in which the
species was limited to “Homo sapiens” and the confidence
score>0.4. Furthermore, hub genes in the PPI network were
identified by the overlap of the top 10 genes according to six
different ranking methods, including Maximum Neighborhood
Component (MNC), degree, Edge Percolated Component
(EPC), bottleneck, closeness and radiality in cytoHubba
plugin34.

Gene Ontology (GO) Enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis: GO
enrichment and KEGG pathway analyses were conducted by
using the “clusterProfiler" package in R software35. The p-value
was adjusted by using the Benjamini  and  Hochberg method
and adjusts p-value (p.adjust)<0.05 was considered as
statistical significance. The analysis results were visualized by
using the “GOplot” package in R36.

Molecular docking simulation: The molecular docking
simulation of hub genes and their corresponding GR active
components were performed by using UCSF Chimera
software37, a program for the interactive visualization and
analysis of molecular structures and related data. Firstly, the
3D structures of compounds and proteins were downloaded
from PubChem38 and The Protein Data Bank39, respectively.
The homologous modeling structure of human SLC6A3 was
obtained from SWISS-MODEL40. Secondly, the structures of
proteins and compounds were prepared for docking by using
the Dock Prep plugin. The preparation process includes
replacing incomplete side chains, adding hydrogens and
charges41,42. Thirdly, molecular docking was conducted by
using the AutoDock Vina43. Finally, 3D and 2D molecular
docking models were visualized by Chimera and LigPlot+44,
respectively.
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RESULTS

GR active components: After deleting duplicates, a total of
109 chemical ingredients derived from GR were collected from
TCMID, NPASS, ETCM and TM-MC. All these ingredients were
subjected to ADMET and DL screening and 23 of the 109 with
HIA+, Caco-2+, BBB+ and QED score$0.600 properties. Besides,
despite not meeting the inclusion criteria, gastrodin was also
considered as active components because it is a major GR
chemical ingredient. Thus, a total of 24 chemical ingredients
were considered as GR active components for further analysis.
The detailed information is listed in Table 1.

Targets of GR active components and diseases enrichment
analysis: There were 147 and 123 targets of GR active
components predicted by SEA and PPB2, respectively. After
removing the overlapped targets, a total of 171 targets were
obtained. As shown in Fig. 2, the GR active components target
network consists of 195 nodes and 496 interactions. Each of
the GR active components is associated with multiple targets.
The diseases enrichment analysis by using the WebGestalt
showed that the top 10 enriched diseases of the 171 targets
were mood disorders, mental depression, depressive disorder
and so on (Fig. 3).

PPI network and enrichment analysis: There were 614 genes
with a gene-disease association score greater  than 0.1 in the

DisGeNET database and 123 genes with a gene score greater
than 10 in the  Genecards database. After removing
duplicates, 650 depression-related genes were obtained. A
total of 38 intersection  genes, which were regarded as GR
anti-depressive targets, were obtained by using a Venn
diagram (Fig. 4). The PPI analysis of the 38 targets was then
conducted by using STRING database. As shown in Fig. 4, the
PPI network consisted of 38 nodes and 156 edges.

GO enrichment analysis consisted of three major
categories, namely, Biological Process (BP), Cellular
Component (CC) and Molecular Function (MF). A total of 712
GO entries with p.adjust<0.05 were identified by GO
enrichment analysis. The bubble diagram of top 10 entries of
each GO category was illustrated in Fig. 5a. For the BP, it can
be found that the 38 targets were mainly enriched in the
regulation of neurotransmitter levels (GO: 0001505) and
monoamine transport (GO: 0015844). Additionally, synaptic
membrane (GO: 0097060) and neuronal cell body (GO:
0043025) ranked the highest in the CC category, while G
protein-coupled amine receptor activity (GO: 0008227),
ammonium  ion  binding  (GO:  0070405),  steroid  binding
(GO:  0005496)   and   neurotransmitter    receptor   activity
(GO:  0030594) were the major MF category involved. There
were 23, 16 and 18 targets involved in top 10 BP, CC and MF
entries, respectively (Fig. 5b-d).

There were 11 significant pathways identified by KEGG
pathway  enrichment  analysis.   As   shown   in   Fig.   6a,  the 

Table 1: Information of GR active components
ID Chemical name Molecular formula HIA Caco2 BBB QED Information source
GR01 (-)-Variabilin C17H16O5 + + + 0.931 TC
GR02 4-(Methoxymenthyl) benzene-1,2-diol C8H10O3 + + + 0.656 TM
GR03 4-(4'-Hydroxybenzyloxy)benzyl methyl ether C15H16O3 + + + 0.895 TC/E/TM
GR04 4-(Ethoxymethyl)-2-methoxyphenol C10H14O3 + + + 0.779 TM
GR05 4,4'-Dihydroxybenzyl sulfone C14H14O4S + + + 0.929 TM
GR06 4,4'-Dihydroxybenzyl sulfoxide C14H14O3S + + + 0.910 TM
GR07 4-Ethoxybenzyl alcohol C9H12O2 + + + 0.715 TM
GR08 4-Ethoxymethylphenyl-4'-Hydroxybenzylether C16H18O3 + + + 0.887 TC/E/TM
GR09 4-Hydroxybenzyl alcohol C7H8O2 + + + 0.600 TC/E/TM/N
GR10 4-Hydroxybenzyl methyl ether C8H10O2 + + + 0.673 TC/E/TM
GR11 4-Hydroxylbenzyl ethyl ether C8H10O2 + + + 0.716 TC/E/TM
GR12 4-Methoxybenzyl alcohol C8H10O2 + + + 0.671 TM/N
GR13 5-Hydroxymethylfuraldehyde C6H6O3 + + + 0.615 TM
GR14 6-Ethoxysanguinarine C22H19NO5 + + + 0.715 TC/N
GR15 Beta-sitosterol C29H50O + + + 0.742 TC/TM/N
GR16 Bis-(4-hydroxybenzyl)ether C14H14O3 + + + 0.858 TC/E/TM
GR17 Bis-(4-hydroxybenzyl)sulfide C14H14O2S + + + 0.870 TM/N
GR18 Disogenin C27H42O3 + + + 0.691 TM/N
GR19 Gastrodamine C14H15NO3 + + + 0.757 TC/E
GR20 Gastrodin C13H18O7 - - + 0.521 TC/E/TM/N
GR21 Suchilactone C21H20O6 + + + 0.605 TC
GR22 Vanillic acid C8H8O4 + + + 0.704 TM/N
GR23 Vanillin C8H8O3 + + + 0.673 TC/E/TM/N
GR24 Vanillyl alcohol C8H10O3 + + + 0.676 TC/E/TM
TC: TCMID, E: ETCM, N: NPASS, TM: TM-MC
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Fig. 2: GR active components-targets network
Green diamond represents GR active components and the orange round represents predicted targets

Fig. 3: GR active components targets-diseases enrichment analysis
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Fig. 4: Anti-depressive targets of GR obtained by Venn diagram and their PPI network

Table 2: Top 10 genes by six ranking methods in cytoHubba
Ranking methods in cytoHubba
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Category MNC Degree EPC BottleNeck Closeness Radiality
Top 10 genes CNR1 CNR1 CNR1 NR3C1 CNR1 CNR1

DRD2 DRD2 HTR1A PTGS2 HTR1A NR3C1
HTR1A HTR1A DRD2 CRHR1 NR3C1 HTR1A
SLC6A4 SLC6A4 SLC6A4 HTR2A DRD2 DRD2
ADRA2A ADRA2A DRD3 SLC6A4 SLC6A4 SLC6A4
DRD3 NR3C1 ADRA2A MAOA MAOA MAOA
NR3C1 DRD3 OPRM1 SLC6A3 ADRA2A CRHR1
MAOA MAOA OPRK1 CNR1 CRHR1 SLC6A3
OPRM1 OPRM1 MAOA CAMK2A SLC6A3 ADRA2A
SLC6A3 SLC6A3 SLC6A3 ACE OPRM1 HTR2A

Bold italic genes were the overlap genes in the top 10 by six different ranking methods in cytoHubba

38 targets were most significantly enriched in neuroactive
ligand-receptor interaction (hsa04080), followed by
dopaminergic synapse (hsa04728) and cAMP signaling
pathway (hsa04024). A total of 26 targets were enriched in the
top 10 KEGG pathways (Fig. 6b).

Active components anti-depressive targets network: GR
active components anti-depressive targets network consisted
of 62 nodes and 106 edges (Fig. 7a). The mean degree values
of active  components  and  targets  in  the network were
4.417  and  2.789,  respectively.  As  illustrated  in  Fig.  7b,  the
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Fig. 5(a-d): Bubble and chord diagrams of top 10 entries of each GO category 
(a) Bubble diagram of top 10 entries of each GO category and  (b-d) are chord diagrams of top 10 BP, CC and MF entries, respectively
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Fig. 6(a-b): (a) Bubble and (b) Chord diagrams of top 10 KEGG pathways

Fig. 7(a-b): (a)  Network and (b) Heatmap of GR active components-anti-depressive targets
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Fig. 8: 3D and 2D molecular docking models of hub genes and the GR active components. In the 2D model, the red dashed line
represents hydrophobic interaction and the green dashed line represents hydrogen bond

active components with the highest degree value were the (-)-
variabilin (GR01), 6-ethoxysanguinarine (GR14) and vanillin
(GR23).

Hub genes and molecular docking simulation: By overlap of
the top 10 genes according to six ranking methods in
cytoHubba, SLC6A4, MAOA, CNR1 and SLC6A3 were identified
as  hub  genes  (Table  2).  Correspondingly,  the  GR01,  GR02,

GR07, GR11, GR14 and GR21 may be the hub anti-depressive
components. The interaction models between four hub genes
and their corresponding active components were investigated
by molecular docking simulation. Simultaneously, fluoxetine,
phenelzine, cannabidiol and bupropion were selected as
positive control drugs. Ten active component-target pairs of
docking results were obtained  (Table 3). Of these, the binding
affinities of four pairs (SLC6A4-GR14, MAOA-GR17, CNR1-GR14
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Fig. 9: Sankey diagram of GR active components-hub targets-pathways

Table 3: Docking score of the hub targeted genes and their corresponding active components of GR
Gene symbol Protein name Compound (ID) Affinity (kcal moLG1)
SLC6A4 Sodium-dependent serotonin transporter (-)-Variabilin (GR01) -9.2

6-ethoxysanguinarine (GR14) -10.3
Suchilactone (GR21) -7.7
Fluoxetine (Control) -9.2

MAOA Amine oxidase [flavin-containing] A Bis-(4-hydroxybenzyl)sulfide (GR17) -8.3
Vanillin (GR23) -6.4
Phenelzine (Control) -6.6

CNR1 Cannabinoid receptor 1 4-( methoxymenthyl) benzene-1,2-diol(GR02) -5.6
4-Ethoxybenzyl alcohol(GR07) -5.8
4-hydroxylbenzyl ethyl ether(GR11) -5.4
6-ethoxysanguinarine (GR14) -7.9
Cannabidiol (Control) -7.2

SLC6A3 Sodium-dependent dopamine transporter (-)-Variabilin (GR01) -7.2
Bupropion (Control) -5.9

and SLC6A3-GR01) were stronger than their corresponding
positive  control  (SLC6A4-fluoxetine,  MAOA-phenelzine,
CNR1-cannabidiol and SLC6A3-bupropion). The 3D and 2D
molecular docking models of GR active component-target
pairs were illustrated in Fig. 8. All of these active components
were observed to enter the interfaced pocket formed by
amino acid residues in the proteins. Taking the SLC6A4-GR01
as an example, it showed that GR01 forms two hydrogen bond
interactions with Phe355 and Tyr 175 residues on SLC6A4 and
forms nine hydrophobic interactions with Thr497, Glu493,
Tyr176, Gly442, Ala169, Ile172, Phe341, Tyr95 and Ser438
residues on SLC6A4.

Sankey diagram of GR active components-hub targeted
genes-pathways: To comprehensively showing the
relationship between GR active components, hub targets and

KEGG pathways, a sankey diagram was constructed by using
“ggalluvial” package in R software. As showed in Fig. 9, CNR1
was connected with four active components and one
pathway, MAOA was connected with two active components
and eight pathways, SLC6A3 was connected with one active
component and five pathways, while SLC6A4 was connected
with three active components and one pathway.

DISCUSSION

To the best of our knowledge, this is the first study to
systematically uncover the GR active components and its
pharmacological targets against depression based on the
network pharmacology method. Disease enrichment analysis
showed that 171 targets of 24 GR active components were
significantly  enriched  in  tumor   and   psychiatric   disorders.
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Recently years, continuous attention has been paid in the area
of herbal medicine by researchers. Concerning depression,
many herbal medicines, including saffron, turmeric, St John's
wort, Korean ginseng, lavender, roseroot, catmint and dodder,
had been demonstrated to have anti-depressive effect in
clinical trials45. However, the multi-component, multi-target
and multi-pathway characteristics caused barriers to uncover
the molecular mechanism of herbal medicine. Fortunately, the
development of network pharmacology offers an effective
tool to reveal the active component and molecular
mechanism of herbal medicine in the treatment of disease.
Previous   experimental   studies   had   demonstrated  the
anti-depressive, antipsychotic and anti-tumor activities of GR,
which was consistent with this study10,46,47.

Further analysis showed that there were 38 genes
involved in the anti-depressive effect of GR. The most
significant enriched BP, MF and CC entries of these 38 genes
were regulation of neurotransmitter levels, synaptic
membrane and G protein-coupled amine receptor activity,
respectively. The serotonin (5-HT), noradrenaline (NA) and
dopamine (DA) transporter are the gene products of SLC6A4,
SLC6A2 and SLC6A3, respectively. They are located in the
plasma membrane of the presynaptic nerve terminals and are
the major pharmacological targets of anti-depressants48.
Previous studies have documented that GR water extract
exhibited an anti-depressive effect by inhibition of the MAOA
activity and regulation of monoamine neurotransmitters14,49.
MAOA is a flavoenzyme that catalyzes the oxidative
transformations of 5-HT, NA and DA. Inhibition of MAOA could
lead to the increasing of 5-HT, NA and DA in the synaptic cleft.
In this study, SLC6A2, SLC6A3, SLC6A4 and MAOA are
supposed to be the pharmacological targets of GR.
Furthermore,  SLC6A3,  SLC6A4  and MAOA are regarded as
hub genes, which could explain the anti-depressive activity of
GR.

It's worth mentioning that three substance dependence
pathways, including cocaine addiction, alcoholism and
amphetamine addiction, were significantly enriched. Previous
studies have revealed that individuals with depression were at
high risk for concurrent substance dependence50,51. Many
genes, including SLC6A3, MAOA and MAOB, were extensively
involved in substance dependence, nervous system and
neurodegenerative disease pathways. Recent research has
indicated that substance dependence pathways were related
to the pathogenesis and treatment of depression52.
Additionally, the cAMP signaling was decreased in the brain of
depressed patients and increased after SSRI treatment53.
Furthermore, it is widely accepted that DA plays an important
role  both  in  depression and Parkinson's disease. Compared

with the general population, individuals with Parkinson's
disease have a higher prevalence of depression54.

CNR1 was also identified as a hub anti-depressive target.
The CB1 receptor, a gene product of CNR1, is widely localized
in many brain structures, including the prefrontal cortex,
frontal cortex, hippocampus and cerebellum, which
implicated in the pathogenesis of depression55. Administration
of AM251, a CB1 receptor antagonist, exerts antidepressant-
like effects in a dose-dependent manner in the mice56.
Likewise, a recent study indicated that inhibition of the CB1
receptor by AM251 leads to the increased activity of
moclobemide, an MAOA inhibitor57. This suggests that
simultaneous inhibition of MAOA and CRN1 may exert a
synergistic anti-depressive effect.

In terms of compounds, a total of eight components have
been identified as hub active components. Experiment
research has uncovered that vanillin GR01 (vanillin) alleviates
depressive symptoms in the rat depression model by elevating
both 5-HT and DA levels in brain tissue58. In line with the
previous study, our study suggests that vanillin could bind
with MAOA, which may be increasing 5-HT, NA and DA levels.
Additionally, a previous study has also documented that GR17
(Bis-(4-hydroxybenzyl) sulfide) possesses a neuroprotective
effect59.

Overall,   our    study    reveals    that     GR     exerts   an
anti-depressive effect possibly by regulation of
neurotransmitter levels, which is consistent with previous
experimental researches and supplementary to study on the
anti-depressive effect of GR. (-)-Variabilin (GR01), bis-(4-
hydroxybenzyl)sulfide (GR17) and 6-ethoxysanguinarine
(GR14) might be promising anti-depressive leading
compounds since they have been well docked with hub
targets. Our study further proves that the anti-depressive
effects of GR might be mainly mediated by the regulation of
monoamine neurotransmitters and thereby GR was beneficial
in depression treatment as complementary medicine or
functional food. However, there are several limitations to this
study. Firstly, only already identified GR chemical ingredients
were  collected   in   this   study,   which   may   ignore   the
anti-depressive effect of unknown components of GR.
Secondly, despite hub targets have good affinity with their
corresponding GR active components in the molecular
docking simulation, further experiments should be carried out
to verify the interaction between them.

CONCLUSION

In this study, the active components of GR and its
potential  mechanism  for  the  treatment  of depression were
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revealed based on network pharmacology and molecular
docking technology. There were 24 active components and 38
targets involved in the anti-depressive effect of GR. SLC6A3,
SLC6A4, MAOA and CNR1 may be considered as hub anti-
depressive targets. GR exerts an anti-depressive effect mainly
by regulation of neurotransmitter levels via neuroactive
ligand-receptor interaction and dopaminergic synapse
pathway. It is of great significance to developing GR as a
functional food or complementary medicine in depression
prevention and treatment.
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ACKNOWLEDGMENTS

This study was supported by the Seed Fund Program of
Shanghai  University  of  Medicine   and    Health  Sciences
(SFP-18-20-15-002) and the Shanghai Clinical Pharmacy Key
Discipline Construction Project (2018-2020).

REFERENCES

1. Bisanzio, D., F. Shokraneh and H. Williams, 2018. Global,
regional and national disability-adjusted life-years (DALYs) for
359 diseases and injuries and healthy life expectancy (HALE)
for 195 countries and territories, 1990-2017: A systematic
analysis for the global burden of disease study 2017. The
Lancet, 392: 1859-1922.

2. Bromet,  E.,  L.H.   Andrade,   I.   Hwang,   N.A.   Sampson  and
J. Alonso et al., 2011. Cross-national epidemiology of DSM-IV
major depressive episode. BMC Med., Vol. 9. 10.1186/1741-
7015-9-90.

3. Whooley, M.A. and J.M. Wong, 2013. Depression and
cardiovascular disorders. Annu. Rev. Clin. Psychol., 9: 327-354.

4. Luo, Y., D. Zhu, S. Nicholas and P. He, 2019. Depressive
symptoms, health behaviors and risk of diabetes in Chinese
mid-aged and older adults. J. Affect. Disord., 246: 783-788.

5. Wang, Y.H., J.Q. Li, J.F. Shi, J.Y. Que and J.J. Liu et al., 2020.
Depression and anxiety in relation to cancer incidence and
mortality: A systematic review and meta-analysis of cohort
studies. Mol. Psychiatry, 25: 1487-1499.

6. Turecki, G. and D.A. Brent, 2016. Suicide and suicidal
behaviour. The Lancet, 387: 1227-1239.

7. Rush, A.J., M.H. Trivedi, S.R. Wisniewski, A.A. Nierenberg and
J.W. Stewart et al., 2014. Acute and longer-term outcomes in
depressed outpatients requiring one or several treatment
steps: A STAR*D report. Am. J. Psychiatry, 163: 1905-1917.

8. Kinrys,   G.,    A.K.   Gold,   V.D.   Pisano,   M.P.   Freeman  and
G.I. Papakostas et al., 2019. Tachyphylaxis in major depressive
disorder: A review of the current state of research. J. Affect.
Disord., 245: 488-497.

9. Otte,   C.,    S.M.    Gold,    B.W.   Penninx,   C.M.   Pariante  and
A. Etkin et al., 2016. Major depressive disorder. Nat. Rev. Dis.
Primers, Vol. 2. 10.1038/nrdp.2016.65.

10. Chen, P.J. and L.Y. Sheen, 2011. Gastrodiae rhizoma (ti~n má):
A review of biological activity and antidepressant
mechanisms. J. Tradit. Complement Med., 1: 31-40.

11. Liu, Y., J. Gao, M. Peng, H. Meng and H. Ma et al., 2018. A
review  on  central  nervous  system  effects of gastrodin.
Front. Pharmacol., Vol. 9 10.3389/fphar.2018.00024.

12. Zhou, B.H., X.J. Li, M. Liu, Z. Wu and X.M. Hu, 2006.
Antidepressant-like activity of the Gastrodia elata ethanol
extract in mice. Fitoterapia, 77: 592-594.

13. Chen,  P.J.,  C.L.  Hsieh,  K.P.  Su,  Y.C.  Hou, H.M. Chiang and
L.Y. Sheen, 2009. Rhizomes of Gastrodia elata BL possess
antidepressant-like effect via monoamine modulation in
subchronic animal model. Am. J. Chin. Med., 37: 1113-1124.

14. Lin, Y.E., S.H. Lin, W.C. Chen, C.T. Ho and Y.S. Lai et al., 2016.
Antidepressant-like effects of water extract of Gastrodia elata
Blume in rats exposed to unpredictable chronic mild stress
via  modulation    of     monoamine     regulatory   pathways.
J. Ethnopharmacol., 187: 57-65.

15. Wang, M., W. Dong, R. Wang, X. Xu, Y. Wu, G. Sun and X. Sun,
2020. Gastrodiae rhizoma water extract ameliorates
hypothalamic-pituitary-adrenal axis hyperactivity and
inflammation induced by chronic unpredictable mild stress
in rats. Biomed. Res. Int., Vol. 2020. 10.1155/2020/8374614.

16. Hopkins, A.L., 2008. Network pharmacology: The next
paradigm in drug discovery. Nat. Chem. Biol., 4: 682-690.

17. Xiao, Z., C. Liu, J. Duan, T. Zhou and X. Liu et al., 2020. A
network   pharmacology    approach   to   investigate  the
anti-depressive mechanism of Gardeniae fructus. Int. J.
Pharmacol., 16: 382-397.

18. Huang, L., D. Xie, Y. Yu, H. Liu, Y. Shi, T. Shi and C. Wen, 2017.
TCMID 2.0: a comprehensive resource for TCM. Nucleic Acids
Res., 46: D1117-D1120.

19. Zeng, X., P. Zhang, W. He, C. Qin and S. Chen et al., 2018.
NPASS: Natural product activity and species source database
for natural product research, discovery and tool
development. Nucleic. Acids Res., 46: D1217-D1222.

20. Xu, H.Y., Y.Q. Zhang, Z.M. Liu, T. Chen and C.Y. Lv et al., 2019.
ETCM: An encyclopaedia of traditional chinese medicine.
Nucleic Acids Res., 47: D976-D982.

21. Kim, S.K., S. Nam, H. Jang, A. Kim and J.J. Lee, 2015. TM-MC: A
database of medicinal materials and chemical compounds in
Northeast Asian traditional medicine. BMC Complement
Altern Med., Vol. 15. 10.1186/s12906-015-0758-5.

511



Int. J. Pharmacol., 16 (7): 500-513, 2020

22. Yang, H., C. Lou, L. Sun, J. Li and Y. Cai et al., 2019. admetSAR
2.0: Web-service for prediction and optimization of chemical
ADMET properties. Bioinformatics, 35: 1067-1069.

23. Yang, H., C. Lou, L. Sun, J. Li and Y. Cai et al., 2019. admetSAR
2.0: Web-service for prediction and optimization of chemical
ADMET properties. Bioinformatics, 35: 1067-1069.

24. Ritchie, T.J. and S.J. Macdonald, 2014. How drug-like are ‘ugly’
drugs: do drug-likeness metrics predict ADME behaviour in
humans? Drug Discov. Today, 19: 489-495.

25. Lagorce,   D.,   L.   Bouslama,   J.   Becot,   M.A.   Miteva  and
B.O. Villoutreix, 2017. FAF-Drugs4: Free ADME-tox filtering
computations for chemical biology and early stages drug
discovery. Bioinformatics, 33: 3658-3660.

26. Awale, M. and J.L. Reymond, 2019. Polypharmacology
browser PPB2: Target prediction combining nearest
neighbors  with  machine  learning.   J.   Chem.   Inf.  Model.,
59: 10-17.

27. Keiser, M.J., B.L. Roth, B.N. Armbruster, P. Ernsberger, J.J. Irwin
and B.K. Shoichet, 2007. Relating protein pharmacology by
ligand chemistry. Nat Biotechnol., 25: 197-206.

28. Forouzesh, A., S.S. Foroushani, F. Forouzesh and E. Zand, 2019.
Reliable target prediction of bioactive molecules based on
chemical similarity without employing statistical methods.
Front. Pharmacol., Vol. 10. 10.3389/fphar.2019.00835.

29. Liao, Y., J. Wang, E.J. Jaehnig, Z. Shi and B. Zhang, 2019.
WebGestalt 2019: Gene set analysis toolkit with revamped UIs
and APIs. Nucleic Acids Res., 47: W199-W205.

30. Piñero, J., J.M. Ramírez-Anguita, J. Saüch-Pitarch, F. Ronzano,
E. Centeno, F. Sanz and L.I. Furlong, 2020. The DisGeNET
knowledge platform for disease genomics: 2019 update.
Nucleic Acids Res., 48: D845-D855.

31. Stelzer,  G.,  N.   Rosen,   I.   Plaschkes,   S.   Zimmerman   and 
M. Twik et al., 2016. The genecards suite: From gene data
mining to disease genome sequence analyses. Curr. Protoc.
Bioinformatics, Vol. 54. 10.1002/cpbi.5.

32. Heberle,  H.,  G.V.  Meirelles,  F.R.  da   Silva,   G.P.   Telles  and
R. Minghim, 2015. InteractiVenn: A web-based tool for the
analysis of sets through venn diagrams. BMC Bioinf., Vol. 16.
10.1186/s12859-015-0611-3.

33. Szklarczyk,   D.,    J.H.    Morris,    H.   Cook,    M.     Kuhn    and 
S.  Wyder  et  al.,  2017.  The  STRING database in 2017:
Quality-controlled protein‒protein association networks,
made broadly accessible. Nucleic Acids Res., 45: D362-D368.

34. Chin, C.H., S.H. Chen, H.H. Wu, C.W. Ho, M.T. Ko and C.Y. Lin,
2014. cytoHubba: Identifying hub objects and sub-networks
from complex interactome. BMC Sys. Biol., Vol. 8. 10.1186/
1752-0509-8-S4-S11.

35. Yu, G., L.G. Wang, Y. Han and Q.Y. He, 2012. clusterprofiler: an
r package for comparing biological themes among gene
clusters. OMICS: J. Integr. Biol., 16: 284-287.

36. Walter, W., F. Sánchez-Cabo and M. Ricote, 2015. GOplot: An
R package for visually combining expression data with
functional analysis. Bioinformatics, 31: 2912-2914.

37. Pettersen,  E.F.,  T.D.  Goddard,   C.C.   Huang,   G.S.  Couch,
D.M. Greenblatt, E.C. Meng and T.E. Ferrin, 2004. UCSF
chimera-A visualization system for exploratory research and
analysis. J. Comput. Chem., 25: 1605-1612.

38. Kim, S., J. Chen, T. Cheng, A. Gindulyte and J. He et al., 2018.
PubChem 2019 update: improved access to chemical data.
Nucleic Acids Res., 47: D1102-D1109.

39. Berman,  M.H.,  J.  Westbrook,   Z.   Feng,   G.   Gilliland  and
T.N. Bhat et al., 2000. The protein data bank. Nucl. Acids Res.,
28: 235-242.

40. Waterhouse,   A.,   M.   Bertoni,   S.   Bienert,   G.   Studer  and
G. Tauriello et al., 2018. SWISS-MODEL: Homology modelling
of protein structures  and  complexes.  Nucleic   Acids  Res.,
46: W296-W303.

41. Wang, J., W. Wang, P.A. Kollman and D.A. Case, 2006.
Automatic atom type and bond type perception in molecular
mechanical calculations. J. Mol. Graph. Modell., 25: 247-260.

42. Shapovalov, M.V. and R.L. Dunbrack, 2011. A smoothed
backbone-dependent rotamer library for proteins derived
from adaptive kernel density estimates and regressions.
Struct., 19: 844-858.

43. Trott, O. and A.J. Olson, 2010. AutoDock Vina: Improving the
speed and accuracy of docking with a new scoring function,
efficient optimization and multithreading. J. Comput. Chem.,
31: 455-461.

44. Laskowski, R.A. and M.B. Swindells, 2011. LigPlot+: Multiple
ligand‒protein  interaction   diagrams   for   drug  discovery.
J. Chem. Inf. Model., 51: 2778-2786.

45. Sarris, J., 2018. Herbal medicines in the treatment of
psychiatric disorders: 10-year updated review. Phytother Res.,
32: 1147-1162.

46. Heo, J.C., S.U. Woo, M. Son, J.Y. Park and W.S. Choi et al., 2007.
Anti-tumor activity of Gastrodia elata Blume is closely
associated with a GTP-Ras-dependent pathway. Oncol. Rep.,
18: 849-853.

47. Shin, E.J., J.M. Kim, X.K. Nguyen, T.T. Nguyen and S.Y. Lee et al.,
2011. Effects of gastrodia elata bl on phencyclidine-induced
schizophrenia-like psychosis in mice. Curr. Neuropharmacol.,
9: 247-250.

48. Haenisch, B. and H. Bonisch, 2011. Depression and
antidepressants: Insights from knockout of dopamine,
serotonin  or  noradrenaline  re-uptake  transporters.
Pharmacol. Ther., 129: 352-368.

49. Chen, W.C., Y.S. Lai, S.H. Lin, K.H. Lu and Y.E. Lin et al., 2016.
Anti-depressant effects of Gastrodia elata Blume and its
compounds gastrodin and 4-hydroxybenzyl alcohol, via the
monoaminergic system and neuronal cytoskeletal
remodeling. J. Ethnopharmacol., 182: 190-199.

50. Maremmani,  A.G.I.,  S.  Bacciardi,  J.M.  Somers, M. Nikoo and
C. Schutz et al., 2018. Substance dependence among bipolar,
unipolar depression and psychotic homeless: A canadian
national study. Front Psychiatry, Vol. 9. 10.3389/fpsyt.
2018.00701.

512



Int. J. Pharmacol., 16 (7): 500-513, 2020

51. Hinckley, J.D. and P. Riggs, 2019. Integrated treatment of
adolescents with co-occurring depression and substance use
disorder. Child Adolesc. Psychiatr. Clin. N. Am., 28: 461-472.

52. Liu Y., P. Fan, S. Zhang, Y. Wang and D. Liu, 2019. Prioritization
and comprehensive analysis of genes related to major
depressive disorder. Mol. Genet. Genomic Med.,
10.1002/mgg3.659.

53. Fujita,   M.,  E.M.   Richards,   M.J.   Niciu,   D.F.   Ionescu  and
S.S. Zoghbi et al., 2017. cAMP signaling in brain is decreased
in unmedicated depressed patients and increased by
treatment  with  a  selective  serotonin reuptake inhibitor.
Mol. Psychiatry, 22: 754-759.

54. Chang, Y.P., M.S. Lee, D.W. Wu, J.H. Tsai and P.S. Ho et al.,
2020. Risk factors for depression in patients with Parkinson's
disease: A nationwide nested case-control study. PLoS ONE,
Vol. 15. 10.1371/journal.pone.0236443.

55. Smaga,  I.,  B.  Bystrowska,  D.  Gawlinski,  E. Przegalinski and
M. Filip, 2014. The endocannabinoid/endovanilloid system
and depression. Curr. Neuropharmacol., 12: 462-474.

56. Shearman,  L.P.,  K.M.  Rosko,  R.  Fleischer,  J.  Wang,  S. Xu,
X.S. Tong and B.A. Rocha, 2003. Antidepressant-like and
anorectic effects of the cannabinoid CB1 receptor inverse
agonist AM251 in mice. Behav. Pharmacol., 14: 573-582.

57. Poleszak,   E.,   S.    Wosko,    K.    Slawinska,    E.    Wyska   and
A. Szopa et al., 2020. Influence of the endocannabinoid
system on the antidepressant activity of bupropion and
moclobemide in the behavioural tests in mice. Pharmacol.
Rep., 10.1007/s43440-020-00088-0.

58. Xu, J., H. Xu, Y. Liu, H. He and G. Li, 2015. Vanillin-induced
amelioration of depression-like behaviors in rats by
modulating monoamine neurotransmitters in the brain.
Psychiatry Res., 225: 509-514.

59. Huang, N.K., Y. Chern, J.M. Fang, C.I. Lin and W.P. Chen et al.,
2007. Neuroprotective principles from Gastrodia elata. J. Nat.
Prod., 70: 571-574.

513


	IJP.pdf
	Page 1




