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Abstract
Background and Objective: One of the clinically approved retinoid X receptor (RXR) ligands, bexarotene, has been demonstrated to exert
analgesic and anti-inflammatory effects in the experimental models of many inflammatory neurological diseases. The previous studies
showed that bexarotene ameliorates the lipopolysaccharide (LPS)-induced hyperalgesia by increasing RXR expression associated with
suppressed toll-like receptor  (TLR)/myeloid differentiation factor  (MyD) 88/transforming growth factor beta-activated kinase 1/nuclear
factor-κB/cyclooxygenase-2 signaling pathway activity in the central nervous system (CNS). This study tested the hypothesis that the
TLR/MyD88-dependent pro-inflammatory and anti-apoptotic signaling pathways mediate the ameliorating effect of bexarotene against
LPS-induced inflammatory hyperalgesia. Materials and Methods: Brain and spinal cord tissues of bexarotene-treated mice were used
for the measurement of tumor necrosis factor receptor-associated factor (TRAF) 6, inhibitor of IkB kinase (IKK) ", IKK$, IKKγ, inhibitor of
κB (IkB)-", mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase (ERK) 1/2, c-Jun, phosphoinositide 3-kinase
(PI3K) p85", Akt1, cyclic adenosine monophosphate-response element-binding protein (CREB), B-cell lymphoma (Bcl)-2, peroxisome
proliferator-activated  receptor  (PPAR)  ",  PPAR$  and  PPARγ  expression  and/or  activity  by  using  the  immunoblotting  method.
Results: Results showed that diminished protein expression and/or activity of PI3K p85", Akt1, CREB1, Bcl-2 and PPAR"/$/γ was associated
with enhanced TRAF6, IKK"/$/γ, IkB-", MEK1/2, ERK1/2 and c-jun proteins in the tissues of endotoxemic mice. These changes were
ameliorated following bexarotene treatment. Conclusion: Thus, decreased activity of pro-inflammatory TLR4/MyD88-dependent
TRAF6/IKK"/$/γ/IκB-γ and TRAF6/MEK1/2/ERK1/2/AP-1 signaling pathways associated with an increase in the anti-apoptotic PI3K
p85"/Akt1/CREB1/Bcl-2 signaling pathway activity and anti-inflammatory PPAR"/$/γ proteins in the CNS contributes to the ameliorating
effect of bexarotene against LPS-induced inflammatory hyperalgesia in mice.
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INTRODUCTION

Retinoid X receptor (RXRs), as members of the nuclear
receptor superfamily of ligand-activated transcription factors,
are participated in the nuclear receptors that regulate various
physiological cellular events, including cell survival1. The only
food  and  drug  administration-approved  rexinoid,  RXR
agonist bexarotene, has been reported to have analgesic and
anti-inflammatory effects in the experimental models of many
inflammatory neurological diseases2,3. Bexarotene has also
been shown to have beneficial effects in the treatment of
neurodegenerative diseases characterized by systemic
inflammation (e.g., Alzheimer's disease, Parkinson's disease,
neuroinflammation and neuropathic pain) in animal models4-6.
However,  the  mechanisms  underlying  these  effects  are  still
not  fully  understood,  but  may  involve  regulation  of  the
toll-like receptor (TLR4)/myeloid differentiation factor (MyD)
88-mediated inflammatory pathway in the central nervous
system (CNS).

The lipid A part of lipopolysaccharide (LPS), endotoxin,
has been shown to enhance pain sensation to thermal stimuli
at supraspinal and spinal levels as determined by the hot plate
test, which is considered to integrate supraspinal pathways
and to be a supraspinally controlled acute pain test7. We have
previously demonstrated that nitric oxide (NO) reverses
inflammatory hyperalgesia induced by LPS through reducing
prostacyclin formation and also participates in the
antinociceptive  effect  of  cyclooxygenase  (COX),  nuclear
factor-κB (NF-κB), or poly-adenosine diphosphate ribose
synthase inhibitors8. Furthermore, nucleotide-binding domain
and leucine-rich repeat protein (NLRP3) inflammasome
inhibitor, MCC950, or soluble epoxide hydrolase inhibitor,
trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea,
prevented not only the inflammatory hyperalgesia but also
LPS-induced (1) Enhanced activity of the NLRP3/apoptosis-
associated speck-like protein containing a caspase activation
and recruitment domain (ASC)/pro-caspase-1, NLRC4/ASC/
pro-caspase-1 and caspase-11 inflammasomes, TLR4/MyD88/
transforming growth factor-activated kinase/NF-κB/COX-2
pathway and nicotinamide adenine dinucleotide phosphate
oxidase  associated  with  enhanced  pro-inflammatory
cytokine formation, (2) Reduced levels of anti-inflammatory
cytochrome   P450   (CYP)   epoxygenase-derived
epoxyeicosatrienoic acids and (3) Diminished expression of
inducible NO synthase (iNOS), neuronal NO synthase, NLRC3
and peroxisome proliferator-activated receptor (PPAR) "/$/γ
in the various tissues of mice including brains and spinal

cords8-10. In the recent study11, we demonstrated that
treatment of mice with bexarotene ameliorated the
lipopolysaccharide (LPS)-induced hyperalgesia by increasing
protein expression of RXR and suppressing NF-κB-mediated
COX-2 expression and prostaglandin E2 formation, which was
regulated by TLR4/MyD88-dependent transforming growth
factor beta-activated kinase (TAK) 1 signaling pathway in the
CNS. As a continuation of our previous work, we aimed to test
the hypothesis that RXR agonists such as bexarotene may be
useful in preventing the events that may also result in
inflammatory hyperalgesia accompanied by the increase in
the TLR4/MyD88-dependent pro-inflammatory signaling
pathway  activity  associated  with  suppressed  activity  of
anti-apoptotic phosphoinositide 3-kinase (PI3K)/Akt1/cyclic
adenosine monophosphate-response element-binding
protein (CREB) 1/B-cell lymphoma (Bcl)-2 pathway caused by
LPS in the CNS.

MATERIALS AND METHODS

Animals and tissues: The brain and spinal cord tissues of male
Balb/c mice (20-40 g, n = 20) used in the experiments were
housed under standard conditions with free access to food
and water and a 12 h light-dark cycle. The animals were
obtained from the Research Center of Experimental Animals,
Mersin University, Mersin, Turkey. The experimental protocol
was approved by the Mersin University Experimental Animals
Local Ethics Committee (decision numbers: 2017/17 and
2018/20). All experiments were carried out according to the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and the American Veterinary Medical
Association Guidelines for the Euthanasia of Animals 2013
Edition. The study was carried out from March to October,
2021.

Inflammatory hyperalgesia model: In the previous study11,
the inflammatory hyperalgesia model was induced by the
injection of LPS intraperitoneally (i.p.) into mice and the
latency of pain to nociceptive response was measured by the
hot plate test as described previously8,10,12. The mice were
injected with saline (10 mL kgG1, i.p.) or LPS (10 mg kgG1, i.p.)
(Escherichia coli.  LPS, O111:B4) 6 hrs before the thermal
stimulus. Dimethyl sulfoxide (DMSO) (4 mL kgG1) or
bexarotene (4 mL kgG1) (Sigma Chemical Co., St., Louis, MO,
USA) was administered subcutaneously at the same time with
saline or LPS. The LPS (L4130) and bexarotene (SML0282) were
purchased from Sigma Chemical Co. (St., Louis, MO, USA).
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DMSO was purchased from Applichem Inc. Maryland Heights,
MO, USA. Saline and DMSO (a 1% [v/v] dilution of DMSO in
saline) were used to dissolve LPS and bexarotene, respectively.
Mice treated with saline, LPS, or DMSO were used as control,
inflammatory hyperalgesia and vehicle control groups,
respectively. To observe pain behavior, a hot plate apparatus
(AHP 9601, Commat Ltd., Ankara, Turkey) maintained at
temperature of 55±0.2EC was used to determine paw licking
time within 30 sec after 6 hrs of drug administration.
Euthanasia was carried out by cervical dislocation of mice after
the test and brains and spinal cords were collected from all
animals.

Immunoblotting: The immunoblotting method was used
according to the protocol as described in detail previously
with minor modifications10,11,13,14. Briefly, tissue homogenates
(30  mg  of  protein)  were  subjected  to  a  10%  sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. After
electrophoresis  was  complete,  proteins  were  transferred
from the gel to nitrocellulose membranes. The membranes
were blocked with non-fat dry milk in Tris-buffered saline and
incubated overnight with the following primary antibodies in
bovine  serum  albumin  (BSA)  at  4EC  against  (1)  Tumor
necrosis    factor    (TNF)    receptor-associated    factor    (TRAF)
6 (sc-8409,  Santa Cruz Biotechnology,  Santa Cruz, CA, USA),
(2)  IKK"  antibody  (2682,  Cell  Signaling,  Danvers,  MA,  USA),
(3)   Inhibitor   of   κB   kinase   (IKK)   $   (8943,   cell   signaling),
(4) Phosphorylated IKK"/IKK$ (p-IKK"/IKK$) (2078, cell
signaling), (5) IKKγ (sc-71331, Santa Cruz), (6) phosphorylated
IKKγ  (p-IKKγ)  (sc-293135,  Santa  Cruz),  (7)  inhibitor  of  κB
(IkB)-"  antibody  (sc-1643,  Santa  Cruz),  (8)  Phosphorylated
IkB-" (p-IkB-") (sc-7977, Santa Cruz), (9) mitogen-activated
protein      kinase      (MEK1/2)      (sc-81504,      Santa      Cruz),
(10) phosphorylated MEK1/2 (p-MEK1/2) (sc-81503, Santa
Cruz),  (11)  extracellular  signal-regulated  kinase  (ERK) 1/2
(sc-514302,    Santa    Cruz),    (12)    phosphorylated    ERK1/2
(p-ERK1/2)  (sc-136521,  Santa  Cruz),  (13)  c-Jun  (sc-1694,
Santa Cruz), (14) phosphorylated c-Jun (p-c-Jun) (sc-16312,
Santa Cruz), (15) PI3K p85" (OAAF05915, Aviva Systems
Biology, San Diego, CA, USA), (16) phosphorylated PI3K p85"
(p-PI3K p85") (OAEC00301, Aviva Systems Biology), (17) Akt1
(sc-271149, Santa Cruz),  (18) phosphorylated Akt1 (p-Akt1)
(sc-52940,  Santa  Cruz),  (19)  CREB1  (sc-271,  Santa   Cruz),
(20) phosphorylated CREB1 (p-CREB1) (sc-81486, Santa Cruz),
(21) Bcl-2 (sc-7382, Santa Cruz), (22) PPAR" (sc-9000, Santa
Cruz),  (23)  PPAR$  (sc-74517,  Santa  Cruz)  and  (24)  PPARγ
(sc-7273, Santa Cruz). The membranes were subsequently

incubated for 1 h at room temperature with an appropriate
secondary  antibody  solution  in  BSA  containing  a  sheep
anti-mouse IgG-horseradish peroxidase or a goat anti-rabbit
IgG-horseradish peroxidase (RPN4201 or RPN4301,
respectively, Amersham Life Sciences, Cleveland, OH, USA).
The membranes were then incubated wit an ECL Prime
Western Blotting Detection Reagent (RPN2232, Amersham). A
gel-imaging system (EC3-CHEMI HR imaging system, Ultra-
Violet Products, UVP, Cambridge, UK) was use to image
specific bands for the immunoreactive proteins on the
membranes.  To  determine  the  relative  immunoreactive
bands densities, Image J densitometry analysis software
(Image J 1.46r, Wayne Rasband, National Institute of Health,
Bethesda, MD, USA) was used. The membranes were reused
for anti-$-tubulin antibody (sc-5274, Santa Cruz) as a loading
control. The ratio of each band/$-tubulin was taken into
account for the expression level of specific proteins.

Statistical analysis: The sample size determined for each
treatment group in each experiment was based on previous
studies from our laboratory10-12 and complied with power
analysis15.  The  results  are  expressed  as  Means±Standard
Error of the Mean (SEM). Since the data were normally
distributed, parametric statistical analysis was conducted
using   the   Student's   t   test.   Statistical   analysis   was
performed using  GraphPad Prism version 7.04 for Windows
(GraphPad  Software,  San  Diego  California  USA,
http://www.graphpad.com). A p<0.05 was considered to be
statistically significant.

RESULTS

LPS-induced increase in the TRAF6 expression was
prevented by bexarotene treatment: First, we tested
whether bexarotene affects the expression of TRAF6, which is
an important adaptor molecule in the pro-inflammatory
TLR4/MyD88-dependent IKK/IκB-"/NF-κB and MAPK/AP-1
signaling pathways in the CNS, in response to LPS. The brain
and spinal cord tissue samples of saline-, LPS- and/or
bexarotene-treated mice were immunoblotted with a specific
TRAF6 antibody. Enhanced expression of TRAF6 was observed
in the tissues of LPS-treated mice compared with the control
group values (p<0.05) (Fig. 1). Treatment with bexarotene
inhibited the LPS-induced increase in TRAF6 expression in the
tissues compared with LPS-injected mice (p<0.05). Expression
of TRAF6 in the tissues of bexarotene-treated mice was not
different from the control group values (p>0.05).
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Fig. 1(a-b): Bexarotene ameliorated the LPS-induced increase in TRAF6 protein expression in the (a) Brain and (b) Spinal cord
tissues of control and endotoxemic mice
Protein expression of TRAF6 in the tissues was measured by immunoblotting, data are expressed as the Mean±SEM of 4 animals, *p<0.05 vs. saline-
injected group and #p<0.05 vs. LPS-injected group

LPS-induced increase in the activity of IKK/IκB-" signaling
pathway was prevented by bexarotene treatment: In the
second experimental approach, we tested whether
bexarotene affects the expression and activity of IKK/IkB-"
signaling pathway in the CNS, the brain and spinal cord tissue
samples of saline-, LPS- and/or bexarotene-treated mice were
immunoblotted   with   specific   antibodies   for   IKK",   IKK$,
p-IKK"/IKK$  (at  Ser176  and  Ser177,  respectively),  IKKγ,  p-IKKγ
(at Ser376), IkB-" and p-IkB-" (at Ser32). As shown in Fig. 2,
expression of the phosphorylated, but not unphosphorylated,
catalytic  (IKK"  and  IKK$)  and  regulatory  (IKKγ)  subunits  of
the  IKK  complex  proteins  was  enhanced  in  the  tissues  of
LPS-injected mice compared with the control group values
(p<0.05). Reduced expression of IkB-" was also associated
with  the  increased  p-IkB-"  expression  in  the  tissues  of
LPS-injected mice compared with the control group values
(p<0.05). The changes in the expression of these proteins in
the mice injected with LPS were inhibited by bexarotene
(p<0.05).  Expression  of  unphosphorylated  and
phosphorylated proteins in the tissues of bexarotene-treated
mice was not different from the control group values (p>0.05).

LPS-induced increase in the activity of MEK1/2, ERK1/2 and
c-Jun was prevented by bexarotene treatment: To further
test whether bexarotene affects the expression and activity of
MEK1/2, ERK1/2 and c-Jun (a key subunit of the activator

protein [AP]-1) in the CNS, the brain and spinal cord tissue
samples of saline-, LPS- and/or bexarotene-treated mice were
immunoblotted with specific antibodies for MEK1/2, p-MEK1/2
(at Ser218/Ser222 for MEK1 and Ser222/Ser226 for MEK2),  ERK1/2,
p-ERK1/2 (at Thr203/Tyr205 for ERK1 and (at Thr183/Tyr185 for
ERK2), c-Jun and p-c-Jun (at Ser63/Ser73). Expression of the
phosphorylated, but not unphosphorylated (with the
exception of c-Jun), proteins was enhanced in the tissues of
LPS-injected mice compared with the control group values
(p<0.05)  (Fig.  3).  The  enhanced  expression  of  these
proteins in the mice injected with LPS was inhibited by
bexarotene (p<0.05). Expression of unphosphorylated and
phosphorylated proteins in the tissues of bexarotene-treated
mice was not different from the control group values (p>0.05).

LPS-induced decrease in the activity of PI3K/Akt1/CREB1/
Bcl-2  pathway  was  prevented  by  bexarotene  treatment:
To   test   the   hypothesis   that   bexarotene   also   prevents
LPS-induced   decrease   in   the   anti-apoptotic
PI3K/Akt1/CREB1/Bcl-2 pathway activity in the CNS, the brain
and spinal cord tissue samples of saline-, LPS- and/or
bexarotene-treated mice were immunoblotted with specific
antibodies for PI3K p85", p-PI3K p85" (at Tyr467), Akt1, p-Akt1
(at Ser473), CREB1, p-CREB1 (at Ser133) and Bcl-2. As shown in
Fig. 4, expression of p-PI3K p85", p-Akt1, p-CREB1 and Bcl-2
proteins  was  diminished  in  the  tissues  of  LPS-injected 
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mice compared with the control group values (p<0.05). The
decrease in the p-PI3K p85", p-Akt1, p-CREB1 and Bcl-2
expression in the mice injected with LPS was inhibited by
bexarotene (p<0.05). Expression of unphosphorylated and/or
phosphorylated PI3K p85", Akt1, CREB1 and Bcl-2 proteins in
the tissues of bexarotene-treated mice was not different from
the control group values (p>0.05).

LPS-induced reduction in the expression of PPAR"/$/γ was
prevented by bexarotene treatment: To further investigate
whether bexarotene also affects the expression of PPAR"/$/γ,
an important family of ligand-activated nuclear transcription
factors,  in  the  CNS,  the  brain  and  spinal  cord  tissue
samples of saline-, LPS- and/or bexarotene-treated mice were
immunoblotted with specific antibodies for PPAR", PPAR$ and

Fig. 2(a-b): Continue
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Fig. 2(a-b): Bexarotene ameliorated the LPS-induced changes in IKK", IKK$, IKKγ and IκB-" protein phosphorylation in the (a) Brain
(b) Spinal cord tissues of control and endotoxemic mice
Expression of unphosphorylated and phosphorylated IKK", IKK$, IKKγ and IkB-a proteins in the tissues was measured by immunoblotting, data are
expressed as the Mean±SEM of 4 animals, *p<0.05 vs. saline-injected group and #p<0.05 vs. LPS-injected group
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PPARγ. Expression of PPAR", PPAR$ and PPARγ proteins was
diminished in the tissues of LPS-injected mice compared with
the control group values (p<0.05) (Fig. 5). The reduction in the
expression of PPAR", PPAR$ and PPARγ proteins  in  the  mice

injected with LPS was inhibited by bexarotene (p<0.05).
Expression of PPAR", PPAR$ and PPARγ in the tissues of
bexarotene-treated mice was not different from the control
group values (p>0.05).

Fig. 3(a-b): Continue
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Fig. 3(a-b): Bexarotene ameliorated the LPS-induced changes in MEK1/2, ERK1/2 and c-Jun protein expression and/or
phosphorylation in the (a) Brain and (b) Spinal cord tissues of control and endotoxemic mice
Expression of unphosphorylated and phosphorylated MEK1/2, ERK1/2 and c-Jun proteins in the tissues was measured by immunoblotting, data are
expressed as the Mean±SEM of 4 animals, *p<0.05 vs. saline-injected group and #p<0.05 vs. LPS-injected group
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DISCUSSION

The  findings  of  the  present  study  ensure  the  first
evidence  that  suppression  of  the  pro-inflammatory
TLR4/MyD88-dependent  TRAF6/IKK"/$/γ/IκB-"  and
TRAF6/MEK1/2/ERK1/2/AP-1        signaling        pathways        as

well   as   the   increase   in   the   activity   of   anti-apoptotic
PI3K   p85"/Akt1/CREB1/Bcl-2    signaling    pathway    in
addition   to  anti-inflammatory  PPAR"/$/γ  proteins  in  the
CNS  of  mice  involves  in  the  ameliorating  effect  of
bexarotene  against  inflammatory  hyperalgesia  induced  by
LPS (Fig. 6).

Fig. 4(a-b): Continue
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Fig. 4(a-b): Bexarotene ameliorated the LPS-induced decrease in PI3K p85", Akt1, CREB1 and Bcl-2 protein expression and/or
phosphorylation in the (a) Brain and (b) Spinal cord tissues of control and endotoxemic mice
Expression of unphosphorylated and phosphorylated PI3K p85", Akt1, CREB1 and Bcl-2 proteins in the tissues was measured by immunoblotting, data
are expressed as the Mean±SEM of 4 animals, *p<0.05 vs. saline-injected group and #p<0.05 vs. LPS-injected group
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Recent  studies  have  indicate  that  TRAF6  is  an
important  adaptor  molecule  in  the  pro-inflammatory
TLR4/MyD88-dependent IKK/IκB-"/NF-κB and MAPK/AP-1
signaling pathways in response to LPS16,17. There is also
accumulating evidence suggesting that a reduction in the
activity of the anti-apoptotic PI3K/Akt1/CREB1/Bcl-2 pathway
associated with the enhanced activity of the TLR4/MyD88
inflammatory pathway, decreased cell survival and increased

apoptosis18,19. As a family of ligand-activated nuclear
transcription factors, PPARs have also been shown to have a
special role in the regulation of the neuroinflammatory
process20,21.  Although  there  are  other  in  vivo  studies  in  the
literature investigating the contribution of TAK1, TLR4, MyD88,
NF-κB, ERK1/2 and RXRa to the pathogenesis of inflammatory
hyperalgesia caused by LPS22-24, no studies were found
regarding   the  contribution  of  TRAF6,  IKK  complex,  IkB-",

Fig. 5(a-b): Continue
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Fig. 5(a-b): Bexarotene ameliorated the LPS-induced decrease in PPAR", PPAR$ and PPARγ protein expression in the (a) Brain and
(b) Spinal cord tissues of control and endotoxemic mice
Expression of PPAR", PPAR$ and PPARγ proteins in the tissues was measured by immunoblotting, data are expressed as the Mean±SEM of 4 animals,
*p<0.05 vs. saline-injected group, and #p<0.05 vs. LPS-injected group

MEK1/2, AP-1, Akt1, CREB1, Bcl-2 and PPAR"/$/γ. An important
point to emphasize is that the results obtained from in vitro
and in vivo  studies using LPS are inconsistent. For instance,
LPS   has   been   reported   to   be   a   potent   stimulus   of
TLR4-mediated inflammation in the range  of  1-300 ng mLG1

in vitro25. Moreover, according to the results obtained from
studies conducted under in vitro conditions, reduced
expression of PPARγ26, Bcl-227 and CREB phosphorylation26,28

was  associated  with  enhanced  activity  of  MEK1/229,30,
ERK1/231-33  and  AP-131,32,34,35  in  the  brain  and/or  spinal  cord
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Fig. 6: Effects of bexarotene on the changes induced by LPS in the pro-inflammatory TLR4/MyD88-dependent
TRAF6/IKK"/$/γ/IκB-" and TRAF6/MEK1/2/ERK1/2/AP-1 signaling pathways as well as increase in the anti-apoptotic PI3K
p85"/Akt1/CREB1/Bcl-2 signaling pathway in addition to anti-inflammatory PPAR"/$/γ proteins in the CNS during
inflammatory hyperalgesia in mice based on the findings of the present study in addition to our previous findings8-11
8: Increased and 9: decreased

tissues of mice as a result of LPS administration. There were
also studies showing that LPS not only enhances activities of
PI3K26 and Akt26,31-33, but also diminishes their activities27,36. A
very small amount of LPS has been shown to cause a low
degree of inflammation by activating the TLR4 complex
I/MyD88/glycogen synthase kinase 3/c-Jun N-terminal kinase
(JNK)  pathway,   while  it  has  been  reported  to  have  an
anti-inflammatory effect by suppressing the TLR4 complex
I/MyD88/TRIF/Akt/ERK pathway as a compensator to prevent
further progression of the inflammatory response37. So, a low
amount of LPS can suppress instead of activating the
compensatory and anti-inflammatory PI3K and negative
regulators of inflammatory genes such as CREB and interleukin
(IL)-10. In addition, a low or high amount of LPS activates IKKs,
NF-κB, p38 MAPK and JNK via TLR4 complex I/MyD88/toll-IL-1

receptor domain-containing adapter-inducing interferon-$
(TRIF)/Akt/ERK via TLR4 complex II/TRIF/MyD88/toll/IL-1
receptor-associated kinases resulting in an acute, strong and
transient inflammation. On the other hand, it has been
reported that LPS at 0.2 mg kgG1 (i.p.) dose (in the low dose
range 0.1-1 mg kgG1) has a neuroprotective  effect,  while,  at
5 mg kgG1 (i.p.) dose in a high dose, it causes persistent
inflammation and a progressive neurotoxic  effect  for  up  to
10 months38. According to the results obtained from in vivo
studies, it has been reported that (1) Intracerebroventricular
(i.c.v.) injection of LPS diminishes PI3K/Akt/Bcl-2 activity and
PPARγ expression at a 1 ml/area dose39 as well as Bcl-2 levels
at a 250 mL kgG1 dose40 in the brains of mice. The LPS injection
at a dose of 1 mg kgG1 (i.p.) for 7 days is reported to cause an
enhancement  in  the  TLR4,  NF-κB  p65  and  ERK1/2  activity,
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while it decreases Bcl-2 levels and did not change Akt
activity41.  When  administered  first  intragastric  at  a  dose  of
0.5 mg kgG1 and then at a dose of 1.2 mg kgG1 (i.p.), LPS also
diminished in the CREB activity28. Moreover, injection of LPS 
at 3, 5, or 8 mg kgG1 (i.p.) doses is reported to reduce42 or
enhance the activity of ERK1/2 and CREB43 and decrease CREB
activity44,   respectively.  In  addition,  LPS  injection  to  mice
(1) At a dose of 5 mg kgG1 (intrathecal) reduces PI3K/Akt
activity in the lung45, (2) At a dose of 5 mg kgG1 (i.p.) enhances
PI3K/Akt/CREB activity in the liver46, (3) At a dose of 8 mg kgG1

(i.p.) increases PI3K/Akt/Bcl-2 activity in the lung47. In addition,
it was found that LPS injection to rats resulted in enhanced
Akt/Bcl-2 activity at a dose of 10 µg per rat (i.c.v.) in the brain48

as well as suppressed PI3K/Akt activity at a dose of 5 mg kgG1

(i.p.)46 and Akt activity at a dose of 14 mg kgG1 (intravenous)49

in the lung. On the other hand, LPS can also induce a
peripheral inflammatory stimulus on microglia and the brain
at doses of 0.33-200 mg kgG1 (i.p.)50. It has been suggested that
these conflicting results may be due to the strain, amount or
dose of LPS, route and duration of administration and the test
method used, as well as the type of experimental animal used
in the model51,52. In the current study, we found that systemic
administration of LPS (10 mg kgG1, i.p.) to mice resulted in
hyperalgesia associated with (1) enhanced expression of
TRAF6,  p-IKK"/$/γ,  p-IkB-",  p-MEK1/2,  p-ERK1/2,  c-Jun  and
p-c-Jun  proteins  and  (2)  Diminished  expression   of   IkB-",
p-PI3K p85", p-Akt1, p-CREB1, Bcl-2, PPAR"/$/γ proteins in the
brain and spinal cord tissues. Hence, in line with the previous
findings8-11 and the above-mentioned studies, increased
formation  of  pro-inflammatory mediators as a consequence
of the enhanced activity of TLR4/MyD88-dependent
TRAF6/IKK"/$/γ/IκB-" and TRAF6/MEK1/2/ERK1/2/AP-1
signaling  pathways  associated  with  down-regulation  of
anti-apoptotic PI3K p85"/Akt1/CREB1/Bcl-2 signaling pathway
in addition to reduced expression of anti-inflammatory
PPAR"/$/γ proteins in the CNS of mice seems to be involved
in the LPS-induced inflammatory hyperalgesia.

Bexarotene, an RXR agonist, has been shown to reduce
COX-2 expression and/or activity in various malignant cells
and is currently used at high doses in the treatment of
cutaneous T cell lymphoma with its approved indication. In
recent years, it has been reported that bexarotene, which has
also been shown to be effective in many acute and chronic
CNS diseases associated with inflammation, may be useful in
the treatment of neurodegeneration-related disorders, such as
traumatic brain injury, in which inflammation plays an
important role when used at doses 100 times lower than
rodent cancer models4-6. In a study of intestinal neoplasia,
bexarotene was shown to diminish COX-2 messenger
ribonucleic    acid    expression    and    the    expression    of

COX-2-induced pro-inflammatory cytokines such as IL-1$, IL-2,
IL-6 and TNF-"53. In an in vitro  study, it has been shown that
bexarotene suppresses the activity of NF-kB at the
transcriptional level by reducing the transactivation potential
of the binding site of p65 without affecting the translocation
of NF-κB, a transcription factor that causes of enhanced
expression of pro-inflammatory cytokines in thyroid cancer
cells and the binding ability of one of its subunits, p6554. In
another study, it has been suggested that bexarotene inhibits
phosphorylation of IKK/I κB-" in Zucker diabetic rat hearts and
mediates NF-κB to remain bound to IκB-" in the cytosol, thus
preventing its transcriptional activity from being transferred
to the nucleus55. In addition, there are studies showing that
enhanced NF-κB transcriptional activity in various pathologies
is similarly reduced with different RXR ligands56,57. Yuan et al.58

also showed that bexarotene ameliorates depression-like
behavior in mice by protecting against neuroinflammation
and synaptic injury mediated by the LPS- or corticosterone-
induced CREB/brain-derived neurotrophic factor/ERK pathway.
Moreover, the results of our study, in which we performed a
septic shock model with LPS in rats, show that bexarotene has
an inhibitory effect on hypotension accompanied by
inflammation and tissue damage during endotoxemia, as well
as enhanced expression and/or activity of CYP4F6, which is
responsible for leukotriene B4 synthesis, with heterodimer
formation of PPAR"/$/γ in addition to the reduction in iNOS
expression/levels14. There are also studies showing that
bexarotene can prevent brain injury and neuroinflammation
by increasing the efficiency of the PPARγ/sirtuin 6/forkhead
box O3a pathway in subarachnoid hemorrhage models in
mice and rats59,60. In the present study, treatment with
bexarotene exhibited a marked improvement in the latency
compared with endotoxemic mice. Furthermore, bexarotene
prevented the LPS-induced (1) Increase in the expression of
TRAF6 and c-Jun proteins in addition to phosphorylation of
IKK"/$/γ,   IkB-",   MEK1/2,   ERK1/2   and   c-Jun   proteins   and
(2) Decrease in the expression of IkB-", Bcl-2, PPAR"/$/γ
proteins as well as phosphorylation of PI3K p85", Akt1 and
CREB1 in the tissues. Based on the results of our previous
findings on the inflammatory hyperalgesia model induced by
LPS injection8-11 and the above-mentioned studies in the
literature,   reduced   pro-inflammatory   mediator   formation
as a result of suppression of TLR4/MyD88-dependent
TRAF6/IKK"/$/γ/IκB-"  and  TRAF6/MEK1/2/ERK1/2/AP-1
signaling    pathways    associated    with    up-regulation    of
anti-apoptotic  PI3K  p85"/Akt1/CREB1/Bcl-2  signaling
pathway as well as anti-inflammatory PPAR"/$/γ proteins at
transcriptional  and/or  post-transcriptional  level  in  the  CNS
of   mice   seems   to   be   involved   in   the   analgesic   and
anti-inflammatory effects of bexarotene.
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Although the molecular mechanisms of its beneficial
effects on inflammatory hyperalgesia and apoptosis could not
be investigated in detail within the scope of this study, it has
been suggested that bexarotene exerts its anti-inflammatory
and anti-apoptotic effects either directly, through activation
of endogenous PPAR"/$/γ-RXR-mediated pathways or
indirectly, as a result of increasing the expression and/or
activity of PI3K p85"/Akt1/CREB1/Bcl-2 signaling pathway
and/or suppression of the expression/activity of various
factors/enzymes involved in the TRAF6/IKK"/$/γ/IκB-" and
TRAF6/MEK1/2/ERK1/2/AP-1 signaling pathways. In addition,
bexarotene may also exert its beneficial effects due to its
synergistic effect on the signaling pathways that play a role in
the pathogenesis of inflammatory hyperalgesia caused by LPS.
However, additional studies should be done to prove the
validity of these hypotheses.

CONCLUSION

This study provides evidence for the first time that RXR
agonist bexarotene can prevent inflammatory hyperalgesia
and     increase     in     the     activity     of     the     LPS-induced
pro-inflammatory TLR4/MyD88-dependent TRAF6/IKK"/
$/γ/IκB-" and TRAF6/MEK1/2/ERK1/2/AP-1 signaling pathways
associated with the decrease in the activity of anti-apoptotic
PI3K p85"/Akt1/CREB1/Bcl-2 signaling pathway in addition to
anti-inflammatory PPAR"/$/γ proteins in the CNS of mice.
Current findings showed that RXR agonists such as
bexarotene, which can also enter the CNS when administered
systemically, can be useful as anti-inflammatory/analgesic
drugs in the prevention and treatment of acute
neuroinflammatory diseases accompanied by pain, as well as
chronic painful conditions in which inflammation plays a role
in the pathophysiology that may develop due to bacterial
infections.

SIGNIFICANCE STATEMENTS

This  study  explored  the  ameliorating  effect  of
bexarotene on the TLR4/MyD88-dependent pro-inflammatory,
anti-apoptotic and anti-inflammatory signaling pathways that
can be beneficial for treatment of inflammatory hyperalgesia.
This study will help the researchers to uncover the critical area
of controlling of inflammatory pain during endotoxemia that
many researchers were not able to explore. It is expected that
the  results  obtained  from  this  study  will  contribute  to  the
pre-clinical and clinical studies to be conducted to develop
RXR agonists as drugs for the treatment of inflammatory
neurodegenerative diseases accompanied by hyperalgesia.
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