

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2022.1296.1308

Research Article

In silico Investigation and BSA Denaturation Inhibitory Activity of Ethyl Acetate and N-Butanol Extracts of *Centaurea tougourensis* Boiss, and Reut.

^{1,2}Mohamed Sabri Bensaad, ²Saliha Dassamiour, ²Leila Hambaba, ²Mohamed Akram Melakhessou, ³Rokayya Sami, ⁴Amina A.M. Al-Mushhin, ⁵Nada Benajiba and ⁶Luluah M. Al Masoudi

¹Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Faculty of Natural and Life Sciences, University Batna 2, Algeria

²Laboratory of Biotechnology of Bioactive Molecules and Cellular Physiopathology, Faculty of Natural and Life Sciences, University Batna 2, Algeria

³Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

⁴Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia ⁵Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

⁶Department of Biology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

Background and Objective: Phytotherapy is considered nowadays an important discipline that allowed both the scientific community and pharmaceutical companies to innovate in the drug discovery and development process. In this study, we aimed to evaluate the anti-inflammatory activity of the n-butanol (n-BuOH) and ethyl acetate (EA) extracts of a plant species named C. tougourensis as well as to investigate for the first time the physico-chemical and biological characteristics of some compounds identified in this plant using a bioinformatics approach. Materials and Methods: In this study, the in silico approach was applied to predict the physicochemical characteristics, pharmacokinetics, bioactivity, cytotoxicity but also the possible changes in the expression of some gene using four newly identified compounds. Thus, two compound were tested from the n-BuOH extract named, respectively, Silanediamine, 1,1-dimethyl-N,N'-diphenyl- (compound 1), Methanone, 1,3-dithian-2-ylphenyl-(compound 2) and two compounds from EA extract, named, respectively, 4-Fluoro-1-methyl-5-carboxylic acid, ethyl (ester) (compound 3), propionic acid, 3-iodo-, tetradecyl ester (compound 4). The anti-inflammatory activity of these extracts was also tested using bovine serum albumin (BSA) denaturation approach. Results: The in silico study indicated that the tested compounds may be involved in the regulation of gene expression but may also exert a noticeable cytotoxicity against several tumour cell lines. Furthermore, these compounds could also be considered a potent candidate to treat metabolic disorders linked to diabetes and obesity, but also oxidative stress, immune system dysfunction and skin pathologies. The BSA assay revealed that both extracts have almost the same moderate inhibition effect on protein denaturation. The EC $_{50}$ values were (335 \pm 0.03 μ g mL $^{-1}$) for n-BuOH and (338±0.07 µg mL⁻¹) for EA extracts. The difference was considered highly significant (p<0.001) when compared to diclofenac sodium (115.76 ± 0.19) . **Conclusion:** These preliminary results indicate that the actual biocompounds contained in *Centaurea tougourensis* could be a good candidate for the elaboration of more effective and natural drugs.

Key words: Anti-inflammatory, BSA, Centaurea tougourensis, in silico, phytotherapy

Citation: Bensaad, M.S., S. Dassamiour, L. Hambaba, M.A. Melakhessou and R. Sami *et al.*, 2022. *In silico* investigation and BSA denaturation inhibitory activity of ethyl acetate and n-butanol extracts of *Centaurea tougourensis* Boiss. and Reut. Int. J. Pharmacol., 18: 1296-1308.

Corresponding Author: Rokayya Sami, Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia

Copyright: © 2022 Mohamed Sabri Bensaad *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Several bioinformatics means are now-a-days used to predict with high accuracy the physicochemical and pharmacological properties of specific compounds due to the emergence of a discipline called *in silico*, which is principally based on computer-aided drug design softwares and collaborative platforms¹. This bioinformatics approach can be very helpful, especially before conducting *in vitro* and *in vivo* experiments². Indeed, several fields of research including genetic and evolutionary biology have considerably evolved due to *in silico* and molecular docking process³, as well as the possible interactions of a molecule with a specific receptor at the atomic level, based on energy transfer process⁴, helping the scientific community to develop more effective therapies, especially against cancer.

Human health is constantly threatened by pathogens including; microorganisms, chemicals, radiations, physical agents, which may also have a negative repercussion on the genetic level^{5,6}. However, our body has many natural means to maintain its physiological state. Among them, the inflammatory reactions are considered as a natural response of the body's immune system mainly orchestrated by immune cells via the secretion of key cytokines, interferons and chemokines to promote tissue repair and recovery⁷. However, in the pathological situation, a dysfunction of the immune system can lead to an excessive inflammatory response which can result in the development of chronic pathologies such as ulcer, tuberculosis, asthma and rheumatoid arthritis⁸.

Plants have always played a central role in human history and the bioactive compounds found in *Centaurea* species such as flavonoids, saponins, terpenes, tannins and other phenolic compounds could explain their remarkable abilities to treat several illnesses related to oxidative stress, diabetes, inflammation, cancer, infections and neurological disorders⁹⁻¹². This study is a continuation of the previous works in which demonstrated the antioxidant, anti-inflammatory, hepatoprotective, antidiabetic, haemostatic, neuroprotective, photoprotective and antimicrobial activities of *Centaurea tougourensis*¹³⁻¹⁵.

The present study aimed to predict the physicochemical and biological properties of four identified compounds using *in silico* approach as well as to evaluate *in vitro* the anti-inflammatory effect of both extracts.

MATERIALS AND METHODS

Study area: The study was carried out in collaboration between the Laboratory of Biotechnology of Bioactive Molecules and Cellular Physiopathology (LBMBPC), University

Batna 2, Algeria and the Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia from October, 2021 to January, 2022.

Plant collection: *Centaurea tougourensis* was collected from the commune of Fesdis (Algeria) (Lat 35.621975, long 6.241327) and conserved under a voucher specimen (CT/2019/LPTPCMB).

Plant extraction method: The plant was dried, covered away from sun's rays and then ground for future use. Maceration was carried out in triplicate with EtOH-H₂O mixture (70:30) at ambient temperature for 3 days then evaporated using solvents with different polarities.

In silico study

Generation of canonical smiles: For this approach, Open Babel (version 2.0.2)¹⁶ and In Draw webserver (http://in.indraw.integle.com/) were used. Indeed, two compounds were selected from the n-BuOH extract and named, respectively, Silanediamine, 1,1-dimethyl-N, N'-diphenyl-(compound 1), Methanone, 1,3-dithian-2-ylphenyl- (compound 2) while two compounds were selected from the EA extract, named, respectively, 4-Fluoro-1-methyl-5-carboxylic acid, ethyl(ester) (compound 3), Propionic acid, 3-iodo-, tetradecyl ester (compound 4).

Physicochemical properties: SwissADME web-service (http://www.swissadme.ch/) was used for this context and six physicochemical properties were taken into account; lipophilicity, size, polarity, solubility, flexibility and saturation¹⁷.

ADMET profile: The absorption, distribution, metabolism, excretion and toxicity of the four compounds was tested using admetSAR 2.0 (http://lmmd.ecust.edu.cn/admetsar2)¹⁸.

Pharmacological properties: The bioactivity score of each compound was predicted using the online platform of PASS online (http://way2drug.com/passonline/)¹⁹.

Cytotoxicity prediction: To estimate the possible cytotoxicity on human tumour cell lines, the online platform of CLC-Pred made it possible, based on the structural formula of each compound previously obtained²⁰.

Gene expression profiles: The *in silico* prediction of the possible influence of the four compounds on gene expression has been considered using DIGEP Pred (http://www.way2drug.com/ge/), which is primarily based on Upregulation and Downregulation processes^{21,22}.

Bovine albumin denaturation assay: The principle of this assay consists to evaluate the possible anti-inflammatory effect of our plant on bovine serum albumin (BSA) denaturation caused by heat (72°C). For this purpose, 1 mL of each concentration of extract or diclofenac sodium was added to 1 mL of BSA (0.2%) solution previously prepared in Tris-HCl buffer solution (pH = 6.6). The mixture was then incubated at ambient temperature for 15 min, then in a water bath at 72°C for 5 min. After cooling, the turbidity was measured at 660 nm²³. In addition, the EC₅₀ value was estimated and was calculated by this equation:

Inhibiton (%) =
$$\left[\frac{\left(Abs_{control} - Abs_{sample} \right)}{Abs_{control}} \right] \times 100$$

 $Abs_{control}$ = Represent the absorbance of the control group Abs_{sample} = Represent the absorbance of plant extract or standard drug

Statistical analysis: Data were expressed as Mean (\pm SD) for *in vitro* tests and \pm SEM and the statistical analyses were performed by ANOVA test using GraphPad Prism version 8. Results were considered highly significant at p<0.001.

RESULTS AND DISCUSSION

In silico study

Canonical smiles generation: In order to estimate the physicochemical and biological properties of the tested compounds, the corresponding canonical smile of each compound was first generated as follow:

- Compound 1: (Silanediamine, 1, 1-dimethyl-N,N'-diphenyl-): C[Si](C)(NC1=CC=CC=C1)NC 2=CC=CC=C2
- **Compound 2:** (Methanone, 1, 3-dithian-2-ylphenyl-): C1CSC(SC1)C(=O)C2=CC=CC=C2
- Compound 3: (4-Fluoro-1-methyl-5-carboxylic acid, ethyl(ester)): CCOC(=0)C1=C(N=CN1C)F
- Compound 4: (Propionic acid, 3-iodo-, tetradecyl ester):
 CCCCCCCCCCCCCC(=0)CCI

Table 1 provides detailed information about the molecular formula and structure of the tested compounds.

Physicochemical properties: The evaluation of the possible therapeutic effect of candidate compounds is directly linked to their physicochemical properties. This approach can help in the design process of new drugs to treat several diseases related to infections²⁴. Indeed, scientists solved some

physicochemical characteristics related to mucus, considered as a complex hydrogel biopolymer barrier which is found in several areas including airway epithelium, gastrointestinal tract or the ocular surface of eyes. Indeed, the mucus act by preventing direct access of microorganisms to these zones via its viscoelasticity property, which nowadays helped in the development of transmucosal drug delivery system^{25,26}.

Figure 1 shows the degree of unsaturation of compound 1 was considered the best, which could mean that this compound may be more reactive, since the degree of unsaturation is proportional to the number of carbons present in the molecule which contain generally double or triple covalent bonds between adjacent carbon atoms to add more hydrogens²⁷. This information is very important since unsaturated compounds are giving very promising results in the treatment of human carcinogenicity²⁸. In term of polarity, compound 2 showed the best results and the degree of unsaturation of this compound were also very important. Compound 4 exhibited the best flexibility, insolubility and lipophilicity properties and was considered remarkable. Lipophilicity and polarity are important parameters that allowed scientists to treat several infections affecting kidneys via the identification of physicochemical determinants of human renal clearance²⁹ and to develop more effective pesticides that are less harmful to human health and ecosystem³⁰. A compound with high flexibility means an increase in the dynamics molecular binding process with respective receptors which will considerably strengthen the action of drugs on their biomolecular targets to generate the therapeutic effect³¹. Noting that, compound 3 showed also a non-negligible unsaturation property.

ADMET profile: Table 2 shows that, results clearly indicate that the four compounds may cross blood-brain barrier (BBB), Caco-2 cells but may also be absorbed by human intestine with a optimum oral bioavailability, except for compound 4, suggesting that most of these compounds may easily transit from the gastrointestinal tract into the bloodstream to reaches their site of action³². This process helps also in the development of more effective drugs with less risk of side effects and toxicity³³. The majority of molecules with an important molecular weight are excluded from the central nervous system (CNS) via BBB membrane, which suggests that all compounds may be considered a suitable candidate for the elaboration of more effective neurotherapeutics and CNS drug delivery programs³⁴. The data also revealed that these compounds may not be a P-glycoprotein (P-gp) substrates, excluding also a probable attenuation on the activity of P-qp, which suggest that these compounds will not interfere with the biotransformation and excretion of drugs³⁵.

Table 1: Generation of the canonical smiles of the four tested compounds

Extracts	Compounds	Molecular formula	Structure	Canonical smiles
nBuOH	Compound 1	C ₁₄ H ₁₈ N ₂ Si	H. _N . Si. N.H	C[Si](C)(NC1=CC=CC=C1)NC2=CC=CC=C2
	Compound 2	C ₁₁ H ₁₂ OS ₂		C1CSC(SC1)C(=O)C2=CC=CC=C2
EA	Compound 3	C ₇ H ₉ FN ₂ O ₂	F N N	CCOC(=0)C1=C(N=CN1C)F
	Compound 4	C ₁₇ H ₃₃ IO ₂	"" "" "" "" "" "" "" "" "" "" "" "" ""	CCCCCCCCCCCCCCC(=0)CCI
	(a)	LIPO	(b)	LIPO
	FLEX	DISOLU.	POLAR INSATU	POLAR
	(c)	INSOLU LIPO	(d)	INSOLU LIPO
	FLEX		SIZE FLEX	SIZE
	INSATU		POLAR INSATU	POLAR
		INSOLU		INSOLU

Fig. 1: Prediction of the physicochemical properties of the 4 tested compounds, (a) Compound 1, (b) Compound 2, (c) Compound 3 and (d) Compound 4

LIPO: Lipophilicity, SIZE, POLAR: Polarity, INSOLU: Insolubility, INSATU: Unsaturation and FLEX: Flexibility and Flexibility a

Table 2: Prediction of the pharmacokinetic characteristics of the 4 compounds

	n-BuOH ext	tract	EA extract		
Parameters/compounds	Compound 1	Compound 2	Compound 3	Compound 4	
Absorption	•	·		·	
Human oral bioavailability	HOB+	HOB+	HOB+	HOBG	
Human intestinal absorption	HIA+	HIA+	HIA+	HIA+	
Blood brain barrier	BBB+	BBB+	BBB+	BBB+	
Caco-2 permeability	Caco2+	Caco2+	Caco2+	Caco2+	
P-glycoprotein substrate	Non-substrate	Non-substrate	Non-substrate	Non-substrate	
P-glycoprotein inhibitor					
Distribution and metabolism	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
Subcellular localization	Mitochondria	Mitochondria	Mitochondria	Mitochondria	
CYP450 3A4 substrate	Non-substrate	Non-substrate	Non-substrate	Non-substrate	
CYP450 2C9 substrate	Non-substrate	Non-substrate	Non-substrate	Non-substrate	
CYP450 2D6 substrate	Non-substrate	Non-substrate	Non-substrate	Non-substrate	
CYP450 3A4 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 2C9 inhibition	Inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 2C19 inhibition	Inhibitor	Inhibitor	Inhibitor	Non-inhibitor	
CYP450 2D6 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 1A2 inhibition					
Excretion and toxicity	Inhibitor	Inhibitor	Inhibitor	Inhibitor	
Acute oral toxicity	Class III Class III Class III		Class III	Class III	
Hepatotoxicity	Non-hepatotoxic	Non-hepatotoxic	Hepatotoxic	Non-hepatotoxi	
Carcinogenicity	Carcinogens	Non-carcinogens	Non-carcinogens	Non-carcinogen	
Ames mutagenesis	Non-mutagenic	Non-mutagenic	Non-mutagenic	Non-mutagenic	
Eye corrosion	Non-corrosive	Non-corrosive	Non-corrosive	Corrosive	
Eye irritation	Irritant	Irritant	Irritant	Irritant	
Honey bee toxicity	Non-toxic	Toxic	Non-toxic	Toxic	
Crustacea aquatic toxicity	Toxic	Non-toxic	Non-toxic	Toxic	
Fish aquatic toxicity	Toxic	Non-toxic	Non-toxic	Toxic	
Estrogen receptor binding	Binding	Non-binding	Non-binding	Non-binding	
Androgen receptor binding	Non-binding	Non-binding	Non-binding	Non-binding	
Thyroid receptor binding	Non-binding	Non-binding	Non-binding	Non-binding	
Glucocorticoid receptor binding	Non-binding	Non-binding	Non-binding	Non-binding	
Biodegradation					
ADMET predicted profile (regression)	Non-biodegradable	Biodegradable	Non-biodegradable	Biodegradable	
Water solubility (log S)	-3.416	-2.396	-4.247	-3.491	
Plasma protein binding (%)	1.115	0.977	0.44	0.759	
Acute oral toxicity (kg mol ⁻¹)	2.88	2.303	2.211	2.816	
Tetrahymena pyriformis (pIGC50, μg L ⁻¹)	0.517	1.522	0.56	3.007	

Concerning distribution, the mitochondrion seems to be the targeted organelle for all tested compounds which suggest that these compounds could modulate mitochondrial functions since this organelle is considered the main source of cellular energy via the production of adenosine triphosphate (ATP) by oxidative phosphorylation process³⁶, which contribute to the maintenance of optimal tissue homeostasis. It is also important to note that dysfunction in mitochondrial energy balance could contribute to the emergence of several pathologies associated with diabetes, immunity and aging^{37,38}. In term of metabolism, the four compounds may be classified as non-substrates for CYP450 3A4, 2C9 and 2D6 isoforms. It was also observed that the compounds 2, 3 and 4 can be considered as non-inhibitors of CYP450 3A4, 2C9 and 2D6 isoforms while the four compounds could be considered potential inhibitors of CYP450 1A2 isoform. This information is very important since Cytochrome P450

enzymes are essential for the metabolism of many medications but also to avoid the formation of a variety of toxic products³⁹.

Concerning the Ames mutagenicity, the results suggest that all compounds could be considered non-mutagenic and only compound 1 may be carcinogenic. These non-mutagenic compounds could be considered as potential antitumoral agents since the development of more effective anticancer drugs is crucial in the actual era⁴⁰. The acute oral toxicity for all tested compounds was very high (class III) and excepting the compound 3, the other compounds seem to be non-toxic for the liver. The compounds appear to be irritant to the eyes, however, only compound 4 could corrosive. The toxicity prediction revealed that compounds 1 and 4 could express high toxicity on fish and Crustacea, while compounds 2 and 3 could be non-toxic. Concerning the toxicity to the honey bee, compounds 1 and 3 could be non-toxic.

Table 3: Bioactivity prediction of the 4 compounds

Extracts	Compounds	Pa	Pi	Biological activities
n-BuOH	Compound 1	0.749	0.012	Fragilysin inhibitor
		0.742	0.030	Antiseborrheic
		0.562	0.028	Antiviral (Picornavirus)
	Compound 2	0.669	0.020	Anti-inflammatory
		0.594	0.044	Kidney function stimulant
		0.512	0.047	Oxygen scavenger
EA	Compound 3	0.723	0.005	Cognition disorders treatment
		0.698	0.007	Antiobesity
		0.614	0.011	Antidiabetic
	Compound 4	0.800	0.003	Leukopoiesis stimulant
		0.729	0.010	Macrophage colony-stimulating
		0.734	0.035	Factor agonist antieczematic

Pa: Probability of activity, Pi: Probability of inactivity

The data also revealed that the four compounds may not interact with androgen, triiodothyronine (T3), thyroxine (T4) and glucocorticoid receptors. However, concerning estrogen receptors, data showed that compound 1 could interact with this receptor suggesting that compound 1 may mimic the activity of estrogen. This information is very important, since this steroid hormone plays a key role in mammalian reproduction, regulate uterus function and contribute to the development of women's secondary sex characteristics⁴¹. This hormone is also involved in the treatment of breast cancer and cardiovascular disease^{42,43}.

Compound 3 exhibited the lowest value of water solubility (-4.247) while compound 1 showed the highest affinity for plasma proteins (1.115%) and also the most important acute oral toxicity (2.88 kg moL^{-1}). Finally, compound 4 was the most active on *Tetrahymena pyriformis* by expressing a median population growth of (3.007 μ g L^{-1}).

Pharmacological properties: Table 3 shows that, compound 1 could be useful as fragilysin inhibitor as well as a potent antiseborrheic agent with corresponding values (Pa = 0.749, Pa = 0.742). Fragilysin is an enterotoxin produced by pathogenic microbial strains including *Bacteroides fragilis* that is responsible for diarrhoeal disease in humans⁴⁴. It is well known that an excess of sebum could generate scaly patches, stubborn dandruff and red skin⁴⁵. Compound 4 may also exert a significant effect against eczema (Pa = 0.734), which suggests that compounds 1 and 4 could be considered good candidates for the treatment of seborrheic dermatitis and other conditions affecting the skin.

Data also revealed that compound 2 may exert a moderate anti-inflammatory effect (Pa = 0.669), but also a non-negligible stimulation on kidney function and oxygen scavenging process with corresponding values (Pa = 0.594, Pa = 0.512). This information is very important

since the deregulation of the inflammatory response could break body homeostasis and generate long-term severe pathologies^{46,47}.

It is also interesting to underline that compound 3 could be a potential candidate to treat cognitive disorders (Pa = 0.723), which can be temporary or progressive disorders⁴⁸. A decrease in cognitive performance will have a bad repercussion on intellectual function including reasoning, memory and speech but also on spatiotemporal perception which will directly affect motor skills since these elements are interconnected⁴⁹. The compound 3 showed also moderate antiobesity and antidiabetic effects with respective values (Pa = 0.698, Pa = 0.614). There is an important relationship since obesity increases the risk of developing type 2 diabetes⁵⁰, but also cardiovascular diseases and certain types of cancers⁵¹. This information suggests that compound 3 could be useful to treat metabolic disorders related to diabetes and obesity⁵².

Compound 4 showed a remarkable stimulation on leukopoiesis process (Pa = 0.800) but also on the expression of a cytokine called macrophage colony-stimulating factor (Pa = 0.729) which suggest that this compound could boost the hematopoiesis phenomenon to accelerate the production and differentiation of immune system cells⁵³, especially macrophage, lymphocytes, granulocytes and natural killer to fight infections especially intercellular viral infections⁵⁴.

Cytotoxicity prediction: Table 4 shows that, compounds 1 and 4 are active on brain tissue. Indeed, these two compounds exhibited a moderate cytotoxic activity in which compound 1 was active on the oligodendroglioma (Hs 683) cell line (Pa = 0.734), while compound 2 was on glioblastoma (SF-539) cell line (Pa = 0.507). This information is very important since neurodegenerative diseases are rapidly rising in prevalence 55 and the actual treatment especially antibiotic used to treat

Table 4: Probable cytotoxic activities of the 4 compounds on some tumour cell lines

Extracts	Compounds	Cell-line	Cell-line full name	Tissue	Tumour type	Pa	Pi
n-BuOH	Compound 1	Hs 683	Oligodendroglioma	Brain	Glioma	0.734	0.007
		MDA-MB-468	Breast adenocarcinoma	Breast	Adenocarcinoma	0.563	0.009
		HOP-18	Non-small cell lung carcinoma	Lung	Carcinoma	0.454	0.018
	Compound 2	HeLa	Cervical adenocarcinoma	Cervix	Adenocarcinoma	0.669	0.007
		Hs 683	Oligodendroglioma	Brain	Glioma	0.537	0.044
		HOP-18	Non-small cell lung carcinoma	Lung	Carcinoma	0.311	0.069
EA	Compound 3	NCI-H838	Non-small cell lung cancer stage 3	Lung	Carcinoma	0.648	0.013
		DMS-114	Lung carcinoma	Lung	Carcinoma	0.566	0.015
		SK-MES-1	Squamous cell lung carcinoma	Lung	Carcinoma	0.541	0.004
	Compound 4	SF-539	Glioblastoma	Brain	Glioblastoma	0.507	0.012
		SN12C	Renal carcinoma	Kidney	Carcinoma	0.505	0.013
		NCI-H838	Non-small cell lung cancer stage 3	Lung	Carcinoma	0.430	0.103

Pa: Probability of activity, Pi: Probability of inactivity

Table 5: Possible effect of the 4 compounds on mRNA expression level of some genes

Extracts	Compounds	Genes (upregulation)	Pa	Pi	Genes (downregulation)	Pa	Pi
n-BuOH	Compound 1	SAT	0.887	0.014	MYO5C	0.862	0.014
	POR	0.878	0.028	IFIH1	0.852	0.037	
	HTATIP2	0.866	0.009	TEP1	0.848	0.011	
	Compound 2	TNNT1	0.724	0.030	IFI27	0.663	0.079
	GAS6	0.687	0.056	TFAM	0.616	0.131	
	SLC2A4	0.629	0.088	TEP1	0.582	0.124	
EA	Compound 3	LST1	0.866	0.036	ALDH18A1	0.897	0.010
	SQLE	0.747	0.061	SLC15A1	0.876	0.014	
	SFRP1	0.610	0.095	SLC2A1	0.505	0.023	
	Compound 4	TNNT1	0.776	0.023	ELAVL1	0.628	0.037
	FTL	0.763	0.070	RARB	0.583	0.101	
	FECH	0.706	0.067	SPAST	0.501	0.092	

Pa: Probability of activity, Pi: Probability of inactivity

pathologies related to the nervous system presents a lot of side effects⁵⁶, which explain the urgent situation to elaborate more effective drugs. Compound 1 also showed a moderate cytotoxic effect (Pa = 0.563) on breast adenocarcinoma (MDA-MB-468) cell line. Noting that this type of cancer is in increase now-a-days, in 2020, records reported that 2.3 M women diagnosed with breast cancer⁵⁷.

Data also revealed that compound 2 may exert a noticeable cytotoxic effect on the cervical adenocarcinoma (HeLa) cell line (Pa = 0.669). Noting that, the statistics established in 2020 for 185 countries, reported that this type of cancer is ranked fourth most common cancer in women and represents 6.5% of all female cancers58. It is also very interesting to note that all tested compounds were active on lung tissue, especially compound 3 which showed a non-negligible cytotoxic effect on non-small cell lung cancer stage 3 (NCI-H838) cell line (Pa = 0.648), which is important since lung cancer is considered the leading cause of death among both men and women, representing almost 25% of all cancer deaths⁵⁸.

Compound 4 demonstrated also a modest cytotoxic effect on renal carcinoma (SN12C) cell line (Pa=0.505), which is important since kidneys ensure vital functions, especially the

regulation of extracellular fluid volume and the filtration and excretion of waste products and toxins out of the blood via urine⁵⁹.

Gene expression analysis: Data indicated that compound 1 may remarkably upregulate the mRNA expression of SAT, POR and HTATIP2 genes with corresponding values of (Pa = 0.887, Pa = 0.878, Pa = 0.866) (Table 5). These genes play key roles, indeed, a study revealed that SAT gene may suppress tumor growth in xenograft tumor models⁶⁰ and may also play a significant role in the cell survival process by acting as a rate-limiting enzyme in the pathway of polyamine metabolism⁶¹. The POR gene is crucial for the biosynthesis of cytochrome P450 enzymes⁶², which means that this gene could be a precursor for the synthesis of steroid hormones⁶³. Another study suggested that the HTATIP2 gene may act as a metastasis suppressor via an antiangiogenic effect to prevent the formation of new blood vessels to block the blood supply into the tumor zone⁶⁴.

Concerning the downregulation process, compound 1 showed also a great decrease in the mRNA expression of MYO5C (Pa=0.862), IFIH1 (Pa=0.852) and TEP1 (Pa=0.848) genes and this information is crucial since the emergence of

several illnesses is linked to the overexpression or mutation of these genes; in which MYO5C is associated with an abnormal spreading of neurofibrillary tangles in Alzheimer's disease⁶⁵, while IFIH1 may generate neuro-immunological disorders caused by an abnormal elevation of interferon due to excessive inflammatory reactions⁶⁶, also TEP1 gene activity could be associated with an infectious disease called campylobacteriosis and prostate cancer⁶⁷. Noting that compound 2 exerted a moderate downregulation on this TEP1 gene (Pa = 0.582).

Among the four tested compounds, results revealed that compound 2 could possibly increase the mRNA expression of TNNT1 (Pa=0.724), GAS6 (Pa=0.687) and SLC2A4 (Pa=0.629) genes.

Human physiology depends a lot on these genes, the TNNT1 gene plays a key role in the regulation of actin thin filament function in skeletal muscle⁶⁸, while the GAS6 gene may enhance hemostatic response by enhancing platelet aggregates and clot formation processes⁶⁹. The expression of the SLC2A4 gene could significantly stimulate glucose uptake by adipose tissue and skeletal muscle due to an important increase in the expression of glucose transporter protein type-4 (GLUT4) mediated by SLC2A4 gene⁷⁰. Noting that compound 4 showed a better result in the expression of the TNNT1 gene (Pa= 0.776). The results also indicated that compound 2 may act with a moderate way to down-regulate the gene expression of IFI27 (Pa = 0.663) and TFAM (Pa = 0.616). A recent study made by Zhao et al.⁷¹ revealed that the IFI27 gene could be closely associated with Hepatitis Cand Oral Leukoplakia while an alteration in the TFAM gene may increase the risk of developing Parkinson's disease due to a mitochondrial DNA depletion syndrome generated by the excessive activity of this gene⁷².

Its also important to underline that compound 3 may considerably upregulate the mRNA expression level of the LST1 gene (Pa = 0.866), since the activity of this gene may regulate leukocyte abundance in lymphoid organs but also the inflammatory response in the gut⁷³. This compound may also increase the mRNA expression of SQLE (Pa = 0.747) and SFRP1 (Pa = 0.610) genes, respectively. Recently, a study showed that the SQLE gene could be used as a potential prognostic biomarker for the identification of head and neck squamous cell carcinoma⁷⁴, while SFRP1 may prevent renal damage in a mouse model through the non-canonical Wnt/planar cell polarity pathway⁷⁵. On the other side, compound 3 showed a considerable decrease in the mRNA expression of ALDH18A1 (Pa = 0.897) and SLC15A1 (Pa = 0.876) respectively. Some clinical and genetic

investigations reported that a mutation in the ALDH18A1 gene could generate cerebellar ataxia and cognitive impairment 76 , while SLC15A1 polymorphisms were associated with dyslipidemia, considered as an important risk factor for stroke and coronary heart disease 77 . A modest don regulation process was also exerted by this compound on the SLC2A1 gene (Pa = 0.505), noting that a mutation in this gene could lead to a deficiency in glucose transporter type 1 (GLUT1), which will generate severe metabolic disorders 78 .

Results also revealed that compound 4 may be useful to increase the mRNA expression process of FTL and FECH genes with corresponding values (Pa = 0.763, Pa = 0.706). Some studies revealed that the FTL gene may act as an iron detoxifier agent since, during reactions involving iron such as electron transfer, there is an important generation of free, highly toxic radicals, that's why the elimination of iron excess by this gene is vital⁷⁹. The FECH gene is vital for the synthesis of ferrochelatase, a key enzyme mandatory for the production of heme⁸⁰. This information is fundamental since heme is an important component of hemoglobin that ensures the fixation of oxygen (O₂) in red blood cells and allows the transport of O₂ from the lungs to the rest of the body⁸¹. In contrast, compound 4 showed a modest down-regulation process on the mRNA expression level of ELAVL1 gene (Pa = 0.628). It was reported that this gene is the central oncogenic driver for several malignant peripheral nerve sheath tumors⁸². A non-negligible down-regulation process was also exerted by this compound on RARB and SPAST genes with a respective value (Pa = 0.583, Pa = 0.501). This information is very important since a mutation in the RARB gene may cause microphthalmia or diaphragmatic hernia⁸³, while a mutation in the SPAST gene may cause a rare inherited disorder called hereditary spastic paraplegia which is characterized by weakness and stiffness in leg muscles⁸⁴.

In vitro anti-inflammatory assay (BSA): The test of the ability of *C. tougourensis* to inhibit bovine albumin denaturation revealed a moderate effect for both extracts. Thus, the n-BuOH extract showed a maximum inhibitory activity of $(68.94\pm0.01\%)$ at the maximum tested dose of $(800\,\mu g\,m L^{-1})$ while $(63.47\pm0.01\%)$ for EA extract. Those data were considered highly significant (p<0.001) when compared to standard diclofenac sodium which showed an inhibition percentage of $(90.23\pm0.81\%)$ at the same tested concentration in Fig. 2. It is also interesting to see that the anti-inflammatory effect of the two tested extracts was almost the same at the tested concentrations of 200 and $400\,\mu g\,m L^{-1}$.

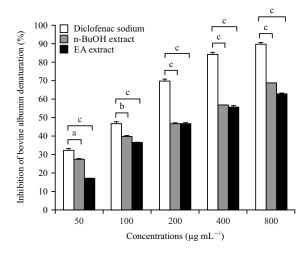


Fig. 2: Anti-inflammatory activity (Bovine albumin denaturation assay) of $\it C. tougourensis$ extracts All values are expressed as Mean \pm SD (n = 3). One-way ANOVA followed

by multiple Dunnett's test. Level of significance ap<0.05, bp<0.01 and cp<0.001 is statistically significant with comparison to diclofenac sodium

Table 6: EC_{50} values of standard and *C. tougourensis* extracts from the bovine serum albumin denaturation assay

Extracts/standard	EC ₅₀ (μg mL ⁻¹)
n-BuOH extract	335.00±0.03
EA extract	338.00 ± 0.07
Diclofenac sodium	115.76±0.19

The median effective concentration (EC) of each sample is represented in Table 6 and its important to note that comparable EC₅₀ values were also recorded for the two tested extracts and were (335 \pm 0.03 µg mL⁻¹) for n-BuOH and (338 \pm 0.07 µg mL⁻¹) for EA extract while (115.76 \pm 0.19 µg mL⁻¹) for diclofenac sodium.

Albumin, the most abundant circulating protein (35-50 g L⁻¹)⁸⁵, ensures vital functions like the transport of hormones, vitamins and fatty acids⁸⁶. It is also crucial to maintain normal osmotic pressure in blood vessels by stabilizing extracellular fluid volume via contribution by its pression known as oncotic pressure⁸⁷. Hypoalbuminemia may have serious repercussions on kidneys and liver functions⁸⁸.

The results are linked with Banerjee *et al.*⁸⁹ and Marrassini *et al.*⁹⁰, in which they clearly showed the ability of their plant to inhibit albumin denaturation but also proteinases activities and associated that with the richness of their species in flavonoids, tannins and alkaloids compounds. Noting that, these classes of secondary metabolites are very important at both nutritional and pharmacological levels⁹¹ which were identified in previous work⁹². This information is very important since protein denaturation may lead to certain pathological manifestations such as rheumatic arthritis, stroke and even cancer⁹³ due to abnormal and excessive production

of autoantigens. Another study showed that the actual bio compounds of plants, especially flavonoids can maintain the dynamic structure of proteins by limiting the oxidative stress exerted on these molecules through reactive oxygen species (ROS)^{94,95}.

In the previous study¹⁴, two key compounds were identified, vanillin and rutin, respectively. A study made by Siddiqui *et al.*⁹⁶ reported that vanillin may inhibit protein denaturation by inhibiting the activity of lipopolysaccharides (LPS), which can alter mRNA expression of bovine albumin and ovalbumin genes, using the mouse as the experimental model. Another study also revealed that vanillin could inhibit the inflammatory responses induced by LPS in BV-2 microglial cells⁹⁷. This protective effect was explained by these researchers by the ability of vanillin to regulate changes in the early glycation process and amyloid-like aggregation of albumin, thus preventing any change in its spatial conformation.

Rutin may also be a good anti-inflammatory candidate by slowing down the secretion of Interleukin 6 (IL-6) induced by lipopolysaccharides (LPS) as well as the expression of NF- κ B⁹⁸ since the inhibition of these two pro-inflammatory mediators can alter the structure of proteins.

CONCLUSION

In conclusion, the anti-inflammatory assay by bovine serum albumin (BSA) denaturation test revealed that both extracts have a moderate inhibition effect on protein denaturation with almost the same effect. The various in silico tests made in the present study, also showed that some phyto-compounds of this plant could be potent candidate to treat metabolic disorders linked to diabetes and obesity, but also inflammation and skin pathologies. These compounds could also modulate the expression of some genes which could be helpful for the prevention and treatment of some illnesses linked to immunity, metabolism and the nervous system. These compounds could also exert significant cytotoxicity against various human tumor cell lines. In addition, the absorption, distribution, metabolism, excretion and toxicity of these tested compounds were also investigated as well as their physicochemical properties.

SIGNIFICANCE STATEMENT

This preliminary work brings novel information about the pharmacological potential of new phytocompounds that could be very useful for the scientific community but also for pharmaceutical industries to develop new effective drugs, more natural and respectful of human health.

ACKNOWLEDGMENTS

The authors wish to express thank the Algerian ministry of higher education and scientific research (MESRS, DGRSDT). Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R43), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Also, the authors thank Prince Sattam Bin Abdulaziz University, Al-Kharj for their scientific contributions.

REFERENCES

- 1. Zloh, M. and S.B. Kirton, 2018. The benefits of *in silico* modeling to identify possible small-molecule drugs and their off-target interactions. Future Med. Chem., 10: 423-432.
- 2. Tian, S., J. Wang, Y. Li, D. Li, L. Xu and T. Hou, 2015. The application of *in silico* drug-likeness predictions in pharmaceutical research. Adv. Drug Delivery Rev., 86: 2-10.
- 3. Villalobos, A., M. Welch and J. Minshull, 2012. *In silico* Design of Functional DNA Constructs. In: Gene Synthesis, Peccoud, J. (Ed.), Humana Press, United States, ISBN: 978-1-61779-563-3, pp: 197-213.
- Maruthanila, V.L., R. Elancheran, N.K. Roy, A. Bhattacharya, A.B. Kunnumakkara, S. Kabilan and J. Kotoky, 2018. *In silico* molecular modelling of selected natural ligands and their binding features with estrogen receptor alpha. Curr. Comput. Aided. Drug. Des., 15: 89-96.
- Vannberg, F.O., S.J. Chapman and A.V.S. Hill, 2011. Human genetic susceptibility to intracellular pathogens. Immunol. Rev., 240: 105-116.
- Janik, E., M. Ceremuga, M. Niemcewicz and M. Bijak, 2020.
 Dangerous pathogens as a potential problem for public health. Medicina, Vol. 56. 10.3390/medicina56110591.
- 7. Dinarello, C.A., 2000. Proinflammatory cytokines. Chest J., 118: 503-508.
- Straub, R.H. and C. Schradin, 2016. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health, 2016: 37-51.
- Conforti, F., F. Menichini, M.R. Loizzo, A.G. Statti, A. Rapisarda, F. Menichini and P.J. Houghton, 2008. Antioxidant, α-amylase inhibitory and brine-shrimp toxicity studies on *Centaurea* centaurium L. methanolic root extract. Nat. Prod. Res., 22: 1457-1466.
- 10. Aktumsek, A., G. Zengin, G.O. Guler, Y.S. Cakmak and A. Duran, 2013. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic *Centaurea* L. species. Food Chem. Toxicol., 55: 290-296.
- 11. Erel, S.B., S. Demir, A. Nalbantsoy, P. Ballar, S. Khan, N.U.K. Yavasoglu and C. Karaalp, 2014. Bioactivity screening of five Centaurea species and *in vivo* anti-inflammatory activity of *C. athoa*. Pharm. Biol., 52: 775-781.

- 12. Grienke, U., S.R. Brkanac, V. Vujčić, E. Urban and S. Ivanković *et al.*, 2018. Biological activity of flavonoids and rare sesquiterpene lactones isolated from *Centaurea ragusina* L. Front. Pharmacol., Vol. 9. 10.3389/fphar.2018.00972.
- 13. Bensaad, M.S., S. Dassamiour, L. Hambaba, C. Bensouici and H. Haba, 2021. *In vitro* assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of *Centaurea tougourensis* Boiss. & Reut. J. Pharm. Pharmacogn. Res., 9: 790-802.
- Bensaad, M.S., S. Dassamiour, L. Hambaba, C. Bensouici, O. Karima and M.A. Kahoul, 2022. HPLC-DAD phenolics screening and *in vitro* investigation of haemostatic, antidiabetic, antioxidant and photoprotective properties of *Centaurea tougourensis* Boiss. & Reut. Herba Polonica, 67: 16-31.
- Bensaad, M.S., S. Dassamiour, L. Hambaba, A. Saidi and M.A. Melakhsou, 2021. *In vivo* investigation of antidiabetic, hepatoprotective, anti-inflammatory and antipyretic activities of *Centaurea tougourensis* Boiss. & Reut. J. Physiol. Pharmacol., 72: 439-449.
- O'Boyle, N.M., M. Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, 2011. Open babel: An open chemical toolbox. J. Cheminf., Vol. 3. 10.1186/1758-2946-3-33.
- 17. Daina, A., O. Michielin and V. Zoete, 2017. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., Vol. 7. 10.1038/srep42717.
- 18. Yang, H., C. Lou, L. Sun, J. Li and Y. Cai *et al.*, 2019. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35: 1067-1069.
- 19. Filimonov, D. and V. Poroikov, 2008. Probabilistic Approaches in Activity Prediction. In: Chemoinformatics Approaches to Virtual Screening, Varnek, A. and A. Tropsha, Royal Society of Chemistry, United Kingdom, ISBN: 978-0-85404-144-2, pp: 182-216.
- Lagunin, A.A., V.I. Dubovskaja, A.V. Rudik and P.V. Pogodin *et al.*, 2018. CLC-Pred: A freely available web-service for *in silico* prediction of human cell line cytotoxicity for drug-like compounds. PLoS ONE, Vol. 13. 10.1371/journal.pone.0191838.
- Lagunin, A., S. Ivanov, A. Rudik, D. Filimonov and V. Poroikov, 2013. DIGEP-Pred: Web service for *in silico* prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics, 29: 2062-2063.
- 22. Kaye, S., A.I. Lokki, A. Hanttu, E. Nissilä and S. Heinonen *et al.*, 2017. Upregulation of early and downregulation of terminal pathway complement genes in subcutaneous adipose tissue and adipocytes in acquired obesity. Front. Immunol., Vol. 8. 10.3389/fimmu.2017.00545.
- 23. Karthik, K.N., B. Rathna, P.R. Kumar, R. Venupriya, K.N. Sunilkumar and R. Singh, 2013. Evaluation of anti-inflammatory activity of canthium parviflorum by *in-vitro* method. Indian J. Biotech. Pharm. Res., 1: 729-730.

- 24. Bakshani, C.R., A.L. Morales-Garcia, M. Althaus, M.D. Wilcox, J.P. Pearson, J.C. Bythell and J.G. Burgess, 2018. Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection. NPJ Biofilms Microbiomes, Vol. 4. 10.1038/s41522-018-0057-2.
- 25. Leal, J., H.D.C. Smyth and D. Ghosh, 2017. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm., 532: 555-572.
- 26. Popov, A., 2020. Mucus-penetrating particles and the role of ocular mucus as a barrier to micro- and nanosuspensions. J. Ocular Pharmacol. Ther., 36: 366-375.
- 27. Badertscher, M., K. Bischofberger, M.E. Munk and E. Pretsch, 2001. A novel formalism to characterize the degree of unsaturation of organic molecules. J. Chem. Inf. Comput. Sci., 41: 889-893.
- 28. Qin, H.L., J. Leng, C.P. Zhang, I. Jantan and M.W. Amjad *et al.*, 2016. Synthesis of α,β-unsaturated carbonyl-based compounds, oxime and oxime ether analogs as potential anticancer agents for overcoming cancer multidrug resistance by modulation of efflux pumps in tumor cells. J. Med. Chem., 59: 3549-3561.
- 29. Varma, M.V.S., B. Feng, R.S. Obach, M.D. Troutman, J. Chupka, H.R. Miller and A. El-Kattan, 2009. Physicochemical determinants of human renal clearance. J. Med. Chem., 52: 4844-4852.
- 30. Akamatsu, M., 2011. Importance of physicochemical properties for the design of new pesticides. J. Agric. Food Chem., 59: 2909-2917.
- 31. Forrey, C., J.F. Douglas and M.K. Gilson, 2012. The fundamental role of flexibility on the strength of molecular binding. Soft Matter, 8: 6385-6392.
- 32. Hua, S., 2020. Advances in oral drug delivery for regional targeting in the gastrointestinal tract influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., Vol. 11. 10.3389/fphar.2020.00524.
- 33. Kim, M.T., A. Sedykh, S.K. Chakravarti, R.D. Saiakhov and H. Zhu, 2014. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm. Res., 31: 1002-1014.
- 34. Pardridge, W.M., 2005. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2: 3-14.
- 35. Amin, M.L., 2013. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 7: 27-34.
- 36. Friedman, J.R. and J. Nunnari, 2014. Mitochondrial form and function. Nature, 505: 335-343.
- 37. Pinti, M.V., G.K. Fink, Q.A. Hathaway, A.J. Durr, A. Kunovac and J.M. Hollander, 2019. Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis. Am. J. Physiol. Endocrinol. Metab., 316: E268-E285.
- Schneider, A.M., M. Özsoy, F.A. Zimmermann, R.G. Feichtinger and J.A. Mayr *et al.*, 2020. Age-related deterioration of mitochondrial function in the intestine. Oxid. Med. Cell. Longevity, Vol. 2020. 10.1155/2020/4898217.

- 39. Lonsdale, R., J. Oláh, A.J. Mulholland and J.N. Harvey, 2011. Does compound I vary significantly between isoforms of cytochrome P450? J. Am. Chem. Soc., 133: 15464-15474.
- 40. Wang, J. and Y.F. Jiang, 2012. Natural compounds as anticancer agents: Experimental evidence. World J. Exp. Med., 2: 45-57
- 41. Nelson, L.R. and S.E. Bulun, 2001. Estrogen production and action. J. Am. Acad. Dermatol., 45: S116-S124.
- 42. Cheng, M., S. Michalski and R. Kommagani, 2018. Role for growth regulation by estrogen in breast cancer 1 (GREB1) in hormone-dependent cancers. Int. J. Mol. Sci., Vol. 19. 10.3390/ijms19092543.
- Lagranha, C.J., T.L.A. Silva, S.C.A. Silva, G.R.F. Braz, A.I. da Silva, M.P. Fernandes and D.F. Sellitti, 2018. Protective effects of estrogen against cardiovascular disease mediated via oxidative stress in the brain. Life Sci., 192: 190-198.
- Jamal, W., F.B. Khodakhast, A. AlAzmi, J. Sóki, G. AlHashem and V.O. Rotimi, 2020. Prevalence and antimicrobial susceptibility of enterotoxigenic extra-intestinal bacteroides fragilis among 13-year collection of isolates in Kuwait. BMC Microbiol., Vol. 20. 10.1186/s12866-020-1703-4.
- 45. Borda, L.J. and T.C. Wikramanayake, 2015. Seborrheic dermatitis and dandruff: A comprehensive review. J. Clin. Invest. Dermatol., Vol. 3. 10.13188/2373-1044.1000019.
- 46. Liguori, I., G. Russo, F. Curcio, G. Bulli and L. Aran *et al.*, 2018. Oxidative stress, aging, and diseases. Clin. Interventions Aging, 13: 757-772.
- 47. Rajendran, P., Y.F. Chen, Y.F. Chen, L.C. Chung and S. Tamilselvi *et al.*, 2018. The multifaceted link between inflammation and human diseases. J. Cell. Physiol., 233: 6458-6471.
- 48. von Arnim, C.A.F., T. Bartsch, A.H. Jacobs, J. Holbrook and P. Bergmann *et al.*, 2019. Diagnosis and treatment of cognitive impairment. Z. Gerontol. Geriat., 52: 309-315.
- Wilson, P., S. Ruddock, S. Rahimi Golkhandan, J. Piek, D. Sugden, D. Green and B. Steenbergen, 2020. Cognitive and motor function in developmental coordination disorder. Dev. Med. Child Neurol., 62: 1317-1323.
- Leitner, D.R., G. Frühbeck, V. Yumuk, K. Schindler, D. Micic,
 E. Woodward and H. Toplak, 2017. Obesity and type 2 diabetes: Two diseases with a need for combined treatment strategies EASO can lead the way. Obes. Facts, 10: 483-492.
- 51. Guha, A., X. Wang, R.A. Harris, A.G. Nelson and D. Stepp *et al.*, 2021. Obesity and the bidirectional risk of cancer and cardiovascular diseases in African Americans: Disparity vs. ancestry. Front. Cardiovas. Med., Vol. 8. 10.3389/fcvm.2021.761488.
- 52. Shen, J., A. Goyal and L. Sperling, 2012. The emerging epidemic of obesity, diabetes and the metabolic syndrome in China. Cardiol. Res. Pract., Vol. 2012. 10.1155/2012/178675.
- 53. Rieger, M.A. and T. Schroeder, 2012. Hematopoiesis. Cold Spring Harbor Perspect. Biol., Vol. 4. 10.1101/cshperspect.a008250.

- 54. Nicholson, L.B., 2016. The immune system. Essays Biochem., 60: 275-301.
- 55. Montine, T.J., 2011. Prevalence estimates for latent neurodegenerative disease. Toxicol. Pathol., 39: 99-102.
- 56. Grill, M.F. and R.K. Maganti, 2011. Neurotoxic effects associated with antibiotic use: Management considerations. Br. J. Clin. Pharmacol., 72: 381-393.
- 57. Lei, S., R. Zheng, S. Zhang, S. Wang and R. Chen *et al.*, 2021. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun., 41: 1183-1194.
- Sung, H., J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, 2021. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clinicians, 71: 209-249.
- 59. Thomas, S.R., 2009. Kidney modeling and systems physiology. WIREs Mech. Dis., 1: 172-190.
- 60. Brett-Morris, A., B.M. Wright, Y. Seo, V. Pasupuleti and J. Zhang *et al.*, 2014. The polyamine catabolic enzyme SAT1 modulates tumorigenesis and radiation response in GBM. Cancer Res., 74: 6925-6934.
- 61. Casero, R.A. and A.E. Pegg, 2009. Polyamine catabolism and disease. Biochem. J., 421: 323-338.
- 62. Hart, S.N., S. Wang, K. Nakamoto, C. Wesselman, Y. Li and X.B. Zhong, 2008. Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal P450-catalyzed drug metabolism. Pharmacogenet. Genomics, 18: 11-24.
- 63. Wang, H., K.L. Napoli and H.W. Strobel, 2000. Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones. Mol. Cell Biochem., 213: 127-135.
- 64. Li, M., J. Li, X. Guo, H. Pan and Q. Zhou, 2020. Absence of HTATIP2 expression in A549 lung adenocarcinoma cells promotes tumor plasticity in response to hypoxic stress. Cancers, Vol. 12. 10.3390/cancers12061538.
- 65. Miyashita, A., H. Hatsuta, M. Kikuchi, A. Nakaya and Y. Saito *et al.*, 2014. Genes associated with the progression of neurofibrillary tangles in Alzheimer's disease. Transl. Psychiatry, Vol. 4. 10.1038/tp.2014.35.
- 66. Rice, G.I., Y. del Toro Duany, E.M. Jenkinson, G.M.A. Forte and B.H. Anderson *et al.*, 2014. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet., 46: 503-509.
- 67. Gu, C., Q. Li, Y. Zhu, Y. Qu and G. Zhang *et al.*, 2015. Genetic variants in the TEP1 gene are associated with prostate cancer risk and recurrence. Prostate Cancer Prostatic Dis., 18: 310-316.
- 68. Wei, B. and J.P. Jin, 2016. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure—function relationships. Gene, 582: 1-13.
- 69. Law, L.A., D.K. Graham, J. di Paola and B.R. Branchford, 2018. GAS6/TAM pathway signaling in hemostasis and thrombosis. Front. Med., Vol. 5. 10.3389/fmed.2018.00137.

- Yonamine, C., E. Pinheiro-Machado, M. Michalani, A. Alves-Wagner, J. Esteves, H. Freitas and U. Machado, 2017. Resveratrol improves glycemic control in type 2 diabetic obese mice by regulating glucose transporter expression in skeletal muscle and liver. Molecules, Vol. 22. 10.3390/molecules22071180.
- Zhao, X., L. Zhang, J. Wang, M. Zhang, Z. Song, B. Ni and Y. You, 2021. Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis. J. Transl. Med., Vol. 19. 10.1186/s12967-020-02698-x.
- 72. Alvarez, V., A.I. Corao, E. Sánchez-Ferrero, L. de Mena and C. Alonso-Montes *et al.*, 2008. Mitochondrial transcription factor A (TFAM) gene variation in Parkinson's disease. Neurosci. Lett., 432: 79-82.
- 73. Fabisik, M., J. Tureckova, N. Pavliuchenko, J. Kralova and J. Balounova *et al.*, 2021. Regulation of inflammatory response by transmembrane adaptor protein LST1. Front. Immunol., Vol. 12. 10.3389/fimmu.2021.618332
- 74. Liu, Y., L. Fang and W. Liu, 2021. High SQLE expression and gene amplification correlates with poor prognosis in head and neck squamous cell carcinoma. Cancer Manage. Res., 2021: 4709-4723.
- Matsuyama, M., A. Nomori, K. Nakakuni, A. Shimono and M. Fukushima, 2014. Secreted frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J. Biol. Chem., 289: 31526-31533.
- 76. Koh, K., H. Ishiura, M. Beppu, H. Shimazaki and Y. Ichinose *et al.*, 2018. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J. Hum. Genet., 63: 1009-1013.
- 77. Liu, S., C. Wang, Y. Chen, S. Peng, X. Chen and Z. Tan, 2019. Association of *SLC15A1* polymorphisms with susceptibility to dyslipidaemia in a Chinese Han population. J. Clin. Pharm. Ther., 44: 868-874.
- 78. Szczepanik, E., I. Terczyńska, M. Kruk, A. Lipiec and E. Dudko *et al.*, 2015. Glucose transporter type 1 deficiency due to SLC2A1 gene mutations--a rare but treatable cause of metabolic epilepsy and extrapyramidal movement disorder; own experience and literature review. Dev. Period Med., 19: 454-463.
- 79. Mesquita, G., T. Silva, A.C. Gomes, P.F. Oliveira and M.G. Alves *et al.*, 2020. H-Ferritin is essential for macrophages' capacity to store or detoxify exogenously added iron. Sci. Rep., 10.1038/s41598-020-59898-0.
- 80. Whitcombe, D.M., N.P. Carter, D.G. Albertson, S.J. Smith, D.A. Rhodes and T.M. Cox, 2004. Assignment of the human ferrochelatase gene (*FECH*) and a locus for protoporphyria to chromosome 18q22. Genomics, 11: 1152-1154.
- 81. Gell, D.A., 2018. Structure and function of haemoglobins. Blood Cells Mol. Dis., 70: 13-42.

- 82. Palomo-Irigoyen, M., E. Pérez-Andrés, M. Iruarrizaga-Lejarreta, A. Barreira-Manrique and M. Tamayo-Caro *et al.*, 2020. HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. J. Clin. Invest., 130: 3848-3864.
- 83. Srour, M., D. Chitayat, V. Caron, N. Chassaing and P. Bitoun *et al.*, 2013. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am. J. Hum. Genet., 93: 765-772.
- 84. Rucco, R., M. Liparoti, F. Jacini, F. Baselice and A. Antenora *et al.*, 2019. Mutations in the SPAST gene causing hereditary spastic paraplegia are related to global topological alterations in brain functional networks. Neurol. Sci., 40: 979-984.
- 85. Weaving, G., G.F. Batstone and R.G. Jones, 2015. Age and sex variation in serum albumin concentration: An observational study. Ann. Clin. Biochem., 53: 106-111.
- 86. van der Vusse, G.J., 2009. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet., 24: 300-307.
- 87. Belinskaia, D.A., P.A. Voronina and N.V. Goncharov, 2021. Integrative role of albumin: Evolutionary, biochemical and pathophysiological aspects. J. Evol. Biochem. Phys., 57: 1419-1448.
- 88. Haller, C., 2005. Hypoalbuminemia in renal failure: Pathogenesis and therapeutic considerations. Kidney Blood Press. Res., 28: 307-310.
- 89. Banerjee, S., S. Biswas, A. Chanda, A.K. Das and A. Adhikari, 2014. Evaluation of phytochemical screening and anti inflammatory activity of leaves and stem of *Mikania scandens* (L.) wild. Ann. Med. Health Sci. Res., 4: 532-536.
- 90. Marrassini, C., I. Peralta and C. Anesini, 2018. Comparative study of the polyphenol content-related anti-inflammatory and antioxidant activities of two *Urera aurantiaca* specimens from different geographical areas. Chin Med., Vol. 13. 10.1186/s13020-018-0181-1.

- 91. Sami, R., E. Khojah, A.M.A. Manso, A.A.M. Al-Mu and A. Elhakem *et al.*, 2021. Nutritional values, microbial population and bioactive components of pomegranate (*Punica granatum* L.) peel extracts. Int. J. Pharmacol., 17: 208-216.
- 92. Bensaad, M.S., S. Dassamiour, L. Hambaba, M.A. Kahoul and M. Benhoula, 2021. Evidence of anti-inflammatory and anti-ulcer properties of aerial parts of *Centaurea tougourensis* Boiss. and Reut. Trop. J. Pharm. Res., 20: 1647-1654.
- 93. Belinskaia, D.A., P.A. Voronina, V.I. Shmurak, R.O. Jenkins and N.V. Goncharov, 2021. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci., Vol. 22. 10.3390/ijms221910318
- 94. Brunetti, C., M. di Ferdinando, A. Fini, S. Pollastri and M. Tattini, 2013. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int. J. Mol. Sci., 14: 3540-3555.
- 95. Rokayya, S., C.J. Li, Y. Zhao, Y. Li and C.H. Sun, 2014. Cabbage (*Brassica oleracea* L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac. J. Cancer Prev., 14: 6657-6662.
- Siddiqui, G.A., M.K. Siddiqi, R.H. Khan and A. Naeem, 2018. Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 203: 40-47.
- 97. Awasthi, S. and N.T. Saraswathi, 2016. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function. Int. J. Biol. Macromol., 87: 1-6.
- 98. Liu, S., D. Adewole, L. Yu, V. Sid, B. Wang, O. Karmin and C. Yang, 2019. Rutin attenuates inflammatory responses induced by lipopolysaccharide in an *in vitro* mouse muscle cell (C2C12) model. Poult. Sci., 98: 2756-2764.