

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2022.1493.1499

Research Article

Oroxylum indicum (L.) Fruits Extract Suppresses BV2 Microglial Activation Through Inhibition of NF-κB and Akt/ERK1/2 Pathway

¹Nootchanat Mairuae, ¹Benjaporn Buranrat, ²Poonlarp Cheepsunthorn and ¹Supataechasit Yannasithinon

Abstract

Background and Objective: *Oroxylum indicum* (L.) Kurz, a plant distributed throughout India and Southeastern Asia. Different parts of the plant applied traditionally for the treatments. The present study attempted to elucidate the effect of OIF extract on NO and ROS production as well as the transcription factor that controls the expression of the pro-inflammatory gene. The molecular mechanisms of OIF on Lipopolysaccharide (LPS)-induced microglial activation were also investigated. **Materials and Methods:** The BV2 microglial cells were incubated with LPS in the OIF extract's absence or presence. The quantity of NO and ROS was determined by using Griess reagent assay and CM-H2DCFDA, respectively. The NF-κB p65 nuclear levels were detected by using an immunofluorescence assay. **Results:** Treatment with OIF extract (25 and 50 μg mL⁻¹) in the BV2 microglial cells were found to be reduced the NO production enhanced with LPS in a concentration-dependently. Moreover, a high ROS level was induced with LPS, which was also significantly reduced after OIF treatment in a concentration-dependent manner. Mechanistically, we found that OIF extract could alleviate inflammatory response by inhibiting NF-κB p65 translocation and activating via the pathway of Akt and extracellular-signal-regulated kinase 1/2 (ERK1/2) in the LPS-stimulated BV2 cells. **Conclusion:** Results concluded that OIF extract exerts anti-oxidative activity by ROS suppression as well as anti-inflammatory activity by NO inhibition in the activated BV2 microglial cells. This could inhibit Akt/ERK1/2-mediated NF-κB pathway. The OIF extracts may act as a promising functional food to allay neuroinflammation in neurodegenerative diseases.

Key words: Akt, microglia, ERK1/2, NF-кB, neuroinflammation, Oroxylum indicum (L.) fruits

Citation: Mairuae, N., B. Buranrat, P. Cheepsunthorn and S. Yannasithinon, 2022. *Oroxylum indicum* (L.) fruits extract suppresses BV2 microglial activation through inhibition of NF-κB and Akt/ERK1/2 pathway. Int. J. Pharmacol., 18: 1493-1499.

Corresponding Author: Nootchanat Mairuae, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand

Copyright: © 2022 Nootchanat Mairuae et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand

²Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

INTRODUCTION

Neuroinflammation and oxidative stress are pathologic factors that critically contribute to the pathogenesis of neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), Alzheimer's Disease (AD), Multiple Sclerosis (MS) and Parkinson's Disease (PD)¹⁻⁴. Earlier investigations show that microglia, resident immune cells of the Central Nervous System (CNS), also play the same important role^{1,3-6}. Although, acute microglial activation contributes to diminishing further injury process and the repair of damaged tissues^{7,8}, stimulation of chronic microglial is harmful to neuronal survival through the release of pro-inflammatory mediators, such as nitric oxide (NO), proinflammatory cytokines such as Interleukin 1 beta (IL-1ß) and Tumor Necrosis Factor-alpha (TNF- α), including the generation of Reactive Oxygen Species (ROS)9-11. Thus, to decrease the proinflammatory generation and neurotoxic factors, attenuation of microglial activation is possibly prevented or treated neurodegenerative diseases.

Oroxylum indicum (L.) Kurz, a plant in the Bignoniaceae family, is distributed throughout India and Southeastern Asia. Various parts of the plant have been applied traditionally for treatments in Japan and China¹². Among *Oroxylum* indicum (L.) Kurz, Oroxylum indicum (L.) fruits (OIF) are rich in nutrients¹² and they have been used for thousands of years as part of plant-based diets and herbal medicines in several countries, without any known adverse effects¹²⁻¹⁴. The OIF also contains flavonoids such as oroxylin A, baicalein and chrysin, all of which have been reported to have multiple biological effects. The pharmacological effects of OIF and compounds isolated from the fruit exhibit hepato-protective, anti-diabetic, anti-adipogenesis, anti-oxidant and antiinflammatory properties¹⁴⁻¹⁷. A previous study demonstrated that OIF extract could prevent the AB25-35-stimulated SH-SY5Y cell injury¹⁸. Furthermore, OIF extract was found to reduce reactive oxygen species and inflammatory cytokines in activated BV2 cells¹⁹. Although, several pharmacological beneficial effects of OIF extract have recently been reported, its molecular mechanisms on microglial activation have never been elucidated. Hence, this report investigated the effects of an ethanol extract of OIF on the NO and ROS production as well as the transcription factor that regulates the expression of the gene involved in pro-inflammation with a focus on the underlying molecular mechanisms in BV2 microglial cells stimulated by LPS.

MATERIALS AND METHODS

Study area: The studies were carried out at the Faculty of Medicine, Mahasarakham University, Thailand, from January, 2021 to March, 2022.

Preparation of OIF extract: The OIF was prepared following previous study^{18,20}.

Cell culture: The murine BV2 microglial cell line was cultured in Dulbecco's Modified Eagle's Medium (DMEM), supplemented with penicillin-streptomycin in 5% fetal bovine serum (FBS)¹⁹. All of the cell culture reagents were procured from Hyclone (South Logan, UT).

Evaluation of cell viability: A day after OIF extract treatment at different concentrations of 0-50 μ g mL⁻¹, with or without LPS, the incubation medium was discarded. The MTT reagent (0.4 mg mL⁻¹) (Sigma Co St., Louis, MO) in serum-free DAEM was introduced to each well. Then, the MTT medium was discarded after incubation for 2 hrs. The purple formazan crystals formed were solubilized in Dimethyl Sulfoxide (DMSO) and the optical density of each well was then evaluated at 570 nm in a plate reader (Spectramax 340 PC).

Nitric oxide assay: The NO levels in BV2 cells were assessed via a Griess reagent¹⁹.

Intracellular reactive oxygen species assay: After a day of treatment, intracellular ROS's presence was detected via CM-H2DCFDA^{19,21}.

Western blotting assay: Treated cells were allocated, lysed with RIPA-containing protease and phosphatase inhibitors and then centrifuged at 12,000 g for 5 min at 4 to collect the supernatant. The western blotting assay was explained¹⁹. All antibodies were received from Santa Cruz, CA, USA. The data were shown as fold changes when compared with the controls.

Immunofluorescence: The BV2 cells were seeded on an adherent 24 well plate in a growth medium. After a day of seeded, cells was treated for 4 hrs, then the NF-κB nuclear translocation was performed by immunofluorescence staining²¹.

Statistical analysis: Data are shown as the Mean±SEM from at least three independent experiments in the triplicate.

Multiple comparisons of data were assessed by One-way ANOVA and Bonferroni post-tests. A p-value for statistical significance was considered at a value of less than 0.05.

RESULTS

Effect of OIF extract on BV2 cells viability: To assess the appropriate concentrations of OIF extract treatment, BV2 cell viability was gauged by MTT assay when treated only with OIF and co-treated with LPS. The results exhibited no significant toxicity was detected in BV-2 cells treated either with low or high concentration (50 μ g mL⁻¹) of OIF after 24 hrs in Fig. 1. Therefore, the concentration of OIF extract at 25 and 50 μ g mL⁻¹ was used in the following experiments.

OIF extract suppressed LPS-induced NO production in BV2 microglial cells: To examine the effect of OIF extract on NO level on BV2 microglia stimulated with LPS, the Griess reagent assay was used. Our result demonstrated that NO production of LPS-treated BV2 microglia was significantly increased from the basal level (control $6.23\pm1.09~\mu\text{M}$, LPS treated $35.03\pm1.90~\mu\text{M}$). Co-treatment with OIF extract effectively and concentration-dependently inhibited its induction $(23.43\pm1.31~\text{and}~19.29\pm2.0~\mu\text{M}$, respectively) in Fig. 2.

OIF extract reduced LPS-induced ROS production in BV2 microglial cells: To investigate the inhibition of ROS generation in activated BV2 cells by OIF extract, the result

showed that LPS could enhance the ROS production (2.65 fold) after 24 hrs of treatment of BV2 cells when compared with the control. On the other hand, high ROS was significantly decreased (2.23 and 2.6 fold), exhibiting a concentration-dependent manner, when OIF was received as compared with the LPS-induced group in Fig. 3.

OIF extract inhibited LPS-induced NF- κ B nuclear translocation in BV2 microglial cells: The NF- κ B is a key transcriptional factor that controls many of the inflammatory process genes expression. From our immunofluorescence microscopy, it was revealed that the NF- κ B p65 subunit was mainly located in the cytoplasm under normal physiology of the untreated group in Fig. 4a and it translocated into the nucleus after stimulation with LPS in Fig. 4b. To study suppression of NF- κ B activation after OIF treatment in LPS-mediated BV2 microglia, found that OIF extract could reduce the high nuclear NF- κ B p65 translocation in OIF-treated BV2 cells in Fig. 4c and d.

OIF extract inhibited the phosphorylation form of Akt as well as ERK1/2 in LPS-induced microglial activation: To observe the effects of OIF extract on the Akt and ERK1/2 phosphorylation protein, LPS stimulation could significantly induce Akt in Fig. 5a and b and ERK1/2 phosphorylation in Fig. 5c and d. The OIF extract treatment might exponentially diminish the phosphorylation of Akt and ERK1/2 induced by LPS. On the other hand, total protein levels of Akt and ERK1/2 were constant after LPS and OIF extract treatment. After 2 hrs of treatment, total cell lysate was harvested and

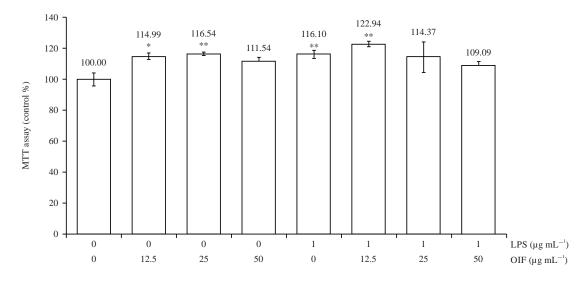


Fig. 1: Effect of OIF extract on BV2 cell viability using MTT assay

BV2 cells were incubated with OIF extract, alone or with 1 μg mL⁻¹ LPS. Cell viability was determined after 24 hrs of treatment. Data from three independent experiments are presented as a percentage of control and expressed as Mean ±SEM, *Indicated the significant difference (p<0.05) relative to the control group and **Indicated the significant difference (p<0.01) relative to the control group

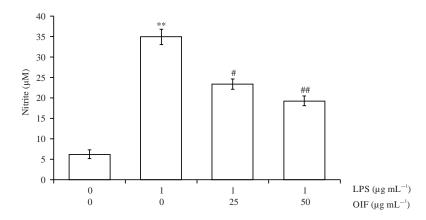


Fig. 2: Effect of OIF extracts on LPS-induced NO production

After 24 hrs of treatment, the culture media were harvested to examine the NO production. Data are presented as Mean \pm SEM (n = 3), **Indicated the significant difference (p<0.01) relative to the control group , *Indicated the significant difference (p<0.05) relative to the LPS treated group and **Indicated the significant difference (p<0.01) relative to the LPS-treated group

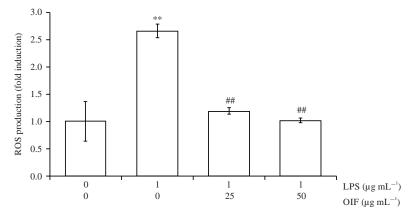


Fig. 3: Effect of OIF extract on the LPS-induced intracellular ROS level

BV2 were treated as indicated in the figure for 24 hrs and accumulation of ROS was measured. Data was represented in Mean \pm SEM (n = 3), **Indicated the significant difference (p<0.01) relative to the control group and **Indicated the significant difference (p<0.01) relative to the LPS treated group

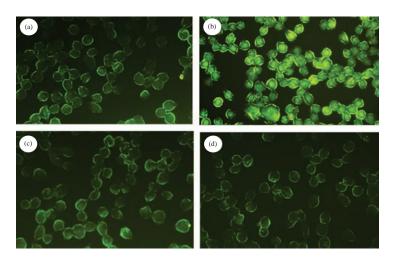


Fig. 4(a-d): Effect of OIF extract on NF-κB nuclear translocation in BV2 microglia stimulated by LPS, (a) Control, (b) LPS, (c) LPS+OIF25 and (d) LPS+OIF50

BV2 cells were induced with LPS in the presence or absence of OIF as indicated and cells after 4 hrs of treatment were examined by immunofluorescence microscopy

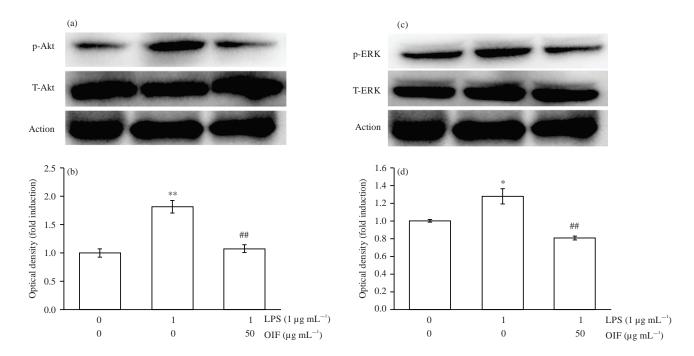


Fig. 5(a-d): Effect of OIF extract on Akt and ERK1/2 phosphorylation induced with LPS, (a) Western blotting of p-Akt, T-Akt and actin, (b) Histograms of p-Akt comparisons with untreated control (represented as fold changes), (c) Western blotting of ERK1/2, T-ERK1/2, actin and (d) Histograms of p-ERK1/2 comparisons with untreated control (represented as fold changes)

All data were represented as Mean \pm SEM (n = 3), *Indicated the significant difference (p<0.05) relative to the control group, **Indicated the significant difference (p<0.01) relative to the control group and **Indicated the significant difference (p<0.01) relative to the LPS treated group

expression patterns of anti-p-Akt, T-Akt, ERK1/2, p-ERK1/2 and actin were determined by immuno-western blot assay. Histograms were represented as fold changes of p-Akt and p-ERK1/2 by comparisons with that of untreated control.

DISCUSSION

Chronic neuroinflammation and oxidative stress are two pathologic factors in the development of neurodegenerative diseases³. Nowadays, treatments are focused on reducing neuroinflammation caused by microglia to improve neurodegenerative disorders. However, drugs available for treatment can cause several side effects. Therefore, researchers have focused on the potential of natural agents to inhibit the inflammatory process.

Recently, current study demonstrated that OIF extract contained anti-oxidant and anti-inflammatory activity in LPS-stimulated BV2 cells, however, its mechanism is still vague¹⁹. This study, illustrated that OIF extract at the concentrations of 25 and 50 µg mL⁻¹ exhibited no toxicity against BV2 cells, consistent with the previous reports¹⁹. We also confirmed that at these concentrations, OIF extract

treatment with LPS could significantly reduce NO and ROS levels in a concentration dependency scenario. This result agreed with the previous studies¹⁹. Mechanically, this study demonstrated that OIF extract could attenuate NF-κB activation through the regulation of Akt/ERK signalling pathways in LPS-induced BV2 microglial activation. The NF-κB was found to be a major regulator of inflammatory processes due to its biological abilities, which include the induction of transcription of various inflammatory genes²². Under non-stimulated conditions, NF-κB is sequestered in the cytoplasm in which it is bound to its inhibitory subunit, lkB. When reacting to specific stimuli, IkB is phosphorylated, subsequent degradation through ubiquitination and eventually liberated NF- κ B²³. Permitting its translocation to the nucleus promoted the expression of inflammation-associated genes by pro-inflammatory cytokine production²³. Several investigations reported that signalling pathways activation of NF-κB, PI3K/Akt and ERK caused by LPS resulted in stimulating inflammation²⁴⁻²⁷. The current study demonstrated that OIF extract decreased the NF-κB p65 nuclear level in LPS-treated BV2 cells. The OIF might inhibit the production of NO and ROS by attenuation NF-κB nuclear translocation induced by LPS. Additionally, this study revealed that the phosphorylation form of Akt in BV2 microglial activation was notably decreased by the OIF extract, reflecting that OIF could inhibit NF-κB activation by suppressing the Akt signalling pathway. The LPS could stimulate the phosphorylation of ERK1/2 and OIF markedly inhibited this effect. This finding suggested that OIF might also attenuate the production of NO and ROS in activated BV2 microglial mediated by LPS via the ERK1/2 signalling pathway too.

CONCLUSION

It is evident that the OIF extract notably attenuated the release of pro-inflammatory cytokines and mediators, besides the production of NO and ROS in microglial cells induced with LPS. Moreover, the inhibition of NF-κB translocation from the cytoplasm to the nucleus was induced by the OIF extract treatment, which is associated with the signalling pathway inactivation of the Akt and ERK1/2. These results could be implicated that the OIF extract might have the potential for the prevention and treatment of inflammatory diseases and several neurodegenerative diseases involved in microglial activation.

SIGNIFICANCE STATEMENT

This study concluded that OIF extract exerts anti-oxidative activity by ROS suppression as well as anti-inflammatory activity by NO inhibition in the activated BV2 microglial cells. Mechanistically, the OIF extract could alleviate inflammatory response by inhibiting NF- κ B p65 translocation and activating via the pathway of Akt and extracellular-signal-regulated kinase 1/2 (ERK1/2) in the LPS-stimulated BV2 cells. The OIF extracts may act as a promising functional food to allay neuroinflammation in neurodegenerative diseases.

ACKNOWLEDGMENTS

This research project was financially supported by Maha Sarakham University 2021 (grant number 6408060), Faculty of Medicine, Mahasarakham University, Thailand. The murine BV2 microglial cell line was kindly obtained by Professor James R. Connor, Department of Neurosurgery, Hershey Medical Center, Pennsylvania State University, PA, USA.

REFERENCES

 Kim, Y.S. and T.H. Joh, 2006. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson's disease. Exp. Mol. Med., 38: 333-347.

- Whitney, N.P., T.M. Eidem, H. Peng, Y. Huang and J.C. Zheng, 2009. Inflammation mediates varying effects in neurogenesis: Relevance to the pathogenesis of brain injury and neurodegenerative disorders. J. Neurochem., 108: 1343-1359.
- 3. Liu, B. and J.S. Hong, 2003. Role of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther., 304: 1-7.
- 4. Mirshafiey, A. and F. Jadidi-Niaragh, 2010. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol. Immunotoxicol., 32: 543-554.
- 5. Polazzi, E. and B. Monti, 2010. Microglia and neuroprotection: From *in vitro* studies to therapeutic applications. Prog. Neurobiol., 92: 293-315.
- Hailer, N.P., 2008. Immunosuppression after traumatic or ischemic CNS damage: It is neuroprotective and illuminates the role of microglial cells. Prog. Neurobiol., 84: 211-233.
- Lambertsen, K.L., B.H. Clausen, A.A. Babcock, R. Gregersen and C. Fenger *et al.*, 2009. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J. Neurosci., 29: 1319-1330.
- 8. Imai, F., H. Suzuki, J. Oda, T. Ninomiya, K. Ono, H. Sano and M. Sawada, 2007. Neuroprotective effect of exogenous microglia in global brain ischemia. J. Cereb. Blood Flow Metab., 27: 488-500.
- Rogers, J., D. Mastroeni, B. Leonard, J. Joyce and A. Grover, 2007. Neuroinflammation in Alzheimer's disease and Parkinson's disease: Are microglia pathogenic in either disorder? Int. Rev. Neurobiol., 82: 235-246.
- 10. Lull, M.E. and M.L. Block, 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics, 7: 354-365.
- Harry, G.J. and A.D. Kraft, 2008. Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol., 4: 1265-1277.
- 12. Bhat, R., N.A. Shaharuddin and Y.T. Kuang, 2015. A promising approach toward exploring nutritional and functional qualities of beko (*Oroxylum indicum* L. Benth. Ex Kurz) pods for potential food applications. J. Food Process. Preserv., 39: 47-55.
- Dinda, B., I. SilSarma, M. Dinda and P. Rudrapaul, 2015. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J. Ethnopharmacol., 161: 255-278.
- 14. Siriwatanametanon, N., B.L. Fiebich, T. Efferth, J.M. Prieto and M. Heinrich, 2010. Traditionally used Thai medicinal plants: *In vitro* anti-inflammatory, anticancer and antioxidant activities. J. Ethnopharmacol., 130: 196-207.
- Singh, J. and P. Kakkar, 2013. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by *Oroxylum indicum* stem bark in STZ induced diabetic rats. Food Chem. Toxicol., 62: 722-731.

- Hengpratom, T., G.M. Lowe, K. Thumanu, S. Suknasang, K. Tiamyom and G. Eumkeb, 2018. *Oroxylum indicum* (L.) Kurz extract inhibits adipogenesis and lipase activity *in vitro*. BMC Complementary Altern. Med., Vol. 18. 10.1186/s12906-018-2244-3.
- 17. Dunkhunthod, B., K. Thumanu and G. Eumkeb, 2017. Application of FTIR microspectroscopy for monitoring and discrimination of the anti-adipogenesis activity of baicalein in 3T3-L1 adipocytes. Vib. Spectrosc., 89: 92-101.
- 18. Mairuae, N., J.R. Connor, B. Buranrat and S.Y. Lee, 2019. *Oroxylum indicum* (L.) extract protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Mol. Med. Rep., 20: 1933-1942.
- Mairuae, N., P. Cheepsunthorn and B. Buranrat, 2021. Antioxidant and anti-inflammatory activities of *Oroxylum indicum* Kurz (L.) fruit extract in lipopolysaccharidestimulated BV2 microglial cells. Trop. J. Pharm. Res., 20: 833-838.
- Mairuae, N., P. Cheepsunthorn, C.L. Cheepsunthorn and W. Tongjaroenbuangam, 2017. Okra (*Abelmoschus esculentus* Linn) inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells. Trop. J. Pharm. Res., 16: 1285-1292.
- 21. Mairuae, N. and P. Cheepsunthorn, 2018. Valproic acid attenuates nitric oxide and interleukin-1β production in lipopolysaccharide-stimulated iron-rich microglia. Biomed. Rep., 8: 359-364.

- 22. Lee, J.Y., B.S. Jhun, Y.T. Oh, J.H. Lee and W. Choe *et al.*, 2006. Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α production through inhibition of PI 3-kinase/Akt and NF-κB activation in murine BV2 microglial cells. Neurosci. Lett., 396: 1-6.
- 23. Mankan, A.K., M.W. Lawless, S.G. Gray, D. Kelleher and R. McManus, 2009. NF-κB regulation: The nuclear response. J. Cell. Mol. Med., 13: 631-643.
- 24. Hou, G.Q., C. Guo, G.H. Song, N. Fang and W.J. Fan *et al.*, 2013. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells. Int. J. Mol. Med., 32: 503-510.
- 25. Tak, P.P. and G.S. Firestein, 2001. NF-κB: A key role in inflammatory diseases. J. Clin. Invest., 107: 7-11.
- 26. Lee, Y.H., S.H. Jeon, S.H. Kim, C. Kim and S.J. Lee *et al.*, 2012. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med., 44: 369-377.
- 27. Kyriakis, J.M. and J. Avruch, 2001. Mammalian mitogenactivated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev., 81: 807-869.