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Abstract

Background and Objective: Da/bergia odorifera (DO) is a medicinally important plant which showed anticancer effects in osteosarcoma
and neuroblastoma, however, it lacks data on Lung Adenocarcinoma (LUAD). Therefore, the effect of DO on LUAD was explored in this
study. Materials and Methods: The main active components of DO, targets of DO and LUAD disease targets were obtained from
databases including the TCMSP and Gene Cards. While, the top 10 hub targets of overlapping genes were analyzed by the topological
structure (CytoNCA), Molecular Complex Deletion (MCODE) plugin and cytoHubba. Moreover, the correlation between hub gene
expression and LUAD was confirmed on the Gene Expression Profiling Interactive Analysis Dataset (GEPIA). Results: A total of 37 core
active components were selected according to the screening criteria of ADME OB>30% and DL>0.18. While 627 genes overlapped
between targets of DO and LUAD, of which STAT3, EGFR, SRC, PTK2, PTPN11, MAPK1, LYN, LCK, CTNNB1 and MAPK3 were defined as the
hub genes involved in the anti-LUAD effects of DO. Moreover, the mRNA expression of LCK is associated with the prognosis stages and
median survival time of LUAD. Conclusion: The application of network pharmacology analysis provides a theoretical mechanism for the
pharmacological effect of DO against LUAD.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death
with an increasing burden globally’, of which, 75-80% is Non-
Small Cell Lung Cancer (NSCLC)?%. According to the
classification of World Health Organization, NSCLCis generally
subcategorized into adenocarcinoma (LUAD), squamous cell
carcinoma and large cell carcinoma*3, the former is the main
subtype comprising nearly 50% of all lung cancer cases®.

Up to date, drugs targeted to epidermal growth factor
receptor (EGFR)’, Anaplastic Lymphoma Kinase (ALK)®'* and
ROS1 Proto-Oncogene (ROS1)™ have been proven toimprove
the therapeutic efficacy of LUAD'™. However, the treatment
has a marginal effect on certain types of LUAD. Few patients
can escape drug resistance'®. Recent data revealed that half of
LUAD patients die within one year after diagnosis and the five
yearssurvival rateis below 20%, evenly'’. Therefore, exploring
new drug therapy for LUAD is still emergent.

Dalbergia odorifera T. Chen (DO) is a medicinally
important plant mainly found in China. Traditionally,
heartwood is used to treat blood disorders, ischemia’@,
swelling and rheumatic pain in China and Korea. Recently,
compounds isolated from DO show anticancer properties.
In detail, 4-parvifuran inhibited metastatic and invasive
actions on osteosarcoma cells'. Besides, cearoin was shown
to prevent neuroblastoma cells from ROS-induced apoptosis?.
Moreover, fisetin extracted from the root of DO could inhibit
MMP-1, MMP-3, MMP-7 and MMP-9 and reduce tumour cell
invasiveness?'. However, the effects of DO on LUAD have
never been reported.

Network pharmacology of traditional Chinese medicine
(TCM), which is based on high-throughput data analysis and
virtual computing and integrated bio-information network
construction with network topology analysis strategy?, is
widely used to dissect active ingredients in the classical TCM
prescription and single herb. Therefore, in the present study,
the potential compounds and targets of DO were employed
on LUAD via network-based pharmacological methods.

MATERIALS AND METHODS

Study area: This study was carried out in the School of
Pharmacy, Hainan Medical University, Haikou, China, from
January to November, of 2021.

Exploration of the main active ingredients of DO: The
traditional ~ Chinese medicine system pharmacology
database and analysis platform (TCMSP, https://tcmspw.com
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/tcmsp.php) were applied to identify the active ingredients of
DO. According to the optimal toxicokinetic ADME rules
reported in the literature, compounds with OB>30% and
DL>0.18 were selected as the main active ingredients. Then,
the relative compounds were input into PubChem
(https://pubchem.ncbi.nlm.nih.gov/) to obtain the molecular
structure.

Potential targets of DO: Information on the small molecule
structure of the core active ingredient (Canonical SMILES) was
used to identify potential targets via the Similarity ensemble
approach (https://sea.bkslab.org/) and Swiss Target Prediction
(https://new.swisstargetprediction.ch/) websites.

Achievement of LUAD-related targets: The target genes
of LUAD were collected from Gene Cards (https://www.
genecards.org/, version 4.9.0), which is a database integration
with genome, transcriptome, proteome and genetics, as well
as clinical and functional information from 150 web sources.

Construction of a “herbs components targets” network:
Overlapping targets between core active ingredients of
DO and LUAD were visualized by a VENN map drawn
by Bioinformatics (https://bicinformatics.psb.ugent.be
/webtools/Venn/). Then, the protein-protein interaction (PPI)
network of the overlapping targets was obtained through
the STRING online tool (https://string-db.org/). Core genes
were analyzed by the plugin (CytoNCA) of Cytoscape 3.6.1
(https://www.cytoscape.org/). Three parametersincluding the
degree of degree centrality (DC), closeness centrality (CC) and
betweenness centrality (BC) were selected to screen the core
composite targets?. The DC refers to the number of other
nodes associated with a node in the network, while,BCand CC
represent the number of shortest paths through a node and
the sum of the distances from one point to all other points,
respectively. According to relevant literature reports, the
target with a twofold median value for DC and median value
for BC and CC was selected to obtain more accurate core
targets.

Network module analysis: The Molecular Complex Deletion
(MCODE) plugin for Cytoscape was used to cluster the network
modules (37). Densely connected regions or clusters in the co-
expression network were identified using the following
parameters:

» Degree cut-off = 2
» k-core

« max. depth 100
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Gene functions and pathway: Geno ontology (GO) gene
functions and biochemical pathways enriched by the core
targets were determined by using the web-based annotation
tool DAVID v6.8 (https://david.ncifcrf.gov/tools.jsp), providing
GO terms in the categories biological process (BP), cellular
component (CC), molecular function (MF), Kyoto Encyclopedia
of Genes and Genomes pathways (KEGG). The p<0.05 was
used as the significance threshold.

Correlation analysis between hub gene expression and
LUAD: The top 10 hub genes were verified by the plugin
(cytoHubba) of Cytoscape, in which “MCC” was applied to
calculate and the “display the shortest path” was selected
todisplay. Moreover, the Gene Expression Profiling Interactive
Analysis  dataset  (GEPIA, http://gepia.cancer-pku.cn/)
was used to analyze the differentiated expression,

Table 1: Information of DO ingredients with OB>30% and DL>0.18

pathological stages and overall survival of hub genes
between LUAD and normal tissues.log2 FC cutoff=1, q value
cutoff = 0.05, while the other options were set as the default
values.

RESULTS

Potentialingredients and predicted targets of DO: A total of
87 active ingredients were obtained from TSMSP, of which
37 ingredients with the screening criteria of ADME OB>30%
and DL>0.18 were defined as the core active components
(Table 1). Based on the Canonical SMILES number of core
active ingredients of DO, 796 genes were predicted by
target fishing and integrating the data obtained from SEA
and SWISS, of which 627 targets were matched with that of
LUAD (Fig. 1).

Mol. ID Name OB (%) DL

MOL001040 (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 42.36 0.21
MOL001792 DFV 32.76 0.18
MOL000228 (2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one 55.23 0.20
MOL002565 Medicarpin 49.22 0.34
MOL002914 Eriodyctiol (flavanone) 41.35 0.24
MOL002938 (3R)-4'-Methoxy-2',3,7-trihydroxyisoflavanone 68.86 0.27
MOL002939 (3R)-5'-Methoxyvestitol 83.06 0.26
MOL002940 (3R)-3-(2,3-dihydroxy-4-methoxyphenyl)-7-hydroxychroman-4-one 52.06 0.27
MOL002941 (3R)-3-(2,3-dihydroxy-4-methoxyphenyl)chroman-7,8-diol 82.35 0.27
MOL002950 (3R)-7,2',3-trihydroxy-4-methoxyisoflavan 69.65 0.24
MOL002957 9-O-Methylcoumestrol 3373 0.38
MOL002958 3'-Hydroxymelanettin 30.69 0.27
MOL002959 3'-Methoxydaidzein 48.57 0.24
MOL002961 (-)-Vestitol 70.29 0.21
MOL002962 (3S)-7-hydroxy-3-(2,3,4-trimethoxyphenyl)chroman-4-one 48.23 0.33
MOL002963 4'5',7-trimethyl-3-methoxyflavone 40.66 0.25
MOL002966 Dalbergin 78.18 0.20
MOL002967 7-hydroxy-4'-methoxy-2',5'-dioxo-4-[(3R)-2',7-dihydroxy-4'-methoxyisoflavan-5"-yllisoflavane 34.78 0.70
MOL002973 Bowdichione 55.78 0.28
MOL002975 butin 69.94 0.21
MOL002981 Duartin 70.63 0.34
MOL002982 (3R4R)-3',7-dihydroxy-2',4'-dimethoxy-4-[(25)-4',5,7-trihydroxyflavanone-6-yllisoflavan 33.96 0.63
MOL002985 isoduartin 74.11 0.34
MOL002989 4-Hydroxyhomopterocarpin 4841 0.43
MOL002990 (6aR,11aR)-3,9,10-trimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-4-ol 66.86 0.53
MOL002991 (6aR,11aR)-3,9-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-clchromene-4,10-diol 38.96 0.48
MOL002996 odoricarpin 55.02 0.53
MOL002997 3-(2-hydroxy-3,4-dimethoxyphenyl)-2H-chromen-7-ol 86.18 0.27
MOL002999 Sativanone 85.63 0.27
MOL003000 Stevein 36.54 0.24
MOL003001 Vestitone 52.83 0.24
MOL003002 violanone 80.24 0.30
MOL003003 Xenognosin B 72.71 0.24
MOL000358 beta-sitosterol 36.91 0.75
MOL000359 sitosterol 36.91 0.75
MOL000380 (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol 64.26 042
MOL000392 formononetin 69.67 0.21
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LUAD

Fig. 1: Overlapping genes between DO and LUAD
A total of 796 targets of DO was predicted by the Swiss and CEA
database, while 8746 genes closely associated with LUAD were
extracted from the website of Gene Cards. Overall, the Venn diagram
figured 627 overlapping genes including between DO and LUAD

Herbs-components-targets network of DO and module
identification: Those overlapping targets (627) were input
into STRING to remove the unconnected target (combined
score<0.7) and constructed a PPl network. It showed that
the network contained 579 nodes and 4565 edges (Fig. 2a), of
which 63 of core targetsincluding EGFR, Phosphatidylinositol-
4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA)
and Catenin beta 1 (CTNNB1) were retrieved with the cutoff of
DC (31.5), BC (1149.9) and CC (0.20) (Fig. 2b). The 63 core
targets covered three modules in which module 1 contained
219 edgeswith 30 nodes (Fig. 2c), module 2 included 50 edges
with 11 nodes (Fig. 2d), module 3 contained 34 edges with 15
nodes (Fig. 2e).

GO and KEGG enrichment analysis: The GO and pathways
enrichment analysis was performed for the 63 core targets,
which were significantly enriched on signal transduction,
positive regulation of transcription from RNA polymerase
Il promoter and negative regulation of apoptotic process
in the BP. In terms of CC, it was enriched on the nucleus,
cytoplasm and cytosol. Concerning the MF, those core
targets were enriched on protein binding, ATP binding
and enzyme binding (Fig. 3). Besides, pathways in
cancer, proteoglycans pathway and PI3K-AKT signalling
pathway were the most concentrated pathways
(Fig. 4).

Hub genes analysis and differentiated expression in LUAD:
The top 10 hub genes were explored by plugin cytoHubba,
which included Signal Transducer and Activator of
Transcription 3 (STAT3), EGFR, SRC, Mitogen-Activated Protein
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Kinase 3 (MAPK3), Protein Tyrosine Kinase 2 (PTK2), MAPK1,
Protein Tyrosine Phosphatase Non-Receptor Type 11
(PTPN11), Lymphocyte-specific protein tyrosine kinase (LCK),
LYN and CTNNB (Fig. 5). There was no change for other
genes (Fig. 6a-i), however, slightly decreased expression of
LCK was shown in LUAD tissue, compared with that of normal
tissue (Fig. 6j), Moreover, mRNA expression of STAT3, EGFR,
SRC, MAPK3, PTK2, MAPK1, PTPN11, LYN and CTNNB did not
associate with prognosis stages of LUAD (Fig. 7a-i). However,
a negative correlation was shown between mRNA expression
of LCK and prognosis stages of LUAD (Fig. 7h). Similarity,
expression of STAT3, EGFR, SRC, MAPK3, PTK2, MAPKI,
PTPN11,LYN and CTNNB did not relate to the median survival
time (Fig. 8a-i). However, the median survival time of a
low-expression group of LCK was lower than that of a high-
expression group (Fig. 8j).

DISCUSSION

Dalbergia odorifera T. Chen is indigenous to Hainan
Province in South China. The history of DO use in China begins
in the description of the ancient Chinese medical book “Hai
Yao Ben Cao” (Tang and Five Dynasties, late 9th century to
mid-10th century)?. To date, DO has been used in more than
100 TCM prescriptions including Qi Shen Yi Qi (QSYQ) pills and
Tongxinluo capsules for the treatment of coronary heart and
cerebrovascular diseases®.

A total of 175 chemical constituents have been isolated
from the heartwood, roots, leaves and seeds of DO, including
flavonoids, aryl benzofurans, phenols and quinones?. While
the pharmacological effects varied among those compounds.
Overall, flavonoids were shown to be the anti-inflammatory
compounds in DO. Isoflavones could inhibit nitric oxide
productionin RAW 264.7 macrophages?. Also, isoliquiritigenin
and 4,2'5-trihydroxy-4'-methoxychalcone exerted an anti-
inflammatory effect by upregulating the expression of heme
oxygenase-1 through Nrf-222, In terms of benzofuran,
isoparvifuran showed antisenescence effects®, while aryl
benzofuran could suppress neuroinflammation in microglial
and hippocampal HT22 cells*®. Another major compound
(volatile oil) was shown to owe cardiac-protection effects’
and affected the metabolome of chronic myocardial ischemic
pigs, including energy, glucose and fatty acid metabolism
when combined with Salvia miltiorrhiza?. Besides, the volatile
oil of DO increased the absorbance of major ingredients in
QSYQ*. Recently, latifolin, as a newly extracted flavonoid, was
shown to protect against myocardial infarction and
oxidative stress-induced senescence3>, The 6,4"-Dihydroxy-7-
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Fig. 2(a-e): Herbs-components-targets network of DO analysis, (a) Common genes between DO and LUAD were analyzed via
STRING. Notes whose interaction score>of 0.7 were visualised in Cytoscape v3.8.2, (b) Notes were further analyzed
by the plugin of CytoNCA. In total, 63 core targets reached the cutoff whose DC>31.5, BC>1149.9 and CC>0.2 and
(c-e) Three modules of 63 core targets with degree cutoff = 2, k-score = 2 and max. depth = 100

methoxyflavanone inhibited osteoclasts differentiation and
function via the MAPK pathway?¢. Hydroxyobtustyrene, a
cinnamyl phenol, exerted an anti-hypoxia effect on neuronal
cells¥”. In the present study, 37 ingredients and 796 targets of
DO were obtained, which confirmed its wide pharmacological
effects.
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Recently, the anticancer effects of DO were frequently
demonstrated. Li et a/* found that 4-methoxydalbergione
inhibited tumour growth and reduced tumour size in U87
astroglioma via regulation of cell division, cell cycle, p53, TNF
and MAPK signalling pathways. Yun's et a/' study revealed a
flavonoid (4-parvifuran) could inhibit the metastasis and
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metastasis and invasion of osteosarcoma cells through STAT3
and MARKs including JNK, ERK and p38 kinase. Furthermore,
cearoin was shown to induce apoptosis in SH-SY5Y
neuroblastoma cells through Bcl-2 and caspase-3%. In the
present study, 627 genes overlapped between DO and LUAD
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were demonstrated, dropping a hint that DO may owe the
widely anti-LUAD effects.

LUAD is the most prevalent subtype of NSCLC, which is
activated by mutation in EGFR, ALK, Kirsten rat sarcoma virus
(KRAS), ROS1 and PIK3CA®. In this study, we performed PPI
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analysis for the 627 overlapping genes and revealed that the
LUAD-relative genes EGFR and PIK3CA were clustered in
module T and module 2, respectively. Those core genes were

LUAD*.
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enriched in pathways in cancer, proteoglycans pathway and
PI3K-AKT signalling pathway, which have been declared in
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Fig. 8(a-j): Prognostic value of mRNA of the 10 hub genes in LUAD, (a) STAT3, (b) EGFR, (c) SRC, (d) MAPK3, (e) PTK2, (f) MAPK1,
(g) PTPN11, (h) LYN, (i) CNTTB1 and (j) LCK

Deregulated host inflammation has been designated as
one of the “Hallmarks of Cancer"#. Overexpression of
checkpoints especially such as T-lymphocyte-associated
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protein -4 (CTLA-4) and programmed death-1(PD-1) in T cells
negatively regulates T cell activation*2. The LCK is a tyrosine
kinase, which is abundant in lymphoma such as T cells and
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involved in several cellular processes including cell cycle
control, cell adhesion, cell motility, cell proliferation and cell
differentiation through phosphorylating ZAP-70, ITK, protein
kinase C and PI3K®, It was declared that overexpression of
LCK in estrogen-receptor-positive and negative breast cancer
samples was associated with better metastasis-free survival*.
Besides, the prognosis of endometrial cancer and bladder
cancer patients with high LCK expression was significantly
better than that of the low expression group®“. In the
present study, a slightly decreased expression of LCK was
demonstrated in LUAD, compared with normal tissue,
moreover, LCK expression was negatively correlated to the
prognosis stages of LUAD and lower expression of LCK
predicted a worse survival rate in LUAD patients. Those
results suggested that overexpression of LCK prevented the
prognosis of LUAD. Furthermore, as LCK could efficiently
phosphorylate PD-1%, stimulating an abnormal LCK signal to
enhance the rest of the PD-1 blockade may be a new targeted
molecular approach for cancer treatment*. The current study
demonstrated that LCK was the preferential target for
21 compounds from DO, which implied the potential
mechanism of the anti-LUAD effect.

CONCLUSION

DO, as traditional Chinese medicine, shows widespread
pharmacological effectsincluding anti-cardiacand anticancer
properties. Through network pharmacology analysis, it was
illustrated that DO may owe an anti-LUAD effect via
modulating the tyrosine kinase LCK and reversing the
resistance of chemotherapy. Those results proposed a new
role of DO for the treatment of LUAD.
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