

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2024.1390.1397

Research Article

Comparative Investigation of the Effects of Adenosine Triphosphate and Agomelatine Against Acrolein-Induced Oxidative and Inflammatory Lung Injury in Rats

¹Edhem Unver, ²Bahadir Suleyman, ²Renad Mammadov, ³Seval Bulut, ²Durdu Altuner, ⁴Taha Abdulkadir Coban and ²Halis Suleyman

Abstract

Background and Objective: Acrolein-induced tissue damage has been attributed to oxidative stress and inflammation. This study aimed to determine the effects of adenosine triphosphate (ATP) and agomelatine, two substances known to have antioxidant and anti-inflammatory effects, separately and in combination, on possible acrolein-induced lung damage in rats. **Materials and Methods:** There were 30 albino Wistar rats divided into five groups of six: Healthy (HG), acrolein (AC), ATP+acrolein (ATAC), agomelatine+acrolein (AGAC) and ATP+agomelatine+acrolein (AAAC). The dose of ATP administered intraperitoneally was 4 mg/kg and the dose of agomelatine administered orally was 25 mg/kg. An oral dose of acrolein 3 mg/kg was given 1 hr following the administration of ATP and agomelatine. For 30 days, the treatment protocol was followed once a day. Afterwards, the rats were euthanized and their lungs were removed. Oxidants, antioxidants and pro-inflammatory cytokines were measured in lung tissues. **Results:** In lung tissues, acrolein increased malondialdehyde, nuclear factor kappa, tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6 levels and decreased total glutathione, superoxide dismutase and catalase levels (p<0.001). The ATP+agomelatine, ATP and agomelatine treatments were the most effective at preventing these biochemical changes, respectively (p<0.001). As a result, the biochemical data of the HG and AAAC groups were similar (p>0.05). **Conclusion:** It could be suggested that both ATP and agomelatine might be effective against the pneumotoxic effects of acrolein, though a combination therapy would be more effective.

Key words: Acrolein, adenosine triphosphate, agomelatine, pneumotoxicity, oxidative damage

Citation: Unver, E., B. Suleyman, R. Mammadov, S. Bulut, D. Altuner, T.A. Coban and H. Suleyman, 2024. Comparative investigation of the effects of adenosine triphosphate and agomelatine against acrolein-induced oxidative and inflammatory lung injury in rats. Int. J. Pharmacol., 20: 1390-1397.

Corresponding Author: Edhem Unver, Department of Chest Diseases, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey Tel: +90 553 8724031, Fax: +90 446 2261819

Copyright: © 2024 Edhem Unver *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Chest Diseases, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey

²Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey

³13 February Family Health Center, Republic of Turkey Ministry of Health, Erzincan, 24050, Turkey

⁴Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey

INTRODUCTION

As a highly reactive aldehyde, acrolein poses a serious threat to human health and life¹. It is possible for humans to be exposed to acrolein through both dietary and endogenous sources². The majority of dietary acrolein is produced by heat treatment of lipid-rich foods, such as frying and barbecuing³. Acrolein is also found in alcoholic beverages such as beer, wine and brandy, in addition to fats and lipid-rich foods³. As well as dietary sources, acrolein can also be ingested through environmental sources, such as tobacco smoke and incomplete combustion of plastics, wood and gasoline⁴. The human body can also produce acrolein endogenously through polyamine catabolism and lipid oxidation, which may contribute to many diseases². Acrolein exposure from dietary and environmental sources has been reported to accelerate the onset and spread of many pathological conditions⁵. Exogenous acrolein exposure has been linked to multiple sclerosis, neurodegenerative diseases, cardiovascular diseases, diabetes, asthma, chronic obstructive pulmonary disease and even respiratory cancer¹. There is evidence that acrolein is more toxic than reactive oxygen species (ROS) and that it causes changes to the structure of proteins⁶. Additionally, acrolein has been reported to be a primary source of ROS and to play a significant role in lung disease pathogenesis¹. Acrolein consumption has been shown to result in a decrease in intracellular adenosine triphosphate (ATP) concentrations⁷. Based on the information obtained from the literature, it is possible that acrolein-induced oxidative lung injury occurs as a result of a reduction in intracellular ATP levels.

In this study, acrolein was tested for its ability to prevent lung damage in rats and ATP is a nucleoside triphosphate consisting of adenine, ribose and three phosphates⁸. Cellular ATP is known to play a role in the synthesis of ROS scavenging and scavenging antioxidants, as well as to provide energy for the synthesis of antioxidants^{9,10}. Furthermore, it has been found that ATP inhibits the increase of malondialdehyde (MDA), Tumor Necrosis Factor- α (TNF- α) and Nuclear Factor- κ B (NF- κ B) levels in tissues and organs as well as the decrease of antioxidant Total Glutathione (tGSH) levels¹¹.

In this study, acrolein was also tested against its possible pulmonary toxicity with agomelatine, a melatonin receptor agonist (MT₁ and MT₂)¹². Despite not being approved for marketing by the US Food and Drug Administration, agomelatine is widely used throughout the world¹³. Agomelatine was originally investigated as a chronobiotic; however, following the discovery of its 5-HT2c antagonist activity, interest shifted to its anxiolytic and antidepressant properties¹². As reported, agomelatine reduces lipid

peroxidation (LPO) levels, protects neurons from cytosolic ROS damage and increases endogenous Glutathione (GSH) levels 14 . It is reported in the literature that agomelatine protects brain tissue from stress-induced oxidant and proinflammatory cytokine (TNF- α , Interleukin-6 (IL-6), Interleukin-1beta (IL-1 β)) damage 15 . In the literature, no studies have investigated the effects of antioxidants such as ATP and agomelatine against acrolein-induced lung injury. Therefore, the purpose of this study was to examine and compare the effects of ATP, agomelatine and their combination on acrolein-induced lung injury in rats.

MATERIALS AND METHODS

Study area: Animal experiments of the study were carried out in February-March, 2024 at Erzincan Binali Yıldırım University Experimental Animals Application and Research Centre.

Animals: Thirty male albino Wistar rats (280-292 g) were obtained from Erzincan Binali Yıldırım University Experimental Animal Research and Application Center. Before the procedure, animals were fed *ad libitum* in groups of 6 (n = 6) at $21 \pm 2^{\circ}$ C temperature in a 12 hrs light-dark cycle. The experimental process was endorsed by Erzincan Binali Yıldırım University Experimental Animals Local Ethics Committee (Date: 28.12.2023, No: 43).

Chemical substances: Acrolein (50 mg vial) was obtained from Sigma Aldrich, ATP from Zdorove Narodu (Kharkiv, Ukraine), Agomelatine from Servier (Istanbul, Turkey), Thiopental Sodium from IE Ulagay (Istanbul, Turkey).

Experimental groups: The rats were divided into 5 groups, each consisting of six rats: Healthy (HG), acrolein alone (AC), ATP+acrolein (ATAC), agomelatine+acrolein (AGAC) and ATP+agomelatin+acrolein (AAAC).

Experimental procedure: The ATAC group was first injected with ATP intraperitoneally (i.p.) at a dose of 4 mg/kg. In the AGAC group, agomelatine was given orally via gavage at a dosage of 25 mg/kg. A combination of ATP and agomelatine was administered to the AAAC group at the above-mentioned dose and method. During this period, both the HG and AC groups received the same amount of saline (0.9% NaCl) orally. Acrolein was administered orally by gavage to rats in the AC, ATAC, AGAC and AAAC groups 1 hr after ATP and agomelatine administration¹⁶. This treatment was repeated once a day for 30 days. After 30 days, the animals were

killed with 50 mg/kg intraperitoneal thiopental sodium and their lungs were removed. The oxidant antioxidant and proinflammatory cytokine levels including MDA, tGSH, superoxide dismutase (SOD), catalase (CAT), NF- κ B, TNF- α , IL-1 β and IL-6 were measured in the excised lung tissues.

Biochemical analyses

Analysis of MDA, GSH, SOD and CAT in lung tissue: In order to determine MDA, GSH and SOD levels in lung tissues, Enzyme-Linked Immunosorbent Assays (ELISAs) kits were used and the assays were conducted according to the instructions provided by the kit (Cat No. 10009055, 703002 and 706002, Cayman Chemical Company, Michigan, USA, respectively). The CAT determination was performed in accordance with the method described by Góth¹⁷.

Analysis of NF- κ B, TNF- α , IL-1 β and IL-6 in lung tissue: In lung tissues, NF- κ B levels were measured using ELISA rat kits obtained from SUNREDBIO (Shanghai, China) and

TNF- α , IL-1 β and IL-6 levels were measured using ELISA rat kits obtained from Eastbiopharm (Hangzhou, China) and the kit procedures were followed for the analysis.

Statistical analysis: The statistical analysis was conducted using SPSS statistical software version 22.0 (IBM, Armonk, New York, USA). The data were presented in the form of a mean and a standard deviation. A Shapiro-Wilk's test was conducted on the data and it was determined that they were normally distributed. As a result, one-way ANOVA was used for the analysis. Depending on the results of Levene's test, Tukey's or Games-Howell's tests were performed as *post hoc*. The p-values below 0.05 were considered significant.

RESULTS

MDA, tGSH, SOD and CAT analysis results: When MDA levels were measured between the rat groups as presented in Fig. 1a and Table 1, it was observed that MDA levels were

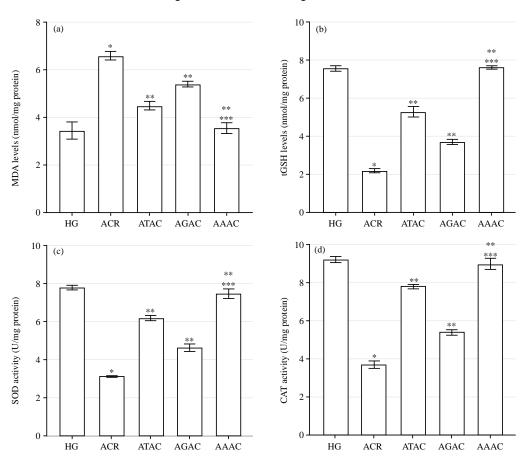


Fig. 1(a-d): Analysis results of oxidants and antioxidants in lung tissues

*p<0.001 vs. HG, **p<0.001 vs. ACR, ***p>0.05 vs. HG, MDA: Malondialdehyde, tGSH: Total Glutathione, SOD: Superoxide dismutase,
CAT: Catalase, HG: Healthy, AC: Acrolein, ATAC: ATP+acrolein, AGAC: Agomelatine+acrolein and AAAC: ATP+agomelatine+acrolein

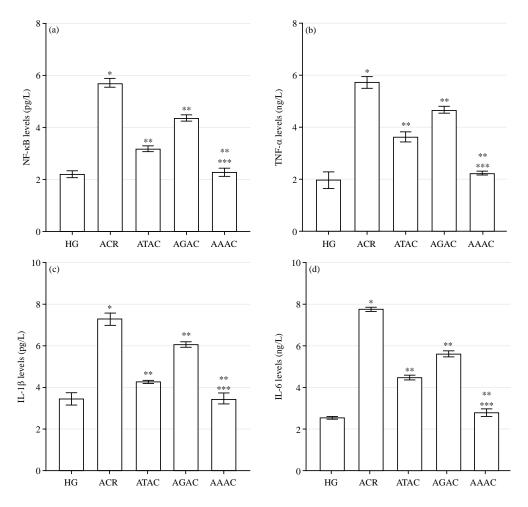


Fig. 2(a-d): Analysis results of pro-inflammatory cytokines in lung tissues

*p<0.001 vs. HG, **p<0.001 vs. ACR, ***p>0.05 vs. HG, MDA: Malondialdehyde, tGSH: Total glutathione, SOD: Superoxide dismutase, CAT: Catalase
TNF-α:Tumor Necrosis Factor-alpha,IL-1β:Interleukin 1β,IL-6: Interleukin-6, HG: Healthy, AC: Acrolein, ATAC: ATP+acrolein, AGAC: Agomelatin+acrolein
and AAAC: ATP+agomelatin+acrolein

Table 1: Results of biochemical analyses of lung tissues

Biochemical parameter	Experimental groups (Mean±Standard deviation)				
	HG	AC	ATAC	AGAC	AAAC
MDA (nmol/mg protein)	3.45±0.35	6.58±0.19*	4.50±0.16**	5.40±0.10**	3.56±0.21**,***
tGSH (nmol/mg protein)	7.55±0.15	$2.21\pm0.09*$	5.31±0.29**	3.71±0.16**	7.61±0.09**,***
SOD (U/mg protein)	7.82 ± 0.10	3.14±0.05*	6.19±0.13**	4.63±0.17**	7.48±0.25**,***
CAT (U/mg protein)	9.19±0.15	3.70±0.20*	7.80±0.11**	5.40±0.17**	9.00±0.31**,***
NF-κB (pg/L)	2.24±0.13	5.75±0.15*	3.21±0.08**	4.41±0.13**	2.30±0.15**,***
TNF-α (ng/L)	1.96±0.31	5.70±0.22*	3.62±0.18**	4.64±0.14**	2.21±077*****
IL-1β (pg/L)	3.45±0.29	7.35±0.29*	4.32±0.05**	6.12±0.12**	3.52±0.26**,***
IL-6 (ng/L)	2.55±0.15	7.75±0.20*	4.48±0.24**	5.61±0.30**	2.81±0.42**,***

*p<0.001 vs. HG, **p<0.001 vs. ACR, ***p>0.05 vs. HG, MDA: Malondialdehyde, tGSH; Total Glutathione, SOD: Superoxide dismutase, CAT: Catalase, TNF-α: Tumor Necrosis Factor-alpha, IL-1β: Interleukin 1β, IL-6: Interleukin-6, HG: Healthy, AC: Acrolein, ATAC: ATP+acrolein, AGAC: Agomelatine+acrolein, AAAC: ATP+agomelatine+acrolein. Statistical analysis was done with one way ANOVA and Games-Howell test or Tukey's HSD was applied as *post hoc*

elevated in the acrolein group compared to the healthy group (p<0.001). The ATP+agomelatine and ATP and agomelatine were the most effective suppressors of acrolein-induced MDA

increases, respectively (p<0.001). The MDA levels were similar between rats that received ATP+agomelatine and rats in the HG (p = 0.963).

The results of antioxidant analysis in lung tissues revealed a reduction in tGSH, SOD and CAT levels in rats in the AC group (p<0.001). This decrease was determined to be suppressed in rats receiving ATP, agomelatine and combination therapy with acrolein (p<0.001). The ATP+agomelatine was the most effective treatment in maintaining antioxidant levels and tGSH, SOD and CAT data were similar in AAAC and HG groups (p>0.05) Fig. 1(b-d) and Table 1.

NF-κB, TNF-α, IL-1β and IL-6 analysis results: Lung tissues were also analyzed for the levels of NF-κB, TNF-α, IL-1β and IL-6. As seen in Fig. 2(a-d) and Table 1, the analysis results revealed that NF-κB, TNF-α, IL-1β and IL-6 levels were increased in the AC group treated with acrolein alone compared to the HG group (p<0.001). The acrolein-induced increase in NF-κB, TNF-α, IL-1β and IL-6 levels was best prevented by ATP+agomelatine, ATP and agomelatine treatments, respectively (p<0.001). The levels of NF-κB, TNF-α, IL-1β and IL-6 in the lungs of the AAAC and HG groups were similar (p>0.05).

DISCUSSION

As part of this study, ATP, agomelatine and their combination were investigated biochemically against the possible toxicity of acrolein on the lungs. Acrolein is a ubiquitous toxic chemical that is also produced by cellular metabolism¹⁸. However, due to the presence of acrolein in tobacco smoke, the lungs are a prime target for acrolein toxicity¹⁹. There is evidence that various mechanisms such as oxidative stress, inflammation and altered immune responses are involved in the pathogenesis of acrolein toxicity¹⁸. Acrolein, which is both a product and an initiator of oxidative damage, is reported to activate intracellular pathways that release ROS in the literature 19,20. When excess ROS are produced, they react with polyunsaturated fatty acids in cell membranes, resulting in LPO and an increase in MDA levels^{21,22}. Following LPO, MDA plays an important role in continuing oxidative cellular damage²³. The biochemical results of our experiment indicated that MDA levels increased in the lung tissues of rats exposed to acrolein, similar to the findings of Rashad et al.21. In this study, it was found that ATP suppressed the increase in MDA in the presence of acrolein. There is evidence in the literature that acrolein disrupts mitochondrial respiration, decreasing ATP production²⁴. The effects of ATP treatment on oxidative lung damage have not been investigated in any studies.

However, it has previously been shown that exogenous ATP treatment decreased the increase in MDA observed in the presence of oxidative cardiac injury¹¹. Despite agomelatine's ineffectiveness compared to ATP in this study, it was significantly effective in preventing the increase in MDA induced by acrolein. Agomelatine has also been tested in patients with methotrexate-induced lung injury and it has been shown to inhibit the increase in MDA levels and protect the lungs from damage caused by oxidative and inflammatory processes²⁵. Furthermore, although ATP and agomelatine inhibited the increase in MDA levels, the lowest MDA levels were found in the combination of ATP and agomelatine.

Based on our biochemical analysis, we found that tGSH levels were lower in the acrolein group compared to the groups that had increased MDA levels. As an endogenous antioxidant, GSH provides cellular protection against reactive oxygen species (ROS)²⁶. The GSH conjugation is the primary metabolic pathway of acrolein. If acrolein is not conjugated and removed from the system, cellular antioxidative defense is impaired, leading to a reduction in GSH levels and a decrease in the activity of antioxidant enzymes²⁷. In human bronchial epithelial cell cultures, Nardini et al.28 reported significant decreases in GSH levels after exposure to acrolein at varying times. As reported in another study, acrolein induces GSH depletion and is pneumotoxic²⁹. As a result of our biochemical analysis, acrolein administration to rats resulted in a decrease in the activities of SOD and CAT enzymes, as well as the levels of tGSH in lung tissues. It is important to note that SOD and CAT are enzymes that function in coordination as endogenous antioxidants. In addition to catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen, SOD is a metalloenzyme in the first line of defense against reactive oxygen species. By converting hydrogen peroxide into oxygen and water, CAT detoxifies the hydrogen peroxide formed^{30,31}. According to a previous study, the level of CAT activity in rat lungs decreased after 4 hrs of exposure to acrolein vapor in a dose-dependent manner, while the level of SOD activity increased²⁹. In another study, it was reported that exposure to acrolein caused severe cytotoxicity and decreased SOD activity, GSH and ATP levels in human lung fibroblast cell cultures³². The ATP treatment significantly prevented the acrolein-induced decline in tGSH, SOD and CAT levels in this study. Exogenous administration of ATP, which is implicated in the production of antioxidants, has previously been shown to protect heart, skin and bone tissues from oxidative damage and to prevent the reduction of tGSH, SOD and CAT^{11,23,33}. Agomelatine was also found to contribute to the maintenance of antioxidant levels in this study. According to Kamel *et al.*²⁵ agomelatine significantly prevented methotrexate-induced decreases in GSH and SOD in lung tissues. During the literature review, no studies comparing the antioxidative effects of ATP and melatonin were found. In spite of this, our study results revealed that despite agomelatine's ability to increase ATP levels, it demonstrated a lower antioxidant effect than exogenously administered ATP³⁴. In contrast, ATP+agomelatine combination was the most effective treatment for preventing acrolein-induced oxidant increase and antioxidant decrease.

The oxidative damage caused by acrolein in the lungs leads to inflammation of the tissues. Inflammation further contributes to the destruction of respiratory tract tissues²¹. Alternatively, inflammation contributes to an imbalance in the lungs' redox system by generating ROS35. Therefore, NF-κB, TNF- α , IL-1 β and IL-6 amount were also investigated in rat lung tissues in our study. Current experimental results revealed that acrolein treatment increased both NF-κB and TNF- α , IL-6 and IL-1 β levels in lung tissues. The NF- κ B has been proposed as a transcription factor implicated in recognizing oxidative stress²⁰. There were conflicting findings in the literature regarding the effect of acrolein on NF- κ B. In addition to its immunosuppressive effect through suppression of NF-κB, acrolein is also reported to exert a proinflammatory effect by release of inflammatory mediators such as IL-1 β , IL-6, IL-8 and TNF- α through activation of NF- κ B expression¹. It has been suggested that the different effects of acrolein on NF-κB may be cell-type specific and may be affected by various regulatory mechanisms including GSH depletion³⁶. Current findings showed an increase in NF-κB, TNF-α, IL-6 and IL-1β levels following acrolein treatment. Similarly, Sun et al.19 reported an increase in activated macrophages in the lungs, NF-κB induction and increased production of proinflammatory cytokines by intranasal acrolein exposure in rats. Liu et al.³⁷ showed that NF-κB expression increased in lung epithelial cells of rats exposed to acrolein. In addition, inflammatory cells and TNF-α, IL-8 and IL-1β were found to increase in bronchoalveolar lavage fluids. In another study, it was found that acrolein administration increased NF- κ B, TNF- α , IL-6 and IL-1β levels in rat lungs²⁷. Current experimental results revealed that the increase in inflammatory markers was inhibited by ATP pretreatment. Various studies have reported that ATP treatment has a decreasing effect on proinflammatory cytokine levels such as NF-κB, TNF-α and IL- $6^{11,25,38}$. In the agomelatine group, NF-κB, TNF-α, IL-1β and IL-6 were lower than that of acrolein group and higher than that of the ATP group. The anti-inflammatory activity of agomelatine was attributed to NF-κB inhibition and this inhibition was believed to decrease the levels of

proinflammatory cytokines. Kamel *et al.*²⁵ and Kose *et al.*³⁹ studies also revealed that agomelatine decreased the expression of NF- κ B, TNF- α and IL-6 in lung injury induced by different factors in rats. In the literature, there were no studies investigating the combination of ATP and agomelatine in terms of anti-inflammatory activity.

Analyzing the histopathology of lung tissues is also important when investigating acrolein-induced lung injury and possible treatments.

CONCLUSION

In the current study, biochemical analyses were conducted to investigate the effects of ATP, agomelatine and ATP+agomelatine combination treatments on possible lung damage caused by acrolein. Our experimental results revealed that acrolein induced upregulation of oxidants (MDA) and proinflammatory cytokines (NF- κ B, TNF- α , IL-1 β and IL-6) and downregulation of antioxidants (tGSH, SOD and CAT) in rat lung tissue. In terms of preventing these changes, the ATP+agomelatine, ATP and agomelatine treatments performed the best, respectively. The results of the ATP and agomelatine combination treatment group were almost identical to those of the healthy group.

SIGNIFICANCE STATEMENT

Acrolein-induced toxicity may result from dietary sources and environmental exposure as well as endogenous sources. In the literature, it has been reported that acrolein exposure can accelerate the initiation and spread of many pathological conditions and therefore it is important to eliminate the adverse effects of toxicity. In the present study, the capacity of ATP and agomelatine to prevent acrolein-induced lung injury was investigated. Current results suggest that both ATP and agomelatine can be used to counteract the pneumotoxic effects of acrolein; however, combination therapy may prove to be more effective.

REFERENCES

- Hikisz, P. and D. Jacenik, 2023. The tobacco smoke component, acrolein, as a major culprit in lung diseases and respiratory cancers: Molecular mechanisms of acrolein cytotoxic activity. Cells, Vol. 12. 10.3390/cells12060879.
- 2. Jiang, K., C. Huang, F. Liu, J. Zheng, J. Ou, D. Zhao and S. Ou, 2022. Origin and fate of acrolein in foods. Foods, Vol. 11. 10.3390/foods11131976.

- 3. Bauer, R., D.A. Cowan and A. Crouch, 2010. Acrolein in wine: Importance of 3-hydroxypropionaldehyde and derivatives in production and detection. J. Agric. Food Chem., 58: 3243-3250.
- 4. Henning, R.J., G.T. Johnson, J.P. Coyle and R.D. Harbison, 2017. Acrolein can cause cardiovascular disease: A review. Cardiovasc. Toxicol., 17: 227-236.
- Feng, X., R. Liang, D. Shi, D. Wang, T. Xu and W. Chen, 2022. Urinary acrolein metabolites, systemic inflammation, and blood lipids: Results from the National Health and Nutrition Examination Survey. Chemosphere, Vol. 286. 10.1016/j.chemosphere.2021.131791.
- Kashiwagi, K. and K. Igarashi, 2023. Molecular characteristics of toxicity of acrolein produced from spermine. Biomolecules, Vol. 13. 10.3390/biom13020298.
- 7. Monteil, C., E.L. Prieur, S. Buisson, J.P. Morin, M. Guerbet and J.M. Jouany, 1999. Acrolein toxicity: Comparative *in vitro* study with lung slices and pneumocytes type II cell line from rats. Toxicology, 133: 129-138.
- 8. Dunn, J. and M.H. Grider, 2024. Physiology, Adenosine Triphosphate. StatPearls Publishing, Treasure Island.
- Saquet, A.A., J. Streif and F. Bangerth, 2000. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in 'Conference' pears and 'Jonagold' apples during controlled atmosphere storage. J. Hortic. Sci. Biotechnol., 75: 243-249.
- Chun, Y., Y. Jiang, J. Shi, H. Qu and S. Xue et al., 2010. ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process. Food Chem., 118: 42-47.
- 11. Aldemir, M.N., M. Simsek, A.V. Kara, F. Ozcicek and R. Mammadov *et al.*, 2020. The effect of adenosine triphosphate on sunitinib-induced cardiac injury in rats. Hum. Exp. Toxicol., 39: 1046-1053.
- 12. Arendt, J. and S.M.W. Rajaratnam, 2008. Melatonin and its agonists: An update. Br. J. Psychiatry, 193: 267-269.
- 13. Fasipe, O.J., 2019. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep., 6: 95-110.
- 14. Santos, P., A.P. Herrmann, E. Elisabetsky and A. Piato, 2019. Anxiolytic properties of compounds that counteract oxidative stress, neuroinflammation, and glutamatergic dysfunction: A review. Braz. J. Psychiatry, 41: 168-178.
- 15. Rebai, R., L. Jasmin and A. Boudah, 2021. Agomelatine effects on fat-enriched diet induced neuroinflammation and depression-like behavior in rats. Biomed. Pharmacother., Vol. 135. 10.1016/j.biopha.2021.111246.
- Khoramjouy, M., N. Naderi, F. Kobarfard, E. Heidarli and M. Faizi, 2021. An intensified acrolein exposure can affect memory and cognition in rat. Neurotoxic. Res., 39: 277-291.
- 17. Góth, L., 1991. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143-151.

- Moghe, A., S. Ghare, B. Lamoreau, M. Mohammad, S. Barve, C. McClain and S. Joshi-Barve, 2015. Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicol. Sci., 143: 242-255.
- 19. Sun, Y., S. Ito, N. Nishio, Y. Tanaka, N. Chen and K.I. Isobe, 2014. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells. Toxicol. Lett., 229: 384-392.
- 20. Stevens, J.F. and C.S. Maier, 2008. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food Res., 52: 7-25.
- 21. Rashad, W.A., S. Sakr and A.M. Domouky, 2022. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci. Rep., Vol. 12. 10.1038/s41598-022-14252-4.
- Amidžić, M., M. Mikulić, N. Stilinović, N. Kladar, N. Rakočević, I. Čapo and B.S. Čonić, 2024. Antioxidant effects of soy isoflavones, probiotics and their combination on carbon tetrachloride-induced oxidative stress in rats. Int. J. Pharmacol., 20: 561-572.
- 23. Akbaş, N., E.M. Akbaş, Z. Süleyman, B. Çiçek, A.G. Ağgül, B. Mokhtare and H. Süleyman, 2023. Effect of adenosine triphosphate on ribociclib-induced skin toxicity in rats. Cutaneous Ocul. Toxicol., 42: 32-37.
- 24. Lu, Q., M. Mundy, E. Chambers, T. Lange and J. Newton *et al.*, 2017. Alda-1 protects against acrolein-induced acute lung injury and endothelial barrier dysfunction. Am. J. Respir. Cell Mol. Biol., 57: 662-673.
- 25. Kamel, M.Y., S.M. Ahmed, W.Y. Abdelzaher, N.N. Welson and A.M. Abdel-Aziz, 2022. Role of IL-6/STAT3 pathway in mediating the protective effect of agomelatine against methotrexate-induced lung/intestinal tissues damage in rats. Immunopharmacol. Immunotoxicol., 44: 35-46.
- Jo, E.H., J.E. Moon, M.H. Chang, Y.J. Lim and J.H. Park et al., 2023. Sensitization of GSH synthesis by curcumin curtails acrolein-induced alveolar epithelial apoptosis via Keap1 cysteine conjugation: A randomized controlled trial and experimental animal model of pneumonitis. J. Adv. Res., 46: 17-29.
- 27. Kim, J.K., J.H. Park, H.J. Ku, S.H. Kim, Y.J. Lim, J.W. Park and J.H. Lee, 2018. Naringin protects acrolein-induced pulmonary injuries through modulating apoptotic signaling and inflammation signaling pathways in mice. J. Nutr. Biochem., 59: 10-16.
- 28. Nardini, M., E.I. Finkelstein, S. Reddy, G. Valacchi, M. Traber, C.E. Cross and A. van der Vliet, 2002. Acrolein-induced cytotoxicity in cultured human bronchial epithelial cells. Modulation by alpha-tocopherol and ascorbic acid. Toxicology, 170: 173-185.
- 29. Arumugam, N., V. Sivakumar, J. Thanislass, K.S. Pillai, S.N. Devaraj and H. Devaraj, 1999. Acute pulmonary toxicity of acrolein in rats-underlying mechanism. Toxicol. Lett., 104: 189-194.

- Cecerska-Heryć, E., O. Surowska, R. Heryć, N. Serwin,
 S. Napiontek-Balińska and B. Dołęgowska, 2021. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients-A review. Clin. Biochem., 93: 1-8.
- 31. Icel, A., B. Suleyman, R. Mammadov, S. Bulut and B. Cicek *et al.*, 2023. Effect of Liv-52 on atorvastatin induced hepatotoxicity in rats: A biochemical and histopathologic study. Int. J. Pharmacol., 19: 938-946.
- 32. Jia, L., Z. Zhang, L. Zhai and Y. Bai, 2009. Protective effect of lipoic acid against acrolein-induced cytotoxicity in IMR-90 human fibroblasts. J. Nutr. Sci. Vitaminol., 55: 126-130.
- 33. Yalcin, E., Z. Bayramoglu, R. Mammadov, D. Altuner and S. Bulut *et al.*, 2023. Protective effect of adenosine triphosphate against bevacizumab-induced mandibular bone damage in rats. Lat. Am. J. Pharm., 42: 98-104.
- 34. Areti, A., P. Komirishetty, M. Akuthota, R.A. Malik and A. Kumar, 2017. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J. Pineal Res., Vol. 62. 10.1111/jpi.12393.

- 35. Mehdar, K.M., 2024. Potential protective effect of agmatine on bleomycin-induced pulmonary fibrosis in male albino rats. Int. J. Pharmacol., 20: 305-317.
- 36. Kehrer, J.P. and S.S. Biswal, 2000. The molecular effects of acrolein. Toxicol. Sci., 57: 6-15.
- 37. Liu, D.S., W.J. Liu, L. Chen, X.M. Ou and T. Wang *et al.*, 2009. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates acrolein-induced airway mucus hypersecretion in rats. Toxicology, 260: 112-119.
- 38. Ozer, M., S. Ince, D. Altuner, Z. Suleyman and B. Cicek *et al.*, 2023. Protective effect of adenosine triphosphate against 5-fluorouracil-induced oxidative ovarian damage *in vivo*. Asian Pac. J. Cancer Prev., 24: 1007-1013.
- 39. Köse, D., T.N. Yüksel, Z. Halıcı, E. Çadırcı and M.A. Gürbüz, 2021. The effects of agomelatine treatment on lipopolysaccharide-induced septic lung injuries in rats. Eurasian J. Med., 53: 127-131.