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Abstract

Neurodegenerative disorders (ND) such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and associated cognitive dysfunction are
major concerns that add enormous social and financial burdens on society. Growing evidence suggests that Rho GTPase is the regulator
of cellular morphology and an emerging driver for neurodegenerative disorders. The superfamily of Rho GTPase offers a potential target
for therapeutic intervention through Rho and Rac. In this review, the molecular mechanism of Rho GTPase in the etiology of ND via
modulation of signaling cascades like PI3K/Akt, GSK-3B, MEK and ERK 2 pathway have been discussed. Further, the neuroprotective role
of statins as a Rho GTPase inhibitor has been emphasized. A comprehensive literature survey was done to explicate the mechanism of
Rho GTPase in neurological disorders and /n vivo, in vitro and clinical studies were correlated with the inhibitory effect of statin on
Rho GTPase. Based on the current review, it was hypothesized that the statins are potent inhibitors of Rho GTPase and can be efficient
in the management and treatment of ND and associated cognitive dysfunction modulation of apoptosis, neuronal death, inflammatory
cascade and oxidative stress that offers neuroprotection. To date, no targeted Rho inhibitor has been clinically approved. Thus, there exists
afullwindow of opportunity for designing, leading optimization and development of Rho inhibitors. The use of techniques like molecular
docking and crystal structure study to establish drug-ligand interaction between Rho GTPase and statins to increase its specificity and
efficacy in the management of neurological disorders is crucial and urgent.
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INTRODUCTION

Neurodegenerative disorders (ND) are one of the major
concerns of health care professionals and considerably
affect the quality of life of patients and negatively impact
society!. The central nervous system is restricted to toxic
metabolites and immunological and inflammatory cells
because of the blood-brain barrier (BBB). However, sometimes
circulating immune cells like neutrophils, natural killer cells
(NKCs), eosinophils and dendritic cells bypass the BBB and
perpetuate the immune response in the neurons and glial
cells?. Although, these immune responses are intended to
protect neurons from infections, they may cause unwanted
neurological alterations?. Additionally, traumatic brain injury
(TBI), hypoxia pollutants, high cholesterol-salt intake,
microbes, toxic metabolites, autoimmunity and smoking
induce neuroinflammation that involves the activation of
endothelial cells, causes edema and platelets aggregations
and progresses into various ND2. Activation of glial cells and
cytokines is the common neuroimmune response to these
stimuli®. Glial cells are innate immune cells that get
activated in response to a change in cell morphology or
injury3. Activated glial cells then stimulate the astrocytic
activity, which contributes to the inflammatory cascade?.
During neuroinflammation, there is sustained release of
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Interleukin-6  (IL-6), Interleukin-18 (IL-1B) and Tissue
Necrosis Factor (TNF-a) that are responsible for the
neurotoxicity, neuronal cell disruption and cell death?. Apart
from these cytokines, Rho GTPase plays a decisive role in
neuroinflammatory and neurodegenerative disorders, like
Parkinsonism, Alzheimer's disease (AD), depression and
associated cognitive impairment®.

The Rho GTPase is a subfamily of the Ras superfamily
GTPase (protein of small GTPase, also known as G-protein) that
controls multiple signaling pathways. There are seven
subdivisions of Rho GTPase (RhoA, Rac, Cdc42, Rnd, RhoD,
RhoBTB and RhoH), out of which Rho A, Rac and Cdc42 are the
most extensively studied memberss. The three prime
regulators for the activation of Rho GTPase are guanine
nucleotide exchange factors (GEFs), GTPase activating protein
(GAP) and guanine dissociation inhibitors (GDI). The GEFs are
actively involved in the activation of Rho GTPase via the
release of GDP and binding of GTP, whereas GAP stimulates or
potentiates the hydrolyzed GTP to GDP and hence reverses
back the activated GTPase into GDP-bound inactive state®.
The GDI sequestered the Rho GTPase in its GDP-bound state
in the cytosol (inactive state of Rho GTPase)S. Therefore, GAP
and GDI act as a negative regulator and facilitate the
inactivation of Rho GTPase as seen in Fig. 1. The Rho A, a
subfamily of Rho GTPase, acts on its direct downstream
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Fig. 1: Role of Rho GTPase in the pathophysiology of neuroinflammatory and neurodegenerative disorders
Rho GTPase activates in the presence of GEFs and GAP. Activated Rho GTPase, like Rho, when binds with ROCK, increases its activity. The Rho/ROCK and Rac
are further involved in neurological disorders by modulating the PI3K/Akt/MEK V2 pathway and GSK-3 activity. The Rho/ROCK and Rac induce neuronal
apoptosis, neuroinflammation and neurodegeneration through modulating NO level, cytochrome-c, caspases, AIF, COX -2, NMDA, glutamate, calcium overload,

NADPH oxidase, NF-kB and ILs activity'®
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Fig.2: Mechanism of cholesterol biosynthesis in neurological disorders and metabolic syndrome along with neuroprotective role

of statin

Statins, through the inhibition of HMG-CoA reductase, inhibit mevalonate synthesis which results in downregulation of FPP, GPP and small Rho GTPase-like
Rho and Rac. Inhibition of these small Rho GTPase imparts neuroprotective effects'®

effector, ROCK (Rho-Associated-coiled-coil-containing protein
kinase) which is a serine/threonine protein kinase. There are
two isoforms of ROCK, ROCKI and ROCKIl. The ROCKII is
exclusively expressed in the brain, whereas ROCKlis presentin
the non-neuronal tissue, heart, lungs and skeletal muscles®.
Activation of ROCKis reported with a diverse pathological role
and its activation depends on the biochemical activation of
RhoA GTPase>®. In normal physiological conditions, ROCK
maintains its inhibitory state by forming an auto-inhibitory
loop through the back folding of the C-terminal onto the
kinase domain. Biochemically activated Rho GTPase/GTP-
bound Rho GTPase or Rho A when binds with the Rho Binding
Domain (RBD) of ROCK, it disrupts the auto-inhibitory loop of
ROCK and thus ROCK gets activated. Activated ROCK then
leads to the phosphorylation of various target proteins that is
responsible for neuroinflammatory and neurodegenerative
disorders®. The ROCK inhibitors like fasudil or Y-27632 have
been reported to have strong neuroprotective potentials via
their anti-inflammatory, anti-apoptotic property and ability to

prevent dopaminergic neuronal loss’. More details of various
preclinical studies emphasizing the deleterious role of
Rho GTPase and the neuroprotective effect of various
Rho GTPase inhibitors were shown in Table 1.

Statins (3-hydroxy-3 methyl glutaryl coenzyme A
reductase inhibitor) are a well-known class of drug that
belongs to the group of cholesterol-lowering agents®. Statins,
apart from the lipid-lowering effect, exert a pleiotropic effect
where it suppresses the activity of Rho GTPase by blocking the
synthesis of mevalonate, which is the precursor of this
GTPase as shown in Fig. 2'%. Thus, statins may act as a potent
Rho GTPase inhibitor agent and can be the future therapeutic
class of drug in the management of neuroinflammatory and
neurodegenerative disorders. Thus, this review is focused on
the pathological role of RhoA GTPase in the prognosis of
neuroinflammatory and neurodegenerative disorders and
based on in vivo, in vitro and clinical studies, the
neuroprotective role of statins as Rho GTPase inhibitors has
been discussed.
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Table 1: Showing the neuroprotective effect of various Rho GTPase inhibitors in neurological disorder®

Drug Type of inhibitor Model Outcome
Fasudil ROCK1 and SOD1-G93A model for ALS Improved the motor function and survival of spinal cord
ROCK2 inhibitor neurons
MPTP-induced PD Preserved the nigrostriatal fibers and improved the motor
behavior

EAE model for MS

Xanthoceras sorbifolium NA

extracts
Y-39983 Selective ROCKinhibitor EAE model for MS
CNF1 Rac1 and Cdc42 activator Animal model for PD

In vitro study, treated with

AB25-induced AD

Reduced the expression of iNOS, reduced astrocytic
chemokines and improved demyelination
Improved cognitive function

Improved clinical symptoms and prevent the disease relapse
Enhanced the number of cellular processes
Trigger autophagy and prevent oxidative stress

6-OHDA using SH-Sy5Y cell line

Flavonoids from diospyros  Regulator of RhoA

APP/PS1 model for AD

Improved learning and memory, reduced the Rho
activities

Improved cognitive dysfunction

Protection against AB-induced cognitive dysfunction
Improved neurobehavioral attributes reduced oxidative
stress and prevented aggregation of tau protein

Reduced brain AB deposition

Improved cognitive dysfunction and reduced AB formation
Improved motor coordination and neurobehavioral attributes
Reduced ROCK activation, reduced activation of astrocytes

kaki leaves
Olfactory bulbectomy mice
AB-induced AD
SAMP8 mice

Nobiletin NA Animal model for AD
Animal model for AD
MPTP-induced PD

Simvastatin Inhibitor of ROCK Animal model for Huntington disease

AZA1 Rac1 and Cdc42 modulator In vitro study

ML141 (CID-2950007) NA In vitro study

AZA197 Cdc42-Dbs modulator In vitro study

ZINC08010136 Inhibitor of Rac1 In vitro study

ZINC69391 In vitro study

MBQ-167 In vitro study

NSC23766 Animal model for spinal cord injury
In vitro study for AD

Ibuprofen Inhibitor of RhoA In vitro neurotoxic model
EAE induced MS

FSD-C10 NA Invitro model using BV-2 cell line
APP/PS1induced AD

Statins 3-Hydroxy-3- methylglutaryl In vitro model using BV-2 cell line

coenzyme a reductase inhibitors

EHT1864 Inhibitor of Rac1 In vitro model using hippocampal

ZCL278 Modulator of Cdc42 In vitro model of AD

Loganin NA /n vitro model of AD

Cucurbitacin Inhibitor of RhoA

In vitro cell culture

and anti-inflammatory activities

Inhibit the activity of Rac1 and Cdc42

Inhibit the activity of Cdc42, Rac1, Rab2 and Rab7
Inhibition of Cdc42-dependent migration

Inhibition of Rac1 activity

Inhibit the Rac1-GEF interaction and activity of Racl

Inhibit the Rac1 and Cdc42 activity

Improved the spinal structure and reduced pain

Reduced the level of APP

Activation of PPAR-y and neuroprotection

Improved the level of BDNF, GDNF and NT-3

Increased expression of MAP2, reduced CD4* T cells, reduced
inflammation and improved the level of BDNF, GDNF and NT-3
InhibitM1 microglial activity and improved M2 microglial activity
Improve learning and behavioral parameters, reduced the level
of Ab42, phosphorylation of tau proteins

Reduced iNOS expression, inhibited NADPH level, reduced
Rho GTPase isoprenylation, production of ROS and
inflammatory markers

Reduced the level of Rac, managed the LTP and neurons
Modulate Cdc42- related cellular processes

Increased IGF-1R and GLP-1R expression resulted into
leading to neurite outgrowth

Modulated the Rho phosphorylation

STATINS: DO THEY CROSS THE BLOOD-BRAIN BARRIER?

Before discussing the role of statins in neuronal disorders,
it is important to understand whether the statins or their
active metabolite crosses the BBB or not. Statins are
administered orally and to reach the drug in the brain, the
drug must cross BBB. To cross BBB, statins should be lipophilic.
Indeed lipophilicity is not the only criteria for the passage of
the drug in the brain the drug must be small in size and of low

molecular weight with maximum bioavailability'. Since
bioavailability is an important parameter that determines
drug concentration in the brain'. The greater the
bioavailability, the higher is the chance of reaching the
drug in the brain (keeping other factors in consideration
for passing BBB)'". Further, if the drug has reached the brain,
it is not obligatory that it will exert therapeutic activity as
there is a chance of drug metabolism in the neuronal
tissue, as shown in Fig. 2. There are /n vitro and in vivo
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studies that showed atorvastatin, lovastatin, fluvastatin,
pitavastatin and simvastatin cross the BBB'>'. Hydrophilic
statins such as pravastatin and rosuvastatin also enter
neuronal parenchyma'™. Organic anion-transporting
polypeptides (OATP) mediate the passage of statin into the
brain as statins are a substrate for OATP™'>, Additionally,
monocarboxylic acid transport is another alternate pathway
for the passage of statins into the BBB.

PROTECTIVE ROLE OF STATINS AGAINST
Rho GTPase-MEDIATED NEURODEGENERATIVE DISORDER

Rho GTPase, Parkinson'’s disease and statins: Parkinsonism
is among the common most diagnosed neuroinflammatory
and neurodegenerative  disorders  manifested as
compromised function of dopaminergic neurons found
in the midbrain. Apart from the role of dopaminergic
neurons in the etiology of PD, growing evidence suggests
the role of neuroinflammation, apoptosis and oxidative
stress in the pathophysiology of Parkinsonism'. It has been
reported that the activated glial cell in Parkinsonism releases
pro-inflammatory mediators such as COX-2, IL-1B, IL-6, TNF-a
and interferon-y whereas, Rho GTPase playsa central roleinits
pathophysiology through activation of these inflammatory
mediators, apoptosis and oxidative stress as shown in
Fig. 31718 The Rho promotes the expression of COX-2 which
amplifies the inflammatory pathway in PD'?%, Non-Steroidal
Anti-Inflammatory Drugs (NSAIDs) and steroidal anti-
inflammatory drugs (SAIDs) have been reported to exert
antiparkinsonian effect and improve locomotor coordination?'.
Apart from the inflammation, the downregulation of the
PI3K/Akt signaling cascade also progresses the etiology of PD
as the downregulated PI3K/Akt pathway enhances apoptosis
and stimulates the activity of GSK-33?2. The Rho/ROCK has
been reported with downregulated Akt activity, enhanced
GSK-3B and disruption of autophagy in the brain of PD
patients?’. Further, Rho-mediated activation of ROCK is
reported with axonal collapse and retrograde degeneration
of dopaminergic axons, whereas ROCK inhibitors like
fasudil or Y-27632 exert an axonal stabilizing effect, promote
the growth of dopaminergic neurons and exhibit the
antiapoptotic effect in animal models of PD’. In a pre-clinical
study, significant activation of Rho/ROCK signaling cascade
and increased expression of ROCK Il mRNA was observed
after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MTTP)
injections (MPTP is a well-established chemical intoxicant for
inducing parkinsonism)2%. A similar activity of MTTP-induced

ROCK activation was observed in the /n vitro study®.
This suggests a strong correlation between the involvement of
the Rho/ROCK pathway and the etiology of PD*.

In an experiment, Barcia et a/?> reported that MTTP
induced microglia cell polarization and microglia-
dopaminergic neuron association (A process that stimulates
the pathogenesis of PD)%. Additionally, Rho/ROCK signaling
cascade disrupts BBB and causes microvascular endothelial
hyperpermeability that results in the accumulation of
metabolites and toxins, which exacerbate the severity of PD%.
The RhoA/ROCK cascade also interacts with Vascular
Endothelial Growth Factor (VEGF) and upregulates the
level of VEGF?. Levated VEGF then disrupts the BBB, induces
hyperpermeability of BBB, reduces blood circulation and
induces hypoxia, edema and dopaminergic neuron
degeneration®. In fact, a low level of VEGF has been reported
with neuroprotective effects, but elevated VEGF stimulates
the severity of PD?. Some studies suggest that the NADPH
oxidase-related superoxide activates the NF-«xB pathway that
further activates Rho/ROCK cascade'®. The ROCK-NADPH
oxidase interaction then induces dopaminergic neuron
death either by increasing the level of ROS or by stimulating
dopamine neuron degeneration via an inflammatory
pathway'8. Apart from the apoptotic and neuroinflammatory
pathway, the Rho/ROCK cascade and NADPH oxidase
interact with angiotensin and participate in dopaminergic
cell death?, Angiotensin Il (AT-Il), an essential peptide of the
renin-angiotensin system (RAS), exerts its effect by AT-I and
AT-Il receptor. The AT-I and AT-Il receptors are present in
dopaminergic neurons where hyperactivity of AT-Il via AT-|
receptors induces dopaminergic neuroinflammation and
degeneration®. Administration of ROCK inhibitor, fasudil or
Y-27632, was found to reduce microglial activation and
dopaminergic cell death by minimizing the pernicious effect
of AT-llvia AT-Ireceptor®®.Inan /n vitrostudy, MTTP stimulated
the effect of AT-Il on dopaminergic cell apoptosis and this
damage was antagonized by ROCKinhibitor?. Therefore, there
exists a profound role of Rho/ROCK cascade and NADPH
oxidase in dopaminergic cell death via AT-Il mediated by A-|
receptors. Thus, it can be inferred that the Rho/ROCK-
mediated pathway plays a crucial role in the pathophysiology
of PD, whereas their inhibitors appear to be a potent
therapeutic moiety in the treatment and symptomatic
management of PD.

There are epidemiological studies that showed the
reduced risk of PD in patients who are on statin therapy?'.
Wolozin et a/3? performed the study using a sample size of
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Fig. 3: Pathological role of Rho GTPase in the etiology of Parkinson’s disorder. Rho/ROCK cascade and Rac are involved in the
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Reduced Akt, increased GSK-3B and calcium overload are involved in apoptosis, whereas NADPH oxidase, NF-kB, COX-2 activity, ROS and AT-Il are involved
in altered myelination, dopaminergic neuroinflammation and dopaminergic neurodegeneration. The increased activity of VEGF under the influence of the
Rho/ROCK cascade alters the BBB permeability and is responsible for dopaminergic cell death'’:'®

4.5 million people in which 700,000 patients were on
simvastatin and 50000 patients were on atorvastatin.
The outcome of this study concludes that only simvastatin
showed marked control on dementia and Parkinson
symptoms, whereas atorvastatin was only marginally
effective’?. Mutez et a/** conducted a case-control study to
determine the effect of statins on PD and found that the use
of statins increased the onset of PD by nine years as compared
to the patients who were not on statins. Further, the
investigator found that the use of statin also increases the
bioavailability of levodopa®. Lin et a/** conducted a large
prospective study using one million patients from the National
Health Institute (NHI) database. Parkinson’s patients having
diabetes were also included in the study. Interestingly, the
finding of this study showed a lower risk of PD in statin users
than non-statin. All statins except lovastatin showed a
dose-dependent protective effect on the incidence of PD3,
Shalaby and Louis*® conducted a meta-analysis systemic

review of epidemiologic studies and found the
protective effect of statins in PD. In an /n vitro using
6-Hydroxydopamine (6-OHDA) treated the PC12 cell,
simvastatin at a dose of 1.5 uM exhibited a significant
reduction in inflammatory markers such as TNF-a, IL-6, COX-2
and apoptotic marker caspase-3%°. In another study by
Kumar et a/¥ the administration of simvastatin (30 mg/kg)
and atorvastatin (20 mg/kg) for 14 days resulted in a
significant reduction in 6-OHDA-induced inflammatory
markers such as TNF-a, IL-6 and oxidative stress. In the
chemically induced Parkinson’s model, administration of
simvastatin (1 mg/kg) after 90 min of MPTP injection inhibits
activation of p21 and NF-kB in microglial cells®*. Therefore,
statins, by their ability to block GTPase activity, i.e., block
Rho/ROCK cascade, could be a future therapy for PD.

Rho GTPase, Alzheimer's disease and statins: The
Alzheimer’s disease (AD) is a neurodegenerative disorder
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characterized by dementia, cognitive dysfunction and loss of
memory*. The AD isa major concern for public health and age
progression is a major risk factor in its pathogenesis®.
Common risk factors for AD include hypercholesterolemia,
cerebrovascular disorder and coronary artery disease.
Neuroinflammation,  neurodegeneration, inflammatory
microglia and hyperphosphorylated neurofibrillary tangles
of tau protein (NFTs) are seen in patients with AD*,
The presence of extracellular amyloid (beta-amyloid or AB)
and NFTs are common clinical diagnostic criteria for
evaluation of AD*. It is hypothesized that the Amyloid Beta
Protein Precursor (ABPP), which is 677-770 transmembrane
amino acid is the precursor of AB. The ABPP is acted upon by
2 enzymes, B-secretase and y-secretase resulting in the
formation of AB isoform as shown in Fig. 4*°. The a-secretase,
on the other hand, acts through the non-amyloidogenic
pathway, cleavage ABPP and produces Secreted ABPP (sABPP)
and carboxy-terminal fragment alpha (CTFa), which then
mitigate ABPP generation®. Apart from the role of AB,
neuroinflammation and neurodegeneration play a pivotal
role in the pathology of AD, which is evident from the
post-mortem of the AD-affected brain*'. The AR is reported to

activate theinflammatory cascade via the binding of microglia
and astrocytes to Toll-Like Receptors (TLRs) and stimulate
microglia to produce NADPH oxidase and TNF-a*. Although,
the role of AB and tau protein in the pathogenesis of AD is
well-established, it isimportant to point out that this review is
focussed on the pathological role of Rho GTPase in
neurological disorder and in line with that, Rho GTPase
has been found to play a pivotal role in the pathology of AD*.
The AB directly stimulates the activity of Rho GTPase as well as
Rho GTPase independently modulates the etiology of AD by
inducing an alteration in the cytoskeleton structure and loss
of synaptic plasticity®. In the brain of AD patients, Rho A was
found to be increased and localized in hyperphosphorylated
tau aggregates*. The AP also increases the activity of
Rho/ROCK in the AD, which is evident from an /n vitro study
where oligomeric AB,.,, administration stimulates the activity
of Rho/ROCKin PC12 cells*. In anotherinteresting experiment,
treatment with AB,,, activated the Rho/ROCK pathway,
whereas intraventricular injection of ROCK inhibitor
Y-27632 reversed this change. This study further
strengthens the pathological role of Rho/ROCK in the
progression of AD*®. Activated Rho/ROCK reduced the activity
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of the PI3K/Akt pathway and the downregulated Akt pathway
increased the GSK-3p activity that induces inflammation and
apoptosis*. Downregulation of the Akt/PI3K pathway in AD is
evident from a study where wortmannin (PI3K inhibitor)
induced tau hyperphosphorylation, similarly, activation of the
PI3K/Akt pathway attenuated the AR induced synaptic
disorder, cognitive impairment and AP induced
hyperphosphorylation®. The increased GSK-3B activity also
stimulates the expression of pro-inflammatory cytokines like
IL-6, IL-1B and tumor necrosis factor and promotes NFT
formation through hexokinase and voltage-gated anion
channel (VDAC) phosphorylation?. In the AD, inhibition of
Akt/PI3K and activation of GSK-3B results in the
phosphorylation of VDAC, due to which hexokinase cannot
bind with VDAC and detaches from mitochondria®. This
process limits the hexokinase for access to glucose
metabolism (glycolysis), mitochondrial ATP production and
apoptosis in the neurons of AD*. Along with the Akt/PI3K
mediated activation of GSK-3B signaling, AB, calpain and
calcineurin directly activate the GSK-3 signaling leading to
AD pathogenesis’#8, Apart from the involvement of
Rho/ROCK, Rac1 also plays a crucial role in the pathogenesis of
AD*. The Rac1, which is the small GTPase molecule, was also
found to be upregulated in AD and this phenomenon causes
the formation of NFTs. There is an /n vitro study that
suggests the pathological role of Rac1 in the formation of AB
from ABPP whereas Rac1 inhibitor NSC23766 reduces the
ABPP level and apoptosis in the hippocampal neuron®%*' The
Rac1 is also associated with increasing the activity of NADPH
oxidase, which in turn mediates the neuroinflammatory
cascade with the help of NF-xB and TNF-a°%%%, Notably, there
is clear, unambiguous mechanistic involvement of Rho
GTPase (Rac1 and RhoA) in the etiology of AD through the
induction of oxidative stress, neuroinflammation, apoptosis
and NFTs formation. As of now, few ani-Alzheimer’s drugs are
approved by FDA but they have potential role in the
symptomatic management of the disease. In recent times,
novel formulation approaches such as formulation and
development of galantamine (approved anti-Alzheimer’s
drug) /n situ gel have been studied for potential anti-
Alzheimer effect®.

Statins are reported with a pleiotropic mode of action in
PD. Statins directly inhibit the formation of Ap and statins, by
inhibiting Rho GTPase, exert a protective role in PD*.
Treatment with atorvastatin has been associated with the
suppression of AB peptides induced by B-secretase in cultured
microglia from the cortex, whereas simvastatin attenuated the
production of inflammation induced by A", It was inferred
that the statin inhibits GGPP and FPP and exerts protection in

AD. Another /n vitro study reported that lovastatin and
simvastatin downregulated the production of AR and on
behalf of this study, the author proposed the protective
mechanism of statins involving the inhibition of Rho
GTPase>#%€2 Based on the published study, it can be inferred
that statins restore the BBB and enhance clearance of A,
stimulate the release of a-secretase that cleavages the ABPP
to produce secreted sABPPa and membrane-associated
carboxy-terminal alpha, inhibit the dimerization of B and y
secretase which reduces the formation of sABPPB and
CTFB>78384, This subsequently suppresses the AB production
and inhibits the Rho GTPase that results in the inhibition of
B and y secretase activities and reduces the expression of
proinflammatory cytokines (IL-B1, IL-6 and TNFa), NF-xB
expression and suppress the Rac1 mediated oxidative stress
and NADPH oxidase activities>”#355, Thus, statins, through the
inhibition of Rho GTPase, upregulate the Akt/PI3K cascade
that directly reduces the expression of pro-apoptotic
mediators like caspase 3 and caspase 9. The Akt/PI3K
upregulation or activation inhibits the activity of GSK-3p and
hexokinase-VDAC phosphorylation which were responsible for
the formation of NFTs. Statins thus exert a protective effectin
the treatment and management of Alzheimer’s disease via
Rho GTPase inhibitory property>>>7-6163-66,

Statins were found to be associated with a reduction
in AD severity by 70%, whereas a cross-sectional study
performed by Wolozin et a/%® signifies that only lovastatin and
pravastatin were able to reduce the symptoms of AD, whereas
simvastatin was ineffective. Eckert et a/®° for the first time,
established that the product of isoprenyl, i.e., GGPP and FPP,
is elevated in grey matter and white matter of Alzheimer’s
patients and not cholesterol. Contrary to the findings of
Wolozin et a/®® this study showed that simvastatin, when
administered for 21 days at a dose of 50 mg/kg to C57BL/6J
mice, reduces the level of FPP and GGPP®. Additionally, it has
been reported that the administration of simvastatin and
atorvastatin inhibits the ROCK pathway and mitigates the
level of the amyloid precursor protein (APP) in N2a/Swe
neuroblastoma cell”®. There is further evidence that
atorvastatin when administered at a dose of 80 mg/kg
for 145 months, results in a marked reduction in
neuroinflammation and controls the progression of
Alzheimer's disease”'. There is also a significant impact of the
duration of therapy and the age of the patient in the
treatment of Alzheimer's disease’?. Simvastatin, when
administered at the dose of 40 mg/kg for 3-6 months,
completely restored the memory dysfunction in 6-month-
aged transgenic mice, but there was no effect of this dose on
a similar strain of mice at the age of 12 months’2. Therefore,
statins’ cumulative effect is to inhibit AR formation, inhibit



Table 2: Clinical evidence of statin in AD”?
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Type of study

Findings

Author

Observational study

Narrative review

Randomized controlled clinical trial
Cochrane review

Clinical trial

Observational study

Case-control study

Prospective study

Population-based study

Prospective study

Cross-sectional study

Systemic review and meta-analysis
Systemic review and meta-analysis
Observational study and Meta-analysis
Systemic review and meta-analysis
Observational study and Meta-analysis

Long-term use of statin positively affects clinical outcomes in cognitive
dysfunction and dementia patient

Use of statin has a negative effect on cognitive dysfunction in patients
Use of statin has a neutral effect

Use of statin in older patients has no preventive effect on AD or dementia
Atorvastatin has a preventive effect on cognitive dysfunction

Lipophilic statins have a positive effect on cognitive dysfunction

Use of statins lowers the AD

Statin users have improved cognitive scores as compared to non-statin users
Early use of statin has lower progression of AD

Use of statin shave protective effect on AD

Use of statin shave protective effect on AD

Statin use has a neutral effect on AD

Use of statin has a positive effect on AD

Use of statin has reduced the risk of AD

Use of statin reduced all types of dementia

Statin use has a protective effect on post-stroke dementia

Bitzur et al.

Schultz et al.
Power et al.
McGuinness et al.
Posvar et al.
Sahebzamani et al and Li et al.
Jick et al.

Sierra et al.

Lin etal.

Haag et al.
Rockwood et al.
Olmastroni et al.
Xuan et al.

Wood et al.

Chu et al.

Yang et al.

neuroinflammation-neurodegeneration, prevent apoptosis
and prevent the hyperphosphorylated tau protein. Thus, from
all the above-mentioned studies, it can be concluded that
statins exert neuroprotection in Alzheimer's disease.
Nevertheless, a more detailed and mechanistic-based
approach is a prerequisite for better evaluation of statins in
Alzheimer’s disease, as shown in Table 2.

Rho GTPase, cognitive dysfunction and statins: Cognitive
impairment is the result of many neurological disorders like
depression, AD, PD, multiple sclerosis (MS) and epilepsy,
cerebral ischemia, traumatic brain injury and stroke®.
In cognitive dysfunction, the role of increased intracellular
calcium concentration, glutamate activity, apoptosis, NADPH
oxidase, oxidative stress and expression of inflammatory
markers have been reported by Raz et a/¥. Reduced levels of
nitric oxide, Brain-Derived Neurotrophic Factor (BDNF) and
vascular endothelial growth factor (VGDF) are also associated
with cognitive dysfunction®®®’. The Rho GTPase plays a pivotal
role in the progression of cognitive dysfunction by
mediating all the pathological factors’®2. Statins, by their
GTPaseinhibitory activity, are emerging as a future therapy for
improvement in cognitive impairment®®*, There are two
published meta-analysis studies conducted by Wolozin et a/%
and Swiger et a/*> where, the outcome established the fact
that the use of statins is not associated with any adverse effect
on dementia and cognitive function, preferably the author
concluded that the positive effect of statins in cognition and
dementia®®. Statins, when administered, act on HMG-CoA
reductase and inhibit cholesterol metabolism, thus by
blocking the action of HMG-CoA reductase, there is
downregulation of molecules such as Geranylgeranyl
Pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP)

which are the product of isoprenoid. Downregulation of FPP
and GGPP-associated GTPase like Rho and Rac is supposed to
be a protective pathway in cognition®?*#%, Simvastatin exerts
a protective effect on cognition and upon administration of
FPP, this protection was abolished®”. Administration of statins
is found to be associated with upregulation of VEGF and BDNF
which result in improved cognition outcomes®%,

LIMITATION IN THE DEVELOPMENT OF Rho GTPase
INHIBITORS AND USE OF STATINS

The development of Rho GTPase inhibitors has been a
challenging task for researchers because of their picomolar
nucleotide affinity'®. Apart from the aim to develop specific
Rho GTPase or RhoA/Racl inhibitors, ROCK-Il selective
inhibitors could be a better alternative''. A major problem
encountered in the development of ROCK inhibitors is the
presence of two isoforms of ROCK, i.e.,, ROCK-I and ROCK-I1'%,
A challenge that exists in the development of a Rho GTPase/
ROCK inhibitor is teratogenicity, as, Y-27632, a Rho GTPase
inhibitor, has been reported with teratogenic side effectsinan
animal model'®. No doubt, stains are one of the most widely
prescribed drugs and are useful in the prevention of
cardiovascular and cerebrovascular disorders. There are
findings which show some side effects of statins that limit
their use'®. Statins increase the hepatic transaminase level
asymptomatically, causing myositis rhabdomyolysis and
tubular proteinuria'®. Moreover, the interaction of statins
with antibiotics such as erythromycin or clarithromycin
increases the toxicity'®. A published meta-analysis using
32752 participants showed the increased risk of diabetes in a
patient who takes a higher dose of statins, as compared to
the patients who take lower or moderate doses of statins'®,
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Therefore, keeping in view the limitation of fasudil, Y-27632
and statins, the use of nanoformulation could be the better
therapeutic approach. Nanoformulation will reduce the dose
of statins significantly and eventually, will minimize the
hepatotoxic effect. In line with this, pravastatin-naringenin
nanotransferosomes was designed and developed to
improve bioavailability and to minimize hepatic side effects'.
The nanoformulation approach has been also used in various
other diseased conditions such as oral candidiasis, in relieving
pain and inflammation and also against ocular fungal
disease'71%9,

CONCLUSION

The current manuscript highlighted the deleterious effect
of Rho GTPase on Alzheimer's disease, Parkinsonism and
associated depression and cognitive dysfunction. In Japan,
fasudil,a RhoA/ROCK inhibitor, has been marketed since 1995
for the treatment of cerebral spasms after haemorrhage.
Fasudil, after oral administration, metabolizes into hydroxy
fasudil, which has poor brain penetration. To date, only fasudil,
Y-25632 and H-1152 have been studied /n vivo modelsand no
selective Rho GTPase inhibitor has been clinically approved by
the US FDA. Considering the therapeutic importance of
Rho GTPase, various small molecules are drugs under different
phases of development such as ITX3 (selective GEF inhibitor),
sacrament (NSC23766) and CASIN and ML141 (cdC42
inhibitor) and EHT 1864 (Rac inhibitor). Henceforth, there
exists an unmet need for novel Rho GTPase inhibitors or a
search for existing molecules that may act as Rho GTPase
inhibitors. Additionally, there exist the use of techniques like
docking and NMR, ultra-high field magnets, robotic
autosamplers and cryogenic probes and surface plasmon
resonance for quicker identification and development of hits
into a specific lead molecule with Rho GTPase inhibitory
activities. Moreover, nanoformulation of statin class of drugs
or fasudil, precisely if used intranasally could overcome the
limitations of these drugs and can also exhibit potent
neuroprotective effects. Furthermore, more extensive studies
and clinical practice guidelines are a prerequisite for the use
of statins in neurological disorders as Rho GTPase inhibitor.

SIGNIFICANCE STATEMENT

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are
commonly diagnosed neurological disorders (NDs). Studies
have shown the pathological role of Rho GTPase in NDs and
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hence, their inhibitors have been developed as
neuroprotective agents. Herein, the possible multi-factorial
pathogenic-mechanistic role of Rho GTPase in NDs, along with
the neuroprotective role of stains as a Rho GTPase inhibitor, is
discussed. Further, the limitations and challenges in the
development of their inhibitors were also discussed.
Additionally, it was concluded that the development of
nano-formulation-based drug delivery of stains or another
inhibitor would be an innovative approach to the
management of NDs. Hence, the manuscript will be a valuable
addition for the researchers to rationally design and develop
Rho GTPase inhibitors for the NDs.
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