

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2025.345.356

Review Article Cyclosporine Transporter Pharmacogenomic Effect in Transplantation: An Updated Systematic Review

¹Muhannad Faleh Alanazi and ²Gomaa Mostafa-Hedeab

¹Division of Radiology, Department of Internal Medicine, College of Medicine, Jouf University, Sakaka 72388, Kingdom of Saudi Arabia ²Department of Pharmacology, Medical College, Jouf University, Sakaka 72388, Kingdom of Saudi Arabia

Abstract

Cyclosporine (CsA) is commonly used in organ transplantation based on its immunosuppressant activity. Monitoring CsA fluctuation in the blood level is important as it belongs to drugs with narrow safety margin windows. Its low level may result in loss of immunosuppressant activity leading to rejection. In contrast, a high CsA level may result in CsA-related adverse effects. The CsA absorption is controlled mainly by *ABCB1* and *ABCB2* transporters. The current study aims to investigate the gene controlling CsA absorption among transplanted patients. A literature review was conducted from January, 2000 to November, 2024 using Scopus, Embase, as well as PubMed bibliography. The research focuses on cyclosporine, transplantation, pharmacogenetics and pharmacogenomics. The current research items were met by 482 which were subjected to the exclusion of duplication or unfit research papers that resulted in 48 final research papers, which were then analyzed. Hence, found a strong association between some *ABCB1* gene polymorphisms and CsA blood level, while some results nullify that. These findings necessitate the need for a genome-wide association study with multi-centers with different ethnicities for better understanding and accurate conclusions of the CsA dosing based on genetic variability.

Key words: Cyclosporine, transporter, transplantation, pharmacogenomics, genome-wide association

Citation: Alanazi, M.F. and G. Mostafa-Hedeab, 2025. Cyclosporine transporter pharmacogenomic effect in transplantation: An updated systematic review. Int. J. Pharmacol., 21: 345-356.

Corresponding Author: Gomaa Mostafa-Hedeab, Department of Pharmacology, Medical College, Jouf University, Sakaka 72388, Kingdom of Saudi Arabia

Copyright: © 2025 Muhannad Faleh Alanazi and Gomaa Mostafa-Hedeab. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The success of CsA isolation from fungus *Tolypocladium inflatum* gams soil samples in 1976, a neutral lipophilic character, was considered an important event in drug discovery. Cyclosporine A (CsA) and cyclosporine C (CsC) were the only metabolites that showed pharmacologic activities. The CsA is the only one that produced a favorable immunosuppression activity in addition to its anti-parasitic, fungicidal and anti-inflammatory effects¹. In 1983, the Food and Drug Administration (FDA) approved its use as an immunosuppressant agent and then widely used after the transplantation of almost all organs².

Resulting in a reduction of morbidity, rejection episodes and decreased transplanted recipients hospitalization days in transplant recipients, as well as increased quality of life and survival³. The CsA is effectively used as an immunosuppressive agent in the treatment of many diseases such as uveitis, psoriasis as well as nephrotic syndrome⁴. In addition; CsA effectively alleviates dry eye⁵.

The CsA action is mediated through its binding to cyclophilin of T-cell to form CsA/cyclophilin, resulting in inhibition of IL-2, IL-4 and of nuclear factor of activated T cells via its dephosphorylations⁶⁻⁸, reflected in a marked reduction of effector T-cell⁹. In addition; it decreases IL-1, IL-6 and TNF- α levels as well¹⁰.

The CsA showed limited and high variability in its absorption¹¹. Its physical character is a hydrophobic cyclic peptide, making its oral absorption incomplete and the presence of bile acids for its emulsification is essential for its absorption¹². The development of microemulsion formulations widely improves its absorption rate independent of bile acid¹³. The CsA monitoring is essential¹⁴, as it has a narrow therapeutic index with variability in drug level among persons¹⁵.

In the early phase post-transplantation, patients, CsA variability may reach up to six-fold differences among these patients¹⁶. The importance of this finding to be considered is the variation in the CsA level in this stage is dangerous, where hypo-immunosuppressant results in rejection that may reach up to a fourfold increase than normal¹⁷.

The CsA is a substrate of CYP3A and P-Glycoprotein (P-gp)¹⁸, both of these enzymes reduce the rate of CsA absorption in the small intestine¹⁹. Their combined effect on CsA explained the low CsA bioavailability which ranges from 10 to 50%²⁰⁻²³. The Co-administration of any mediation that induces or inhibits CYP3A4 or P-gp can alter CsA levels;

Grapefruit juice can increase the levels of CsA²⁴, through its action on P-gp²⁵.

The P-gp is highly expressed in many tissues, especially in the intestinal, liver and kidney tissues¹⁵. It induces the efflux of substrate drugs from the intestinal lumen and increases its bile and urine excretion¹⁸. The CYP3A4 and CYP3A5 represent the most important members in the CYP3A drug-metabolizing enzymes family; in which CYP3A5 contributes to a larger extent than CYP3A4 in the CsA metabolism¹⁸.

Moreover, CsA absorption and metabolism are different in pediatrics than in adults²⁶. This may be related to a time-dependent manner effect of *ABCB1* and *SXR* SNPs of renal transplanted patients from childhood to adulthood periods²⁷.

The CsA is extensively metabolized by liver CYP3A4 and CYP3A5 enzymes and to a lesser extent in the small intestine and Kidney²⁸. Excretion of metabolites into the bile is the major route of drug elimination.

The variation in the liver and intestinal CYP3A and P-gp expression and function may explain the inter-individual variability of CsA blood levels and its metabolites as well²⁹. In the same way, the nephrotoxicity susceptibility may be a result of these expression levels that determine the extent and level of its metabolite that plays a crucial role in nephrotoxicity individual risk²⁹.

Although the exact cause of CsA induced-nephrotoxicity is not well elucidated; many reports explored the possible mechanism of this nephrotoxicity; which may be due to the generation of inflammation, oxidative stress (OS) 30,31 , reactive oxygen species (ROS) overproduction $^{30-32}$, OS autophagy and apoptosis 30 , CsA induces lipid peroxidation through an increase in oxidative stress production 33 or via (Transforming Growth-Factor- β 1) TGF-1 β production.

Moreover; CsA increases inflammatory-induced fibrosis and kidney failure³⁴ which is a result of epithelial cell Epithelial-Mesenchymal Transition (EMT) induction leading to its apoptosis and amelioration of DNA synthesis³⁵. Finally, it may induce various types of vasoconstrictor agents³⁶ and osteopontin to renal tissues³⁷.

The objective of this updated systematic review is to evaluate the pharmacogenomic effects of cyclosporine transporters in transplantation. It aims to assess how genetic variations in transporter genes influence cyclosporine pharmacokinetics, efficacy and toxicity. The review also seeks to identify potential biomarkers for optimizing immunosuppressive therapy in transplant recipients.

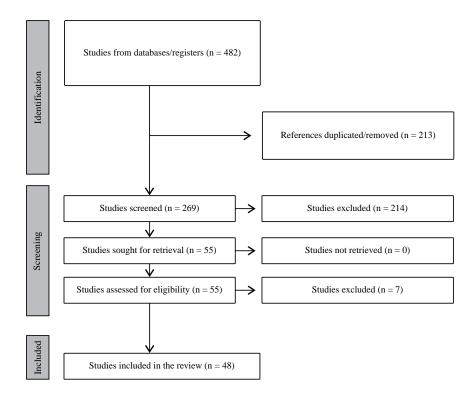


Fig. 1: Flow chart of the included studies

ATP-binding cassette: The membrane transporters known as ATP-binding cassette (ABC) proteins are made up of both transmembrane and nucleotide-binding domains. There are about fifty ABC transporters known to exist in humans³⁸. These proteins are crucial transporters of ions, chemical compounds, peptides, lipids and medications and they have a wide range of functions in human physiology. Additionally, they have been linked to several illnesses and pathological situations, including medication resistance in the case of P-Glycoprotein (P-gp) and cystic fibrosis³⁹.

Although these transporters carry out a variety of functions, drug efflux is the main way that they contribute to drug distribution. The P-gp is a well-known member of the ABCB subgroup within the ABC family. Because it is expressed in the kidneys⁴⁰, the intestine⁴¹ and among other places, it plays a role in the distribution and removal of therapeutic drugs.

The ABC transporter family also includes *ABCG2*, occasionally referred to as Breast Cancer Resistance Protein (BCRP). It transports many medications, including conjugates, as well as metabolites and uric acid. Additionally, extracellular, transmembrane and intracellular components make up BCRP's structure⁴². The transporter's existence is linked to chemoresistance in breast cancer tumors⁴³, especially metastatic lesions⁴⁴, as the name implies. The kidneys,

gastrointestinal tract and placenta are among the tissues that express the transporter⁴⁵.

The expression and functionality of these transporters influence the bioavailability and removal of therapeutic targets. The ABC proteins participate in drug transport and are expressed in the kidneys, gut and blood-brain barrier. Recently the effects of different circumstances on ABC transporters. The P-gp, sometimes referred to as *ABCB1*, transports a variety of medications, such as peptide drugs⁴⁶, immunosuppressants⁴⁷, natural agents⁴⁸ and cardiovascular drugs⁴⁹.

Thus, although the development of CsA formulations which is markedly improved its absorption; the variation in the liver and intestinal CYP3A and P-gp expression and function may explain the inter-individual variability of CsA blood levels and its metabolites as well. The lack of an international clinical guideline incorporating pharmacogenomic reports, especially P-gp and CYP3A expressions, interferes with CsA personalization.

Research methodology: A literature review was done from January, 2000 till November, 2024 using three bibliographic databases: Embase, PubMed and Scopus. The search term was: "Cyclosporine", "Transplantation", "Pharmacogenetics" and "Pharmacogenomics". The summary of the PRISMA is demonstrated in Fig. 1; among 482 research papers, only 48 were included in the final review screening.

Association between *ABCB1* **gene polymorphisms on CsA kinetic and effect:** Many studies explored the impact of *MDR1* (*ABCB1*) polymorphisms among different types of transplanted patients. The results were conflicting. The main output of the *ABCB1* effect on CsA is summarized in Table 1.

Some authors found no association between *ABCB1* gene polymorphisms with the pharmacokinetics of CsA^{50,51}, while others proved its minor effect on CsA kinetic⁵² where functional G1199A rs2229109 polymorphism showed a superior effect compared to the non functional C3435T.

On the other hand, Grenda *et al*. ⁵³ a study involving 197 renal-stable transplanted patients stated that *MDR1* polymorphisms affect only the first post-transplant week CsA difference among transplanted recipients.

In a study of 197 stable renal transplant patients in the United Kingdom; the targeted CsA blood concentrations strategy can't be based on *MDR1* haplotypes as it may have a minor role in determining CsA kinetics⁵⁴.

While some studies showed a strong association between *MDR1* (*ABCB1*) polymorphisms and CsA pharmacokinetics⁵⁵⁻⁵⁷.

Among recent renal transplanted Chinese patients receiving diltiazem, *MDR1* C1236T; rs1128503 G2677T/A SNP or haplotypes C-G-C, T-G-T and T-T-C are found to be associated with CsA concertation 58, previous results were also confirmed by Contreras-Castillo *et al.*⁵⁸.

Lastly, *ABCB1* SNPs were found to affect CsA in renal transplanted patients in a time-dependent manner during development from childhood to adulthood²⁷, it may have an impact on CsA personalized medicine to individualize CsA doses among Allogeneic hematopoietic cell transplantation⁵⁹.

On the other hand, many studies concluded other related effects associated with *ABCB1* SNPs. Foote *et al.*⁶⁰ showed *ABCB1* SNPs P-gp important role in renal transplant recipients' peripheral blood lymphocytes CD3(+); interestingly P-gp activity was influenced by CsA but macrolide exposure has no role while, Fredericks *et al.*⁶¹ concluded that, the *ABCB1* polymorphism has an age-related effect on oral bioavailability in 104 Swedish pediatric patients before renal transplantation patients.

Additionally, Foote *et al.*⁶² showed that *ABCB1* 3435C>T rs1045642 could be used in the detection of some CsA-related side effects in renal transplant recipients *ABCB1* 3435C>T rs1045642 and 2677G>T rs2032582 polymorphisms which agree with the results of Sun *et al.*⁵⁹. Similarly, the *ABCB1* 2677 GG may give bases for CsA personalized medicine as well as

allograft outcomes in transplanted patients⁶³. Finally; another study by Wang *et al.*⁶⁴ identifies the correlations between *ABCB1* rs1128503, CC genotype and infection susceptibility risk.

Association between ABCC2 gene polymorphisms on CsA **kinetic and effect:** The association between ABCC2 gene polymorphisms showed no significant association between the studied SNPs and CsA levels. Wang et al.65 showed no association between rs717620, rs1885301, rs1128503, rs2032582 or rs1045642 and CsA in a study that included 34 Korean Hematopoietic Stem Cell Transplant Patients. Fanta et al.⁶⁸ stated no association for an age-related effect of ABCB1 polymorphism on oral bioavailability, after screening 24C>Trs717620,-129T>Crs3213619,1554+24T>Crs2235033, 1725+38G>A rs2235013, 1199G>A rs2229109, 1236C>T rs1128503, 1446C>G rs11364609424, C>T rs717620 and 1446C>G rs113646094 among 104 Sweden Pediatric patients before renal transplantation patients. In the same way, the results of Sánchez-Lázaro et al.71, who screened 1249G>A rs2273697, 3972C>T rs3740066, -24C>T rs717620 among 60 (36 on CsA) Spanish Heart transplant patients treated patients⁶⁴.

On the other hand, Zgheib *et al.*⁶⁶ concluded a strong association in a study of 68 Croatia recipient-donor pairs. They investigated 24C>Trs717620 and 1249G>A rs2273697 donors' *ABCC2* 1249G>A polymorphism concluded an increased clearance and reduced exposure by attenuating gut, the liver and the kidney *MRP2*; they stated the effect of *ABCC2* 1249 G>A differs in donors than recipients. Where it induces the renal CsA effect among donors while improving the liver and the gut CsA among recipients⁶⁶.

The association of the *ABCB2* gene polymorphism with CsA kinetics, efficacy or adverse effects was summarized in Table 2.

The current review highlighted the importance of transporters pharmacogenomic on CsA personalized therapy among the transplanted recipients. The study perspective was to better CsA dose adjustment and improving transplanted outcomes. One of the current review recommendations is regular pharmacogenomic screening in clinical practice for better CsA therapy justification. Genetic polymorphisms' impact on CsA appears to be significant and may aid in the appropriate pre-transplant CsA dose adjustment. This review may be limited by the absence of multicenter, wide-genome studies with a substantial number of patients from various ethnic backgrounds.

MDR1 (ABCB1) C3435T	SINP reterences Allele		Patient number	Patients type	Country	Clinical implication	Date	Keterences
C1236T T129C	rs1045642 A rs2032582 rs1128503 rs3213619	C>T C>T G>T>A C>T	Seventy (30 CsA)	Renal transplant recipients	Spain	ABCB1 SNPs in may determine the peripheral CD3(+) blood lymphocytes in renal transplant recipients' CsA may affect P-gp activity exposure	2013	Foote <i>et al</i> . ⁶⁰
MDR1 (ABCB1) 1236C>T G2677T C3435T	rs1128503 rs2032582 rs1045642	C>T A>G,T C>T	21	Allogeneic hematopoietic SCT recipients	Japan	CsA concentration was significantly higher when the genotype of CYP3A5 rs15524 was T/T or rs776746 was G/G	2011	Algharably <i>et al.</i> 50
<i>MDR1 (ABCB1</i>) 1236C>T 2677G>T/A	rs1128503 A rs2032582	C>T G>T>A	34	Hematopoietic stem cell Transplant	Korea	None of the genetic polymorphisms in <i>ABCB1</i> were significant covariates in the pharmacokinetics of CsA	2015	Wang <i>et al.</i> ⁶⁵
MDR1 (ABCB1) C3435T G1199A	rs1045642 rs2229109	C>T G>A	40	Renal transplanted Patients Renal transplanted Patients	Egypt	ABCB1 may have a minor role in CsA blood level ABCB1 G1199A has a greater effect compared to ABCB C3435T SNP	2013	Turolo <i>et al</i> ⁵²
<i>MDR1 (ABCB)</i> 1236C>T 2677G>T>A 3435C>T		C>T G>T>A C>T	832	Renal transplant recipients	Czech Republic	No significant correlations between CsA pharmacokinetics <i>ABCB1</i> haplotypes influence the risk of acute rejection <i>ABCB1</i> allele arrangement plays a more significant role in p-gp regulation than individual polymorphisms <i>ABCB1</i> polymorphisms can determine the risk of acute rejection away from CsA pharmacokinetic parameters. The risk of acute rejection determined by <i>ABCB1</i> is independent of pharmacokinetic parameters	2008	Llaudó <i>et al^{k7}</i>
<i>MDR1 (ABCB1)</i> C1236T G2677T/A C3435T IVS21+49	rs128503 rs2032582 rs1045642 rs2032583	C>T G>T>A C>T IVS21+49	87	Teenagers after kidney transplantation	Italy	None of the CsA pharmacokinetic parameters were associated with the <i>ABCB1</i> genetic polymorphism	2010	Fanta <i>et al</i> / ⁶⁸
MDR1 (ABCB1) 1199G>A C1236T 2677G>T/A 3435C>T 1446C>G	rs2229109 rs1128503 A rs2032582 rs1045642 rs113646094	G>A C>T G>T>A C>T C>T	104	Pediatric patients before renal transplantation	Sweden	Influence of <i>ABCB1</i> polymorphisms on CsA oral bioavailability varies with age	2007	Fredericks <i>et al</i> ⁽⁶⁾
MDR1 (ABCB1) C3435T	rs1045642	Ş	200	Related toxicity in a cohort of pediatric renal allograft recipients	Poland	No significant association	2009	García <i>et al</i> ⁶⁹
MDR1 (ABCB1) C1236T 2677 G>T>A T3435C T-129C	rs128503 A rs2032582 rs1045642 rs3213619	C/T G>T>A T/C T/C	33	Kidney transplant patients	Netherlands	No considerable genotype effects on CsA clearance were found for the selected genes	2010	Singh <i>et al.</i> 70
<i>MDR1 (ABCB1</i>) C1236T	rs1128503	5	126	Renal transplant patients	China	MDR1 variants affect CsA adjusted trough level, this effect is more when diltiazem is co-administered	2015	Contreras-Castillo <i>et al.</i> ⁵⁸
<i>MDR1 (ABCB1</i>) 1236	rs1128503	C>I	112	Renal transplant patients	China	MDR1 G2677T/A SNP, C-G-C, T-G-T and T-T-C haplotypes influence CSA blood level in Chinese renal transplant patients co-treated with diltiazem	2009	von Ahsen <i>et al.</i> ⁵⁷

Gene	Var. type	SNP references Allele	es Allele	Patient number	Patients type	Country	Clinical implication	Date	References
MDR1 (ABCB1) C3435T C1236T 2677G> 1725+3 1554+2 1199G> T-129C 61A>G	7) C3435T C1236T 2677G>T>A 1725+38G>A 1554+24T>C 1199G>A T-129C 61A>G	C3435T rs1045642 C1236T rs1128503 2677G>T>A rs2032582 1725+38G>A rs2235013 1554+24T>C rs2235033 1199G>A rs2229109 1-129C rs3213619 51A>G rs9282564	C>T C>T G>T>A G>A T>C G>A T/C	26	Heart Transplantation	Spain	ABCB1 SNPs affect CsA level only the first 4 months post-transplantation; this effect seems to disappear in the long term	2011	Sánchez-Lázaro <i>et al</i> / ⁷¹
MDR1 (ABCB1)) 1236C>T 3435C>T 2677G>T/A	rs1128503 rs1045642 rs2032582	5 T S	69	Living donor renal Transplant recipients	Korea	Using the present model to calculate the dose of CsA with <i>ABCB1</i> genotyping isn't possible	2012	Božina <i>et al.</i> ⁷²
<i>MDR1 (ABCB1)</i> 3435C>T 2677G>T 1236C>T) 3435C>T 2677G>T/A 1236C>T	rs1045642 rs2032582 rs1128503	C>T G>T/A C>T	89	Renal transplant recipients	Spain	ABCB1 polymorphisms may help predict CsA-associated Adverse effects in renal transplant recipients which is independent of CsA blood level Genetic associations are most likely independent of the drugs through blood concentrations	2013	Foote <i>et al</i> ⁶²
<i>MDR1 (ABCB1</i>) 1236C>T 2677G>T 3435C>T) 1236C>T 2677G>T/A 3435C>T	rs1128503 rs2032582 rs1045642	C>T G>T/A C>T	150	Renal transplant patients	Brazil	No effect on CO/dose of CSA	2011	Song <i>et al.</i> ⁷³
MDR1 (ABCB;	<i>MDR1 (ABCB1)</i> 2677G>T>A	rs2032582	G>T>A	40	Allogeneic hematopoietic cell transplantation (allo-HCT)	Lebanon	ABCB1 2677 G>T>A genetic polymorphism may be used as a predictor in CsA-induced nephrotoxicity Pretransplant screening for this genotype may help CsA blood level adjustment optimization	2020	Sun <i>et al^{[59}</i>
<i>MDR1 (ABCB1</i>) 1236C>T 2677G>T 3435C>T) 1236C>T 2677G>T/A 3435C>T	rs1128503 rs2032582 rs1045642	C>T G>T/A C>T	155	Renal transplanted North India patients	North India	Pre-transplant screening of ABCB1 2677GG may help in CsA personalized dose adjustment and expect the risk of all graft rejection	2008	Yates <i>et al.</i> ⁶³
MDR1 (ABCB) 3435C>T 2677G>T 1236C>T 1199G>A 1725+38 1554+24 61A>G 421C>A	3435C>T 2677G>T/A 1236C>T 1199G>A 1725+38G>, 1554+24T>C -129T>C 61A>G	3435C>T rs1045642 2677G>T/A rs2032582 1236C>T rs1128503 1199G>A rs2229109 1725+38G>A rs2235013 1554+24T>C rs2235033 1574-24T>C rs2235033 1574-24T>C rs2235033 129T>C rs22313619 1720T>C rs22313619 1720T>C rs22313619	C>T G>T/A C>T G>A G>A T>C T>C T>C	60 (36 on CsA)	Heart transplant patients treated	Spain	Occurrence of serious infections was associated with ABCB1 rs1128503 Presence of the CC genotype decreases the infection risk and low CsA blood level Presence of rs9282564 AG is associated with higher CsA blood levels and renal function impairment Presence of rs2066844 CC in NOD2/CARD15 is associated with a higher graft rejection risk. NOD2/CARD15, a gene related to lymphocyte activation	2015	Wang <i>etal</i> [™]
<i>MDR1 (ABCB1</i>) C3435T) C3435T	rs1045642	5	19	Renal transplant patients	USA	MDR1 C3435T genotype may provide data help to explain the interracial CsA oral bioavailability differences Effort is still needed to identify the CYP3A5/MDR1 genotype and phenotype relationship	2003	Santoro <i>et al.</i> ⁵⁶
<i>MDR1 (ABCB1</i>) С3435T G2677T) C3435T G2677T/A	rs1045642 rs2032582	C>T G>T>A	75	Renal transplant patients	Canada	MDR1 SNPs influence the CsA level, especially in the early post-transplantation period MDR1 polymorphisms, study and correlation with other factors may help in establishing CsA personalized medicine in renal transplantation	2006	de Luna <i>et ali</i> ⁵⁵

е	SNP references Allele		Patient number		Comptny	**************************************		
			ב מנוכוור וומוווארי	Patients type	Country	Clinical Implication	Date	Keterences
MDR1 (ABCB1) C3435T rs	rs1045642	C>T	124	Stable caucasian renal transplant	Germany	MDR1 C3435T genotypes do not affect CsA trough level, renal function or acute rejection risk	2001	Azarpira <i>et al.</i> 74
						Efficacy in renal transplant recipients		
MDR1 (ABCB1) C3435T rs	rs1045642	\ <u>\</u>	88	Renal transplant	Iranian	MDR1 (3435CC) polymorphisms influenced CsA level	2006	Woodahl et al. ⁷⁵
				patients		as well as dose adjustment only in a few days		
						post-renal transplantation		
MDR1 (ABCB1) C1236T rs		C\	197	Stable renal	ΛĶ	MDR1 haplotypes and CYP3A5*1 genotype	2007	Press et al.54
G2677T/A rs.		G>T>A		transplanted		have a minor role in CsA pharmacokinetics		
C3435T rs	rs1045642	Ç				These minor effects can't be considered in the		
						establishment of CsA pharmacogenetic bases		
						for personalized medicine		
MDR1 (ABCB1) C3435T rs	rs1045642	Ş	139	Renal transplant	Chilean	No significant associations	2021	Woodahl et al.75
C1236 rs		C1236		recipients				
ĽΥ		G/T/A						
MDR1 (ABCB1) C1236T rs	rs1128503	Ç	521	Renal transplant	China	CYP3A genetic factors were varied in different	2017	Bandur et al. ⁵¹
2677G>T>A rs.	rs2032582	G>T>A		recipients		stages after transplantation		
C3435T rs	rs1045642	<-> <-> <-> <-> <-> <-> <-> <-> <-> <->						
MDR1 (ABCB1) C1236T rs	rs1128503	V-I	15	Pediatric kidney	Italy	ABCB1 and SXR SNPs influence CsA levels	2013	Ferraresso et al.27
2677G>T>A rs.	rs2032582	G>T>A		transplant patients		following renal from childhood to adulthood		
C3435T rs	rs1045642					in a time-dependent manner		
MDR1 (ABCB1) G1199A rs.	rs2229109	G/A	147	Myeloablative	USA	No correlations between ABCB1 and CYP3A5 SNPs	2008	Woodahl et al.75
C1236T rs	rs1128503	 -		hematopoietic		or the most common ABCB1 haplotypes and AKI or CKD		
2677G>T>A rs.	rs2032582	G>T>A		cell transplantation		ABCB1 1199G4A showed no LD to other SNPs		
3435C4T rs	rs1045642	C>T				Adjusting CNIs doses on these genetic bases is of no value		
						in reducing renal injury following myeloablative HCT		
MDR1 (ABCB1) C3435T rs	rs1045642	 	69	De novo renal	Canada	MDR1 polymorphisms influence CsA levels only	2007	Grenda <i>et al.</i> ⁵³
2677G>T>A rs2032582		G>T>A		transplant patients		in early post transplantation week		
						G2677T and C3435T SNPs are in linkage disequilibrium		

lable 2:	<i>ABCC</i> ∠ gene pc	Iable 2: ABCCZ gene polymorphisms association with CSA Kinetic	ociation with	LSA KINETIC, eTTICA	c, efficacy of adverse effects among transplanted patients	among trai	nspianted patients	
Gene	Var. type	SNP references Allele	s Allele	Patients number	umber Patients type	Country	Country Clinical implication Date	e References
ABCC2	-24C>T	rs717620	C>I	34	Hematopoietic	Korea	None of the genetic polymorphisms in ABCC2 were	3 Wang et al. ⁶⁵
	1249G>A	rs1885301	G>A		Stem cell		significant covariates in the pharmacokinetics of CsA	
	C1236T	rs1128503	Ç		Transplant patients			
	2677G>T/A	rs2032582	G/T/A					
	3435C>T	rs1045642	5					
ABCC2		rs717620	Ş	104	Pediatric patients	Sweden	Sweden ABCC2 polymorphisms have no age-related	2007 Fredericks et al.61
	1446C>G	rs113646094	5/0		before renal		effect impact on oral bioavailability	
	2677G>T/A	rs2032582	G>T/A		transplantation			
	1236C>T	rs1128503	 					
	1199G>A	rs2229109	G>A					
	1725+38G>A	rs2235013	G>A					
	1554+24T>C	rs2235033	Σ					
	-129T>C	rs3213619	<u>></u>					
	61A>G	rs9282564	A>G					
ABCC2	1249G>A	rs2273697	1249G>A	60 (36 on CsA)	Heart transplant	Spain	No significant association	2015 Wang et al. ⁶⁴
	3972C>T	rs3740066	3972C>T		patients treated			
	-24C>T	rs717620	-24C>T					
ABCC2	-24C>T	rs717620	 	89	Recipient-donor	Croatia	Croatia ABCC2 1249G>A has influenced CsA in both donors as well as the recipient: 2017 Zgheib et ali66	7 Zgheib <i>et al</i> ⁶⁶
ABCC2	1249G>A	rs2273697	G>A		pairs		Among donors it increases CsA clearance and reduces exposure through	
							gutMRP2 in the liver and the kidney and enhances the renal CsA effect	
							In recipients, it enhances CsA action in the liver and the gut	

CONCLUSION

The current review demonstrates an association between *ABCB1* as well as *ABCB2* SNPs and CsA pharmacokinetic, efficacy or related toxicity while some results nullify that. The difference between the conflicting results may be due to the small sample size and different patient ethnicity of the patients included in the studies. The significant correlation between different SNPs and CsA outcomes makes the CsA-tailored personalized therapy based on patient genotyping a promising and reachable target and the need for a genome-wide association study to obtain accurate and final results.

SIGNIFICANCE STATEMENT

The current systematic review screens the relevant studies dealing with the transporter gene polymorphisms involved in the CsA absorption, efficacy or its related adverse reactions among transplanted patients. The most studied genes *ABCB1* (*MDR1*) were associated with significant results in transplanted patients. The results of this review demonstrated the variability of results in this regard, with significant correlations related to many results. This conclusion raised the need for an upcoming large genome-wide association study with multi-centers with different patient ethnicities to better understand the genetic efficacy and personalization of CsA dosing among transplanted patients.

ACKNOWLEDGMENT

This work was funded by the Deanship of Scientific Research at Jouf University under grant No. "DSR-2021-01-0381".

REFERENCES

- Borel, J.F., C. Feurer, H.U. Gubler and H. Stähelin, 1994. Biological effects of cyclosporin A: A new antilymphocytic agent. Agents Actions, 43: 179-186.
- 2. Seikaly, M., P.L. Ho, L. Emmett and A. Tejani, 2001. The 12th annual report of the North American pediatric renal transplant cooperative study: Renal transplantation from 1987 through 1998. Pediatr. Transplant., 5: 215-231.
- Cid, T.P., J.R.C. Garcia, F.C. Álvarez and G. de Arriba, 2003.
 Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology, 189: 99-111.
- Durkan, A.M., E.M. Hodson, N.S. Willis and J.C. Craig, 2001. Immunosuppressive agents in childhood nephrotic syndrome: A meta-analysis of randomized controlled trials. Kidney Int., 59: 1919-1927.

- Baiza-Durán, L., J. Medrano-Palafox, E. Hernández-Quintela, J. Lozano-Alcazar and J.F. Alaníz-de la O, 2010. A comparative clinical trial of the efficacy of two different aqueous solutions of cyclosporine for the treatment of moderate-to-severe dry eye syndrome. Br. J. Ophthalmol., 94: 1312-1315.
- 6. Matsuda, S. and S. Koyasu, 2000. Mechanisms of action of cyclosporine. Immunopharmacology, 47: 119-125.
- 7. Ambroziak, A.M., J. Szaflik, J.P. Szaflik, M. Ambroziak, J. Witkiewicz and P. Skopiński, 2016. Immunomodulation on the ocular surface: A review. Cent. Eur. J. Immunol., 41: 195-208.
- 8. Matsuda, S., T. Moriguchi, S. Koyasu and E. Nishida, 1998. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J. Biol. Chem., 273: 12378-12382.
- 9. Ames, P. and A. Galor, 2015. Cyclosporine ophthalmic emulsions for the treatment of dry eye: A review of the clinical evidence. Clin. Invest., 5: 267-285.
- Demir, T., A. Gödekmerdan, M. Balbaba, P. Türkçüoglu, F. Ilhan and N. Demir, 2009. The effect of infliximab, cyclosporine A and recombinant IL-10 on vitreous cytokine levels in experimental autoimmune uveitis. Indian J. Ophthalmol., 54: 241-245.
- Pollard, S., B. Nashan, A. Johnston, P. Hoyer, P. Belitsky, P. Keown and H. Helderman, 2003. A pharmacokinetic and clinical review of the potential clinical impact of using different formulations of cyclosporin A. Clin. Ther., 25: 1654-1669.
- 12. Czogalla, A., 2009. Oral cyclosporine A-The current picture of its liposomal and other delivery systems. Cell. Mol. Biol. Lett., 14: 139-152.
- 13. Dunn, C.J., A.J. Wagstaff, C.M. Perry, G.L. Plosker and K.L. Goa, 2001. Cyclosporin: An updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral®)su1 in organ transplantation. Drugs, 61: 1957-2016.
- 14. Hesselink, D.A., P.J.H.S. Gregoor and W. Weimar, 2004. The use of cyclosporine in renal transplantation. Transplant. Proc., 36: S99-S106.
- 15. Belitsky, P., S. Dunn, A. Johnston and G. Levy, 2000. Impact of absorption profiling on efficacy and safety of cyclosporin therapy in transplant recipients. Clin. Pharmacokinet., 39: 117-125.
- 16. INRTS Group, 2002. Cyclosporine microemulsion (Neoral®) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am. J. Transplant., 2: 148-156.
- Clase, C.M., K. Mahalati, B.A. Kiberd, J.G. Lawen, K.A. West, A.D. Fraser and P. Belitsky, 2002. Adequate early cyclosporin exposure is critical to prevent renal allograft rejection: Patients monitored by absorption profiling. Am. J. Transplant., 2: 789-795.

- 18. Xie, H.G., 2010. Personalized immunosuppressive therapy in pediatric heart transplantation: Progress, pitfalls and promises. Pharmacol. Ther., 126: 146-158.
- Christians, U., T. Strom, Y.L. Zhang, W. Steudel, V. Schmitz,
 Trump and M. Haschke, 2006. Active drug transport of immunosuppressants: New insights for pharmacokinetics and pharmacodynamics. Ther. Drug Monit., 28: 39-44.
- 20. Mostafa-Hedeab, G., 2020. ACE2 as drug target of COVID-19 virus treatment, simplified updated review. Rep. Biochem. Mol. Biol., 9: 97-105.
- Mostafa-Hedeab, G., A.A. Mohamed, G. Thabet, D. Sabry, R.F. Salam and M.E. Hassen, 2018. Effect of MATE 1, MATE 2 and OCT1 single nucleotide polymorphisms on metformin action in recently diagnosed Egyptian type-2 diabetic patients. Biomed. Pharmacol. J., 11: 149-157.
- 22. Mostafa-Hedeab, G., M.M. Saber-Ayad, I.A. Latif, S.O. Elkashab and T.H. Elshaboney *et al.*, 2013. Functional G1199A ABCB1 polymorphism may have an effect on cyclosporine blood concentration in renal transplanted patients. J. Clin. Pharmacol., 53: 827-833.
- 23. Almaeen, A.H. and G. Mostafa-Hedeab, 2021. Haematological indicators of response to erythropoietin therapy in chronic renal failure patients on haemodialysis: Impact of angiotensin-converting enzymers4343 gene polymorphism. Pharmacogenomics Pers. Med., 14: 1055-1068.
- 24. Sorkhi, H., F. Oliaei, A.A. Moghadamnia, M. Pouramin and A.R. Firoozjahi, 2007. Effect of orange and tangerine juice on cyclosporine levels in renal transplant recipients. Transplant. Proc., 39: 1228-1230.
- Takanaga, H., A. Ohnishi, S. Yamada, H. Matsuo and S. Morimoto *et al.*, 2000. Polymethoxylated flavones in orange juice are inhibitors of P-glycoprotein but not cytochrome P450 3A41. J. Pharmacol. Exp. Ther., 293: 230-236.
- 26. Dunn, S., 2000. Neoral use in the pediatric transplant recipient. Transplant. Proc., 32: S20-S26.
- Ferraresso, M., M. Belingheri, S. Turolo, L. Ghio and A.S. Tirelli *et al.*, 2013. Long-term effects of *ABCB1* and *SXR* SNPs on the systemic exposure to cyclosporine in pediatric kidney transplant patients. Pharmacogenomics, 14: 1605-1613.
- 28. Dai, Y., K. Iwanaga, Y.S. Lin, M.F. Hebert and C.L. Davis *et al.*, 2004. *In vitro* metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol., 68: 1889-1902.
- 29. Givens, R.C., Y.S. Lin, A.L.S. Dowling, K.E. Thummel and J.K. Lamba *et al.*, 2003. *CYP3A5* genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol., 95: 1297-1300.
- 30. Lai, Q., Z. Luo, C. Wu, S. Lai and H. Wei *et al.*, 2017. Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. Int. Immunopharmacol., 52: 15-23.

- 31. Damiano, S., R. Ciarcia, S. Montagnaro, U. Pagnini and T. Garofano *et al.*, 2015. Prevention of nephrotoxicity induced by cyclosporine-A: Role of antioxidants. J. Cell. Biochem., 116: 364-369.
- 32. Wu, Q., X. Wang, E. Nepovimova, Y. Wang, H. Yang and K. Kuca, 2018. Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food Chem. Toxicol., 118: 889-907.
- 33. Liu, Q.F., J.M. Ye, L.X. Yu, X.H. Dong and J.H. Feng *et al.*, 2017. Klotho mitigates cyclosporine A (CsA)-induced epithelial-mesenchymal transition (EMT) and renal fibrosis in rats. Int. Urol. Nephrol., 49: 345-352.
- 34. Kim, H.S., S.I. Choi, E.B. Jeung and Y.M. Yoo, 2014. Cyclosporine A induces apoptotic and autophagic cell death in rat pituitary GH3 cells. PLoS ONE, Vol. 9. 10.1371/journal.pone.0108981.
- 35. Shi, S.H., S.S. Zheng, C.K. Jia, Y.F. Zhu and H.Y. Xie, 2004. Inhibitory effect of tea polyphenols on transforming growth factor- β1 expression in rat with cyclosporine A-induced chronic nephrotoxicity. Acta Pharmacol. Sin., 25: 98-103.
- Wirestam, L., M. Frodlund, H. Enocsson, T. Skogh, J. Wetterö and C. Sjöwall, 2017. Osteopontin is associated with disease severity and antiphospholipid syndrome in well characterised Swedish cases of SLE. Lupus Sci. Med., Vol. 4. 10.1136/lupus-2017-000225.
- 37. Locher, K.P., 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol., 23:487-493.
- 38. Theodoulou, F.L. and I.D. Kerr, 2015. ABC transporter research: Going strong 40 years on. Biochem. Soc. Trans., 43: 1033-1040.
- 39. Kanado, Y., Y. Tsurudome, Y. Omata, S. Yasukochi and N. Kusunose *et al.*, 2019. Estradiol regulation of P-glycoprotein expression in mouse kidney and human tubular epithelial cells, implication for renal clearance of drugs. Biochem. Biophys. Res. Commun., 519: 613-619.
- 40. Fritz, A., D. Busch, J. Lapczuk, M. Ostrowski, M. Drozdzik and S. Oswald, 2019. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin. Pharmacol. Toxicol., 124: 245-255.
- 41. Sarkadi, B., L. Homolya and T. Hegedűs, 2020. The ABCG2/BCRP transporter and its variants-From structure to pathology. FEBS Lett., 594: 4012-4034.
- 42. Chen, Y., L. Wang, Y. Zhu, Z. Chen and X. Qi *et al.*, 2015. Breast cancer resistance protein (BCRP)-containing circulating microvesicles contribute to chemoresistance in breast cancer. Oncol. Lett., 10: 3742-3748.
- 43. Uceda-Castro, R., A.S. Margarido, J.Y. Song, M.C. de Gooijer and H.A. Messal *et al.*, 2023. BCRP drives intrinsic chemoresistance in chemotherapy-naïve breast cancer brain metastasis. Sci. Adv., Vol. 9. 10.1126/sciadv.abp9530.

- 44. Robey, R.W., K.K.K. To, O. Polgar, M. Dohse, P. Fetsch, M. Dean and S.E. Bates, 2009. ABCG2: A perspective. Adv. Drug Delivery Rev., 61: 3-13.
- 45. Sun, X., S. Tang, B. Hou, Z. Duan and Z. Liu *et al.*, 2021. Overexpression of P-glycoprotein, MRP2, and CYP3A4 impairs intestinal absorption of octreotide in rats with portal hypertension. BMC Gastroenterol., Vol. 21. 10.1186/s12876-020-01532-4.
- Degraeve, A.L., V. Haufroid, A. Loriot, L. Gatto and V. Andries *et al.*, 2023. Gut microbiome modulates tacrolimus pharmacokinetics through the transcriptional regulation of ABCB1. Microbiome, Vol. 11. 10.1186/s40168-023-01578-v.
- 47. Wang, M.Y., M. Yang, P.Y. Hou, X.B. Chen and H.G. Li *et al.*, 2018. Intestinal absorption of pallidifloside D are limited by P-glycoprotein in mice. Xenobiotica, 48: 739-744.
- 48. Kyaw, T.S., C. Zhang, M. Sandy, K. Trepka and S. Zhang *et al.*, 2024. Human gut actinobacteria boost drug absorption by secreting P-glycoprotein ATPase inhibitors. iScience, Vol. 27. 10.1016/j.isci.2024.110122.
- 49. Onizuka, M., N. Kunii, M. Toyosaki, S. Machida and D. Ohgiya et al., 2011. Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients. Bone Marrow Transplant., 46: 1113-1117.
- 50. Algharably, E.A.H., J. Beige, R. Kreutz and J. Bolbrinker, 2018. Effect of *UMOD* genotype on long-term graft survival after kidney transplantation in patients treated with cyclosporine-based therapy. Pharmacogenomics J., 18: 227-231.
- 51. Bandur, S., J. Petrasek, P. Hribova, E. Novotna, I. Brabcova and O. Viklicky, 2008. Haplotypic structure of *ABCB1/MDR1* gene modifies the risk of the acute allograft rejection in renal transplant recipients. Transplantation, 86: 1206-1213.
- 52. Turolo, S., A.S. Tirelli, M. Ferraresso, L. Ghio and M. Belingheri *et al.*, 2010. Frequencies and roles of *CYP3A5*, *CYP3A4* and *ABCB1* single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol. Rep., 62: 1159-1169.
- 53. Grenda, R., S. Prokurat, A. Ciechanowicz, B. Piątosa and P. Kaliciński, 2009. Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients-A retrospective study. Ann. Transplant., 14: 18-24.
- 54. Press, R.R., B.A. Ploeger, J. den Hartigh, T. van der Straaten and H. van Pelt *et al.*, 2010. Explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur. J. Clin. Pharmacol., 66: 579-590.
- 55. de Luna, C.J., M.J.H. Cervera, I.S. Lázaro, L.A. Bonet, J.L.P. Andrés and S.F.A. Pellicer, 2011. Pharmacogenetic study of *ABCB1* and *CYP3A5* genes during the first year following heart transplantation regarding tacrolimus or cyclosporine levels. Transplant. Proc., 43: 2241-2243.

- Santoro, A., C.R. Felipe, H. Tedesco-Silva, J.O. Medina-Pestana,
 C.J. Struchiner, E.B. Ojopi and G. Suarez-Kurtz, 2011.
 Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics, 12: 1293-1303.
- 57. von Ahsen, N., M. Richter, C. Grupp, B. Ringe, M. Oellerich and V.W. Armstrong, 2001. No influence of the *MDR-1* C3435T polymorphism or a *CYP3A4* promoter polymorphism (*CYP3A4-V* Allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem., 47: 1048-1052.
- 58. Contreras-Castillo, S., A. Plaza, J. Stojanova, G. Navarro and R. Carmona *et al.*, 2021. Effect of *CYP3A4*, *CYP3A5*, *MDR1* and *POR* genetic polymorphisms in immunosuppressive treatment in Chilean kidney transplanted patients. Front. Pharmacol., Vol. 12. 10.3389/fphar.2021.674117.
- 59. Sun, B., Y. Guo, J. Gao, W. Shi and G. Fan *et al.*, 2017. Influence of *CYP3A* and *ABCB1* polymorphisms on cyclosporine concentrations in renal transplant recipients. Pharmacogenomics, 18: 1503-1513.
- 60. Foote, C.J., W. Greer, B. Kiberd, A. Fraser, J. Lawen, B. Nashan and P. Belitsky, 2007. Polymorphisms of multidrug resistance gene (*MDR1*) and cyclosporine absorption in de novo renal transplant patients. Transplantation, 83: 1380-1384.
- 61. Fredericks, S., A. Jorga, I.A.M. MacPhee, S. Reboux and E. Shiferaw *et al.*, 2007. Multi drug resistance gene-1 (MDR-1) haplotypes and the *CYP3A5*1* genotype have no influence on ciclosporin dose requirements as assessed by C0 or C2 measurements. Clin. Transplant., 21: 252-257.
- 62. Foote, C.J., W. Greer, B.A. Kiberd, A. Fraser, J. Lawen, B. Nashan and P. Belitsky, 2006. MDR1 C3435T polymorphisms correlate with cyclosporine levels in de novo renal recipients. Transplant. Proc., 38: 2847-2849.
- 63. Yates, C.R., W. Zhang, P. Song, S. Li and A.O. Gaber *et al.*, 2003. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J. Clin. Pharmacol., 43: 555-564.
- 64. Wang, Y., C. Wang, J. Li, X. Wang and G. Zhu *et al.*, 2009. Effect of genetic polymorphisms of *CYP3A5* and *MDR1* on cyclosporine concentration during the early stage after renal transplantation in Chinese patients co-treated with diltiazem. Eur. J. Clin. Pharmacol., 65: 239-247.
- Wang, Y.X., J.L. Li, X.D. Wang, Y. Zhang, C.X. Wang and M. Huang, 2015. Diltiazem augments the influence of *MDR1* genotype status on cyclosporine concentration in Chinese patients with renal transplantation. Acta Pharmacol. Sin., 36: 855-862.
- 66. Zgheib, N.K., R. Alameddine, R. Massoud, R. Nasr and A. Zahreddine et al., 2020. The role of candidate genetic polymorphisms in the interaction between voriconazole and cyclosporine in patients undergoing allogeneic hematopoietic cell transplantation: An explorative study. Curr. Res. Transl. Med., 68: 51-58.

- 67. Llaudó, I., H. Colom, P. Giménez-Bonafé, J. Torras and A. Caldés *et al.*, 2012. Do drug transporter (*ABCB1*) SNPs and P-glycoprotein function influence cyclosporine and macrolides exposure in renal transplant patients? Results of the pharmacogenomic substudy within the symphony study. Transplant. Int., 26: 177-186.
- 68. Fanta, S., M. Niemi, S. Jönsson, M.O. Karlsson and C. Holmberg *et al.*, 2008. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of *ABCB1* polymorphisms. Pharmacogenet. Genomics, 18: 77-90.
- García, M., R.M. Macías, J.J. Cubero, J. Benítez, F. Caravaca and G. Gervasini, 2013. *ABCB1* polymorphisms are associated with cyclosporine-induced nephrotoxicity and gingival hyperplasia in renal transplant recipients. Eur. J. Clin. Pharmacol., 69: 385-393.
- Singh, R., P. Kesarwani, A. Srivastava and R.D. Mittal, 2008.
 ABCB1 G2677 allele is associated with high dose requirement of cyclosporin A to prevent renal allograft rejection in North India. Arch. Med. Res., 39: 695-701.
- 71. Sánchez-Lázaro, I., M.J. Herrero, C. Jordán-de Luna, V. Bosó and L. Almenar *et al.*, 2015. Association of SNPs with the efficacy and safety of immunosuppressant therapy after heart transplantation. Pharmacogenomics, 16: 971-979.

- 72. Božina, N., Z. Lalić, S. Nađ-Škegro, A. Borić-Bilušić, T. Božina, Ž. Kaštelan and V. Trkulja, 2017. Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: Exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions. Eur. J. Clin. Pharmacol., 73: 1129-1140.
- 73. Song, J., M.G. Kim, B. Choi, N.Y. Han, H.Y. Yun, J.H. Yoon and J.M. Oh, 2012. *CYP3A5* polymorphism effect on cyclosporine pharmacokinetics in living donor renal transplant recipients: Analysis by population pharmacokinetics. Ann. Pharmacother., 46: 1141-1151.
- 74. Azarpira, N., M.H. Aghdaie, A. Behzad-Behbahanie, B. Geramizadeh and S. Behzadi *et al.*, 2006. Association between cyclosporine concentration and genetic polymorphisms of *CYP3A5* and *MDR1* during the early stage after renal transplantation. Exp. Clin. Transplant., 4: 416-419.
- 75. Woodahl, E.L., S.R. Hingorani, J. Wang, K.A. Guthrie and G.B. McDonald *et al.*, 2008. Pharmacogenomic associations in *ABCB1* and *CYP3A5* with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation. Pharmacogenomics J., 8: 248-255.