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Abstract
Background and Objective: Transforming Growth Factor Beta (TGF-$) significantly contributes to liver cirrhosis pathogenesis by promoting
hepatic fibrosis. Drug discovery using molecular docking (MD) offers valuable insights into potential therapeutic candidates. This study
investigated the early-stage discovery of potential natural drug candidates targeting the non-canonical TGF-$ signaling pathway in liver cirrhosis
pathogenesis. Materials and Methods: A virtual screening of the Korea Chemical Bank (KCB) natural compounds library was performed against
key proteins, including TGF-$ Receptor Type-1 (TGF-$R1), Focal Adhesion Kinase (FAK) and Phosphoinositide 3-Kinase (PI3K), using MD.
Bioinformatics analysis identified additional targets such as Matrix Metallopeptidase 13 (MMP13) and explored pathway enrichments. The
predicted Absorption, Distribution, Metabolism and Excretion (ADME) properties of promising compounds were evaluated. Experimental validation
on HepG2 cells using RT-qPCR was conducted for the selected compounds. Results: TGF-$R1 binders from  the  KCB  library  exhibited  higher 
binding affinities (-11.2 to -10.4  kcal/mol) than  the   reference   inhibitor  galunisertib (-10.0 kcal/mol). Bioinformatics identified MMP13 as a
potential  target  for  alcoholic  liver  cirrhosis,  with  enriched  pathways  related  to  cancer,  p53  and  PI3K-Akt  signaling.  Notably,
dihydrosanguinarine (DHS) and eriocitrin showed promising inhibitory interactions with fibrogenic kinases. The ADMET analysis indicated DHS,
trisindoline and "-Naphthoflavone ("-NF) as viable oral candidates. The RT-qPCR results highlighted luteolin’s inhibitory effects, whereas diosmetin
and "-NF upregulated target gene expressions. Conclusion: In silico  findings underscore the potential of promising natural compounds for liver
cirrhosis therapy. However, further in vitro  and in vivo  studies are needed to confirm their antifibrotic efficacy and therapeutic value.
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INTRODUCTION

Liver cirrhosis (LC) is a chronic liver disease that results
from various etiologies, including viral hepatitis, alcohol abuse
and non-alcoholic fatty liver disease. It is associated with
significant morbidity and mortality worldwide. Often, liver
cirrhotic patients end with the emergence of Hepatocellular
Carcinoma (HCC)1,2.

One of the key molecular pathways involved in the
pathogenesis of liver cirrhosis is the Transforming Growth
Factor Beta (TGF-$) signaling pathway. The TGF-$ pathway
plays a crucial role in the regulation of cell growth,
differentiation and tissue homeostasis. TGF-$ ligands bind to
TGF-$ receptors, leading to the activation of downstream
signaling cascades, including the canonical Smad-dependent
pathway and non-Smad signaling pathways such as MAPK and
PI3K/Akt. Dysregulation of the TGF-$ pathway has been
implicated in the development and progression of liver
cirrhosis3,4. The TGF-$ plays a pivotal role in hepatic fibrosis,
the hallmark of liver cirrhosis. It promotes the activation of
Hepatic Stellate Cells (HSCs) into myofibroblasts, which are
responsible for excessive production and deposition of
Extracellular Matrix (ECM) components, such as collagen. The
TGF-$ induces the expression of ECM proteins and inhibits
their degradation, leading to ECM accumulation and fibrotic
scar formation5,6.

Given the significant role of the TGF-$ in LC, targeting this
pathway has emerged as a potential therapeutic strategy.
Several  preclinical  and  clinical  studies  have  explored  the
efficacy  of  TGF-$  pathway  inhibitors,  such  as TGF-$
receptor  type-1  (TGF-$R1)  inhibitors:  galunisertib and
vactosertib7,8.

In silico is computational analysis and simulation
performed on a computer, using algorithms, mathematical
models and molecular dynamics to study biological systems
without  time-consuming   experiments.   In   drug   discovery,
in silico methods are important for identifying potential drug
candidates through virtual screening of chemical libraries
against target proteins, enabling rapid identification of
compounds with high binding affinity, specificity and low
toxicity. Molecular Docking (MD) is a specific in silico
technique used to predict binding mode and affinity between
a small molecule and a protein receptor. This information is
useful for understanding drug mechanisms, optimizing lead
compounds and designing new molecules with improved
pharmacological properties9-11.

Natural compounds have long been a valuable source of
therapeutic candidates  in  drug  discovery  and  development.

Many of these compounds have shown promising biological
activities and therapeutic potential in treating various
diseases. It’s important to note that while natural compounds
show promise, their development into therapeutic drugs often
involves further research, clinical trials and safety assessments.
Additionally, the effectiveness of these compounds may vary
depending on factors such as dosage, bioavailability and
interaction with other medications12. Drugs with a single
target might be ineffective in preventing or curing diseases
that induce pathogenesis via multiple target pathways13.
Recently, several research studies were conducted by virtual
screening of natural compounds against multiple targets in
LC/HCC14-17.  Therefore,  this multi-target approach study
aimed to investigate promising candidates from the KCB
representative natural compounds library targeting TGF-$R1,
FAK and PI3K through the MD technique. Another approach
was to predict and identify potential protein targets related to
LC through bioinformatics..

MATERIALS AND METHODS

Study area: This study was conducted for 9 months (April to
December, 2023) at the Department of Anatomy and
Neurobiology, College of Medicine, Kyung Hee University
(Seoul Campus).

Software: Discovery Studio Client  (BIOVIA,  Dassault
Systèmes, v21.1.0, San Diego, 2021), AutoDockTools(v1.5.7)18,
OpenBabelGUI (v2.4.1)19, AutoDock  Vina20  and  Padre, the
Perl-integrated Development Environment (IDE) were used in
a Samsung notebook with specifications: Intel(R) Celeron(R)
6305 @1.80GHz, Windows 10 Education, 64-bit OS and 12.0 GB
RAM.

Receptor and ligand preparations: The three-dimensional
(3D) structures of the target proteins TGF$R1, FAK and PI3K
with   PDB   IDs:   5E8S21,   3BZ322  and   5T2323,   respectively
(Table S1), were downloaded in PDB file format from the
Research Collaboratory for Structural Bioinformatics (RCSB)
database24. Using the Discovery Studio Client software, each
receptor was modified by deleting water molecules, obtaining
XYZ values of the active binding sites for docking based on the
original ligand in the crystal complex, followed by deleting the
contaminant ligands. Then, the free-ligand receptor was
opened in the AutoDockTools software for adding polar
hydrogens and Kollman charges and finally saved in PDBQT
format.
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A total of 1278 ligands in PDB file format were obtained
from the representative natural compounds library in KCB and
then converted to 3D structures in PDBQT format using
OpenBabelGUI software. Galunisertib (CID: 10090485) and
vactosertib (CID: 54766013) were downloaded from PubChem
in SDF format and then converted to AutoDock Structure File
(PDBQT) format.

Molecular docking (MD): After collecting all required PDBQT
files in one folder, the docking of up to 100 ligands into each
targeted receptor per session was executed in AutoDock Vina
and Padre, the Perl IDE software using the command prompt
“perl Vina_windows.pl”.

Prediction  and  identification  of  potential  targets  related
to alcoholic liver cirrhosis (ALC) and KCB natural
compounds: The genes associated with ALC were obtained
from DisGeNET25. However, the promising targets related to
the  best  TGF$R1  binders  among  KCB  natural  compounds
were predicted using SwissTargetPrediction26. Overlapped
genes were identified using an online VENNY (v2.1.0) diagram
tool.

Gene ontology (GO) and Kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analysis: The
identified overlapped genes were uploaded into the Database
for Annotation, Visualization and Integrated Discovery
(DAVID)27 bioinformatics database for the gene functional
annotation, including GO and KEGG analyses.

Protein-protein interaction (PPI) network analysis: The
overlapped gene targets were uploaded into the STRING
database28 (v12.0), which provides evaluation and integration
of both physical and functional protein-protein interactions.
Then, the PPI information was visualized with Cytoscape29

(v3.10.0),  which  is  an  open-source  software  platform  that
pathways while also combining annotations, gene expression
profiles and other state data.

In silico prediction of the ADMET profile and bioactivity
score: The SMILES structures of the top ten KCB hit
compounds and the reference inhibitors were uploaded to
online web tools, ADMETlab30 (v2.0) and SwissADME31. These
web  tools   provide   estimations   for    the   pharmacokinetic
profile (absorption, distribution, metabolism, excretion and
toxicity, ADMET) in addition to the physicochemical and oral

druggable  properties  of  the  small  molecules. The SDF files
of small molecules were uploaded to Molinspiration
cheminformatics  (Molinspiration  Cheminformatics  free  web
services, Slovensky Grob, Slovakia), which is a free web tool
used to predict bioactivity scores for important drug targets
such as kinases and nuclear receptors.

Experimental   validation   using   cell  viability  assay and
RT-qPCR: To validate the protein-ligand affinities the effects
of three compounds, Luteolin (Cat. No. 2874, Tocris
Bioscience), Diosmetin (Cat. No. D7321, Sigma-Aldrich) and
Alpha-naphthoflavone ("-NF; Cat. No. N5757, Sigma-Aldrich)
were tested on human hepatoma (HepG2) cells, which were
obtained from the Korean cell line bank (KCLB, Cat. No. 88065,
Seoul, South Korea) and maintained at 37EC with 5% CO2 in
minimum essential medium (MEM, Cat. No. 11095080, Gibco™,
Billings,  Montana,  USA)  supplemented  with  25  mM  HEPES,
25 mM NaHCO3 and 10% FBS. Drugs were diluted in MEM to
the required working concentrations and then incubated with
3000 cells/well in a 96-well plate for 48 hrs to detect cell
viability using MTS assay (CellTiter 96® AQueous One Solution
Cell  Proliferation  Assay,  Cat.  No.  G3581,  Promega)
according to the manufacturer’s protocol. Moreover,
examined  the  mRNA  expressions  of  the  target  proteins
using RT-qPCR as previously described by Park et al.32. Briefly,
cells were cultured in a 6-well plate for 24 hrs and then the
media  was  replaced  with  a  drug-containing  media  for
another 24 hrs. used Trizol® Reagent (Cat. No. 15596-026,
Invitrogen, Carlsbad, California, USA) for total RNA extraction
from cells of each group. To make cDNA from RNA templates,
used oligo-dT primers and the Superscript III First-Strand kit
(Cat. No. 18080-044, Invitrogen). Finally, the RT-qPCR reaction
on the Takara Thermal Cycler Dice Real Time System Lite
(Takara Bio CO., Otsu, Japan) with 10 ng of cDNA was
conducted, 4 pmoles of each gene-specific primer and TB
Green Premix Ex Taq (Cat. No. RR420A, Takara Bio Co., Otsu,
Japan) following the manufacturer’s protocol of 20 µL
reaction. The sequences of forward and reverse primers were
listed in Table S2.

Statistical analysis: The data from in vitro analysis were
analyzed using GraphPad Prism 8.0.2 software (GraphPad
Software, Inc., CA, USA). Two-tailed unpaired Student’s t-test
or one-way ANOVA analyses followed by Dunnett’s post hoc
tests for multiple comparisons were carried out. Data were
expressed as Mean±SEM. Significant differences were
symbolled with *p<0.05.
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RESULTS AND DISCUSSION

Visualization of 3D structural data of the targeted proteins:
The three-dimensional (3D)  structural  models   of TGF$R1
(Fig. 1a), FAK (Fig. 1b) and PI3K (Fig. 1c) proteins were
meticulously visualized employing the Discovery Studio Client
software. This tool enabled an in-depth structural analysis and
presentation of these proteins. Among KCB’s natural
compounds, a specific selection process was undertaken,
focusing on identifying the ten ligands exhibiting the lowest
binding affinity values, expressed in kcal/mol, towards the
TGF$R1 protein. These selected ligands were then subjected
to   a   detailed    two-dimensional   (2D)   visualization   process
to highlight their structural features and interactions. The 2D
structures of the reference TGF$R1  inhibitors,  galunisertib
(Fig. 1d) and vactosertib (Fig. 1e) were represented with the
top-ranked TGF$R1 binders, which are Dihydrosanguinarine
(Fig.   1f),    Quercetin    7-O-glucoside    (Fig.    1g),    Eriocitrin
(Fig. 1h), Diosmetin-7-O-rutinoside (Fig. 1i), Myricetin (Fig. 1j),
Trisindoline (Fig. 1k), Luteolin-8-C-glucoside (Fig. 1l), Luteolin
7-galactoside  (Fig.  1m),   3-Oxolup-20(29)-en-28-oic   acid
(Fig. 1n) and Alpha-naphthoflavone (Fig. 1o).

MD with AutoDock Vina: Docking results between the
macromolecule (protein) and the small molecules (ligands)
were  presented  in  terms  of  binding  affinity,  measured  in
kcal/mol,   in   correlation   with   RMSD   (Root   Mean   Square
Deviation) values. Binding affinity indicates the strength of the
interaction between the protein and ligand, while RMSD
values measure the positional deviation of docked ligand
poses from a reference pose. In docking studies, the method’s
success is often defined by achieving RMSD values of less than
2.0 angstroms (Å)33, as this indicates high structural similarity
and stability. The RMSD values falling within the range of
3.0>RMSD>2.0 Å are still acceptable34. From the ten output
docking poses generated for each ligand, the pose that
exhibited the lowest binding affinity value was selected, as it
was deemed to represent the most energetically favorable and
thus likely the most accurate binding mode.

MD of KCB natural compounds with the target protein
kinases: The docking analysis of TGFBR1 showed binding
affinity    values    that    varied    significantly,    ranging    from
-11.2   to   -2.2   kcal/mol   (Fig.   2a).   For   the   FAK   target, 
the  binding  affinity  analysis  produced  values  that  ranged
from -11.4 to -3.9 kcal/mol, in Fig. 2b. This range suggests that
the ligands have varying degrees of binding strength with
FAK.  In  Fig.  2c,  the  binding  affinity  values  for  the  kinase

protein   PI3K   are   depicted,   with   a   range   spanning   from
-10.6 to -3.8 kcal/mol. This analysis reveals that some ligands
show  strong  binding  potential  with  PI3K,  as  evidenced  by
their lower kcal/mol scores. These results highlight the
promising  binding  potential  of  KCB  natural  compounds,
which outperformed the reference inhibitors in terms of
binding affinity, suggesting their potential as effective
alternatives to the current standard inhibitors in targeting
TGFBR1, FAK and PI3K.

Specifically,  the  heatmap  illustrated  in  Fig.  2d  and
Table S3 highlights the top ten ligands that exhibited the
highest binding affinity to TGFBR1, FAK and PI3K, comparing
these values with those of known TGFBR1 inhibitors,
galunisertib and vactosertib. With TGFBR1, these reference
inhibitors   presented   binding   affinity   values   of   -10   and
-10.6 kcal/mol, respectively. However, when interacted with
FAK, galunisertib and vactosertib demonstrated binding
affinity  values  of  -10.7  and  -9.7  kcal/mol,  respectively.
Notably, two natural compounds, eriocitrin (-10.5 kcal/mol)
and alpha-naphthoflavone (-10.1 kcal/mol), exhibited binding
scores that were lower than those of the reference inhibitors
galunisertib (-9.4 kcal/mol) and vactosertib (-9.3 kcal/mol).
These reference values provide a benchmark for evaluating
the effectiveness of other ligands in binding to TGFBR1, FAK
and PI3K and indicate that some tested ligands may offer
stronger interactions with these kinases than the reference
inhibitors.

Additionally, the RMSD results provided insights into the
docking stability of these ligands. The analyzed ligands
demonstrated optimal  docking  poses,  particularly  when  the
RMSD  values  were  at  or  below  2.0  Å,  indicating  a close
match to the reference inhibitor, vactosertib. This finding
suggests that these ligands are highly compatible in terms of
binding conformation. However, some ligands showed
acceptable docking poses, with RMSD values falling within the
range of 3.0 >RMSD >2.0 Å, about the reference inhibitor
galunisertib, as illustrated in Fig. 2e. These values reflect a less
precise but still acceptable alignment in binding pose with the
galunisertib reference structure.

Visualization of the receptor-ligand interactions: Biovia
Discovery    Studio    2021    was    used    to    visualize    the
two-dimensional (2D) interactions between the TGF$R1 and
the KCB natural compounds in comparison with the canonical
TGF$R1 inhibitors: galunisertib and vactosertib. Figure 3
represented the interacted amino acid residues ofTGF$R1
through bonds of conventional hydrogen, pi-sigma and
alkyl/pi-alkyl. Particularly, TGF$R1 could be interacted through
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Fig. 1(a-o): 3D  and  2D  structures  of  macromolecules  and  small  molecules,  3D  structures  of  macromolecules  (proteins)  are:
(a) TGFBR1 (PDB: 5E8S), (b) FAK (PDB: 3BZ3) and (c) PI3K (PDB: 5T23), The 2D structures of small molecules (ligands)
are: (d) Galunisertib: Known TGFBR1 inhibitor with antifibrotic properties, (e) Vactosertib: Another TGFBR1 inhibitor
targeting fibrosis mechanisms, The top 10 of KCB natural compounds having the best docking scores with TGFBR1,
including:   (f)   Dihydrosanguinarine,   (g)   Quercetin   7-O-glucoside,   (h)   Eriocitrin,   (i)   Diosmetin-7-O-rutinoside,
(j) Myricetin, (k) Trisindoline, (l) Luteolin-8-C-glucoside, (m) Luteolin 7-galactoside, (n) 3-Oxolup-20(29)-en-28-oic acid,
(o) Alpha-naphthoflavone

525

HO

OH

HO
O

O

HO
OH O

O

OH

OH

OH

(g)

N N

N

H C3

NH2

O

N

(d)
N

N
N N

NH HN

N

CH3

(e)

F

O

O

H C3

N O

O

(f)

OH

OH

OH

OH

OH

OH
OH

O

O

O

O O

OH

HO

H C3

O(h)

HO O

OH O

OH

OH

OH

OH

(j)

OH O

HO

HO
O

O

HO

OH OH

OH

(l)

OH O
HO

HO

HO

OH

OH

OH

O

OH O

O

(m)

HO

O

CH
CH3 H C3

CH3

O

H C3

CH3

H C2

(n)

O

O

(o)

NH

O

HN

HN

(k)

O OH

O
HO

O

CH3

HO

HO

O

O

O O

OH
HO

OH

OH

CH3

(i)

 

  

(a) (b) (c) 



Int. J. Pharmacol., 21 (3): 521-540, 2025

Fig. 2(a-e): (a) Binding affinity scores of KCB natural compounds with TGFBR1. The black dashed line indicates the threshold for
strong binding (< -6.0 kcal/mol), (b) Binding affinity scores of KCB natural compounds with FAK. The black dashed line
shows the strong binding threshold (< -6.0 kcal/mol), (c) Binding affinity scores of KCB natural compounds with PI3K.
The black dashed line marks the favorable binding threshold (< -6.0 kcal/mol), (d) Heatmap of the best binding scores
of KCB compounds compared with reference TGFBR1 inhibitors, Galunisertib and Vactosertib and (e) RMSD values of
docked ligands normalized to reference inhibitors. Galunisertib is shown as grey columns, Vactosertib as a dark red
line. The black dashed line represents the acceptable deviation threshold (<3 Å)

the conventional hydrogen binding to the amino acids:
Isoleucine (ILE211), glycine (GLY214) lysine (LYS232, LYS337),
glutamic acid (GLU245), tyrosine (TYR249), leucine (LEU278),
serine (SER280, SER287), aspartic acid (ASP281, ASP290,
ASP351), histidine (HIS283) and asparagine (ASN338) (Fig. 3).
The results revealed that FAK could be inhibited by

dihydrosanguinarine (Fig. 4a) and galunisertib (Fig. 4b) at the
binding sites: ASP564, LEU567, LEU553, valine (VAL436),
alanine (ALA452), VAL484 and methionine (MET499). However,
PI3K interacted through conventional hydrogen bonds with
eriocitrin (Fig. 4c) at LYS833, VAL882, ASP950 and ASP964 but
with vactosertib (Fig. 4d) at threonine (THR887).
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Fig. 3(a-i): 2D interaction maps of TGFBR1 with reference inhibitors and KCB natural compounds, (a) Galunisertib with TGFBR1,
showing hydrogen bonds and hydrophobic interactions with key amino acid residues, (b) Vactosertib with TGFBR1,
highlighting stabilizing interactions with specific residues, (c) DHS with TGFBR1, indicating favorable contacts
contributing to ligand affinity, (d) Quercetin 7-O-glucoside with TGFBR1, displaying bonding patterns that support
stable binding, (e) Eriocitrin with TGFBR1, identifying crucial amino acid contacts and bonding types, (f) Diosmetin-7-
O-rutinoside with TGFBR1, showing hydrogen bonding and hydrophobic forces, (g) Myricetin with TGFBR1, with
labeled residues involved in stabilizing the ligand, (h) Trisindoline’s 2D interaction with TGFBR1, emphasizing contacts
that may enhance binding strength, (i) Luteolin-8-C-glucoside interaction map, demonstrating stabilizing bonds with
TGFBR1 residues, (j) Luteolin 7-galactoside with TGFBR1, outlining key residue engagements, (k) OOA with TGFBR1,
revealing hydrogen bonds and hydrophobic interactions and (l) Alpha-NF with TGFBR1, showing molecular forces
contributing to ligand stabilization
These interaction diagrams collectively provide molecular insights into how each compound engages with the TGFBR1 binding pocket, comparing
natural compounds with reference inhibitors
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Fig. 4(a-e): Molecular docking visualization of interactions with FAK and PI3K, (a) 3D docking visualization of DHS with FAK,
highlighting its spatial orientation and interaction within the active site, (b) 3D docking pose of Galunisertib with FAK,
showing its binding alignment and key contact regions, (c) 3D interaction of Eriocitrin with PI3K in ionized form,
illustrating the molecular docking conformation and critical binding interactions, (d) 3D docking model of Vactosertib
with PI3K, displaying spatial positioning and interaction points within the binding pocket and (e) Combined 3D and
2D representations of docking interactions for the ligands, detailing hydrogen bonds, hydrophobic contacts and
interacting amino acid residues involved in stabilizing ligand binding with FAK and PI3K

Bioinformatics analysis: A total of 126 gene targets
associated with ALC were obtained from DisGeNET. However,
a total of a hundred gene targets per each KCB natural
compounds were predicted using SwissTargetPrediction.
Then, a total of 17 overlapped genes were identified including
Matrix Metallopeptidase 2 (MMP2), Cytochrome P450 Family
1  Subfamily  A  Member  1  (CYP1A1),  Arginase  1  (ARG1),
Vitamin     D     Receptor     (VDR),     Angiotensin     Converting

Enzyme (ACE), Peroxisome Proliferator Activated Receptor
Gamma (PPARG), MDM2 Proto-Oncogene (MDM2), BCL2
apoptosis regulator (BCL2), Tumor Protein p53 (TP53), Tumor
Necrosis Factor (TNF), Matrix Metallopeptidase 13 (MMP13),
myeloperoxidase (MPO), aldehyde dehydrogenase 2 family
member (ALDH2), interleukin 2 (IL2), nitric oxide synthase 2
(NOS2), aldo-keto reductase family 1 member A1 (AKR1A1)
and albumin (ALB) (Fig. 5a).
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The PPI network analysis revealed that the network
consisted of 17 nodes and 62 edges. Moreover, the interaction
enrichment p-value was calculated as 1.89e-15, indicating that
these proteins have more interactions with one another than
would be predicted and at the very least, they were loosely
physiologically linked (Fig. 5b).

The GO of cell component (GO_CC) revealed that the
identified genes were enriched in the extracellular space,
nucleus and mitochondrion (Fig. 5c). Related to biological
processes (GO_BP), the target genes were enriched in
response to xenobiotics-induced oxidative stress, inducing
apoptosis or inflammation and ECM organization (Fig. 5d). In
terms of molecular functions (GO_MF), the target genes were
enriched in enzyme binding, metalloendopeptidase (MEP)
activity,  p53  binding  and  chaperone  binding  (Fig.  5e).
Finally, the KEGG pathway analysis showed off that the
promising  gene  targets  were  significantly  enriched  in
cancer-inducing pathways, p53 or PI3K-Akt signaling
pathways (Fig. 5f).

Another virtual screening was executed using the
predicted potential target MMP13 with PDB ID: 4A7B35 and the
best TGF$R1 binders among the KCB hit compounds in
addition to the reference ligands. The results revealed that the
docked ligands to MMP13 have lower affinity scores in chain
B than chain A as shown in Table S4.

ADMET profile predictions: The results of oral bioavailability
were  assessed  using  SwissADME  according  to  six
physicochemical properties: lipophilicity, size, polarity, water
solubility, flexibility and saturation. The results of the
bioavailability radar demonstrated that DHS and trisindoline
were closely similar to galunisertib and vactosertib (Fig. 6).
Regarding    the    pharmacokinetic    profile,    the    results    of

ADMETlab 2.0 revealed that DHS and alpha-Naphthoflavone
("-NF) had optimal absorption parameters (Caco-2 cell
permeability >-5.15 log unit and human intestinal absorption
(HIA)³ 30%) as compared to reference compounds (Fig. 7 and
Fig. 8a). The metabolism results represented DHS and
trisindoline as potential inhibitors of the cytochrome P450
(CYP) isoenzymes (Fig. 7). Moreover, the distribution profile
represented   four   compounds   with   plasma  protein
binding (PPB) percentage out of the optimal range, however,
3-Oxolup-20(29)-en-28-oic acid (OOA) showed off higher
blood-brain barrier (BBB) penetration score (Fig. 8b). The
excretion parameters noted that DHSG had the highest
clearance with a shorter half-life time (T1/2) than vactosertib
(Fig. 8c). In toxicity prediction, the results exhibited that KCB
hit compounds had no cardiotoxic (hERG) nor human
hepatotoxic (H-HT) effects as compared to galunisertib and
vactosertib, however, OOA revealed non-mutagenic (Ames)
and non-carcinogenic effects (Fig. 7).

Furthermore, the oral drug-likeness assessment was
obtained  from  SwissADME   according   to   five   different
rule-based filters, which are used by major pharmaceutical
companies: Lipinski (Pfizer)36, Ghose (Amgen)37, Veber (GSK)38,
Egan (Pharmacia)39 and Muegge (Bayer)40 filters. As shown in
Fig. 8d, DHS, trisindoline and "-NF exhibited no violations in
the drug-likeness filters as compared to galunisertib and
vactosertib.

The predicted bioactivity scores in Molinspiration
cheminformatics revealed that DHS and OOA had higher
scores as G Protein-Coupled Receptor (GPCR) ligands in
compare to galunisertib. Moreover, DHS and myricetin could
be bioactive as kinase inhibitors. As a nuclear receptor ligand,
OOA exhibited the best score as compared to the reference
inhibitors (Table 1).

Table 1: Predicted bioactivity scores in Molinspiration cheminformatics
Ion channel Nuclear Protease 

Compound No. Small molecule GPCR ligand modulator Kinase inhibitor receptor ligand inhibitor Enzyme inhibitor
1252 Dihydrosanguinarine 0.19 0.09 0.23 0.16 0.00 0.16
125 Quercetin 7-O-glucoside 0.04 -0.10 0.15 0.23 -0.06 0.42
225 Eriocitrin 0.06 -0.47 -0.28 -0.08 0.05 0.16
298 Diosmetin-7-O-rutinoside -0.05 -0.53 -0.13 -0.23 -0.06 0.09
90 Myricetin -0.06 -0.18 0.28 0.32 -0.20 0.30
119 Trisindoline 0.05 -0.07 0.01 -0.17 -0.11 -0.07
304 Luteolin-8-C-glucoside 0.12 -0.14 0.20 0.20 0.01 0.45
33 Luteolin 7-galactoside 0.09 -0.02 0.15 0.27 -0.01 0.42
164 3-Oxolup-20(29)-en-28-oic acid 0.21 -0.06 -0.69 0.88 0.04 0.47
438 Alpha-naphthoflavone -0.09 -0.31 0.20 0.12 -0.36 0.12
- Galunisertib 0.12 -0.13 1.13 0.59 0.06 0.25
- Vactosertib 0.27 -0.01 1.03 -0.45 0.09 0.30
More positive the value of the score, the greater the chance that the small molecule could be bioactive
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Fig. 5(a-f): Bioinformatics analysis of KCB natural compounds and alcoholic liver cirrhosis (ALC), (a) Venn diagram showing the
overlap between KCB hit compound targets and ALC-related targets, identifying shared molecular pathways
potentially involved in liver cirrhosis, (b) STRING PPI network illustrating predicted protein-protein interactions among
the common targets, highlighting their connectivity and functional relationships, (c) Gene Ontology (GO) enrichment
analysis-cellular  component:  Classification  of  targets  based  on  their  cellular  localization  and  structural  context,
(d) GO enrichment analysis-biological process: Categorization of targets by their roles in biological activities relevant
to ALC, (e) GO enrichment analysis-molecular function: Analysis of functional roles played by target proteins at the
molecular  level  and  (f)  KEGG  pathway  enrichment  analysis  identifying  key  signaling  pathways,  such  as  p53  and
PI3K-Akt, associated with the predicted targets, shedding light on possible mechanisms in liver cirrhosis pathogenesis
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Fig. 6(a-I): Physicochemical properties of KCB hit compounds, (a) DHS, (b) Quercetin 7-O-glucoside, (c) Eriocitrin, (d) Diosmetin-7-
O-rutinoside, (e) Myricetin, (f) Trisindoline, (g) Luteolin-8-C-glucoside,  (h)  Luteolin  7-galactoside,  (i)  OOA,  (j)  "-NF,
(k) Galunisertib and (l) Vactosertib
The pink area represents the optimal range for each property: lipophilicity (LIPO): XLOGP3 between !0.7 and +5.0, size: MW between 150 and 500 g/mol,
polarity (POLAR): TPSA between 20 and 130 Å2, solubility (INSOLU): log S not higher than 6, saturation (INSATU): Fraction of carbons in the sp3
hybridization not less than 0.25 and flexibility (FLEX): No more than 9 rotatable bonds

Experimental validation of the virtual screening results: The
MD findings revealed that both luteolin (Fig. 9a) and
diosmetin (Fig. 9b) had good multitarget binding affinities
(Fig.  9c),  which  were  found  to  interact  with  HIS283  and
SER280  by  conventional  hydrogen  bonds  (Fig.  9d-e).
Therefore, these findings were experimentally validated by
investigating the effects of three flavonoid compounds:
Luteolin, diosmetin and "-NF on HepG2 cells using cell
viability and RT-qPCR analyses. In comparison with the
untreated  control  cells,  luteolin  and  diosmetin  inhibited
but "-NF induced the cell proliferation dose-dependently;
luteolin and diosmetin exhibited calculated Half-Maximal
Inhibitory Concentration (IC50) values of 35 and 70 µM.
However, "-NF revealed a calculated half-maximal effective
concentration   (EC50)   at   867   µM   (Fig.   10a-b).   However,
RT-qPCR   analysis   revealed   that   luteolin   inhibited   the
mRNA expressions of the targeted proteins at the higher

concentrations (Fig. 10c) but both diosmetin and "-NF
upregulated the target proteins in a dose-dependent manner
(Fig. 10d-e).

Cirrhosis is the end stage of any chronic liver disease,
regardless of the etiology. It is characterized by liver
parenchyma  deformation,  fibrous  septae,  nodules and
blood flow changes. Clinically, LC starts as an asymptomatic
compensated phase and then proceeds to a decompensated
phase, causing complications like ascites, jaundice, portal
hypertension and hepatic encephalopathy41,42. Treatment of
LC depends on the etiology removal such as abstinence from
alcohol or using antivirals. However, no direct antifibrotic
medicine is currently available, making it critically needed.
Direct antifibrotic treatment seeks to reduce scar formation or
hasten the healing process. Therefore, inhibition of the TGF-$
signaling pathway is considered a potential target to create
effective antifibrotic medicines43-45.
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Fig. 7: In silico  pharmacokinetics (PK) profile evaluation of KCB hit compounds
Heatmap of absorption, metabolism and toxicity; Category 0: non-inhibitor, non-substrate, or non-toxic; Category 1: Inhibitor, substrate or toxic. The output
value is the probability of being inhibitor, substrate, or toxic, within the range of 0 to 1. HIA; Category 0: HIA >30%; Category 1: HIA <30%. Toxicity: Category
0: Negative (-); Category 1: Positive (+). The output value is the probability of being toxic within the range of 0 to 1. Empirical decision: 0-0.3: Excellent (green);
0.3-0.7: Medium (black) and 0.7-1.0: Poor (red)

This study, performed a virtual screening of the KCB
natural compounds library in order to screen promising
compounds with potential inhibitory effects on TGF-mediated
LC. In MD, the binding affinity score explains the interaction
stability and the small molecule’s potency to either induce or
inhibit the macromolecule as indicated with the lowest value
of binding affinity46,47, preferably <-6 kcal/mol48. The results
revealed potent TGF$R1 binders with lower binding scores
compared to the reference inhibitors (Fig. 2). Moreover, it has
been reported that MD with AutoDock Vina predicted the
inhibitory interaction of 5E8S, which was suppressed via
hydrogen bonds with SER288, LYS337 and ASP35149, these
findings correlated with current results suggesting that these
residues are essential for TGF$R1 interactions (Fig. 3).

Both Focal Adhesion Kinase (FAK) and Phosphoinositide
3-Kinase (PI3K) play significant roles in the pathogenesis of

liver cirrhosis. Their activation contributes to HSCs activation,
ECM production and cell survival, ultimately leading to the
development and progression of liver fibrosis and cirrhosis.
Targeting FAK and PI3K signaling pathways may offer
potential  therapeutic  strategies  to  mitigate  liver  fibrosis
and its associated complications50,51. Current results showed
off hit compounds with lower affinity scores than the
reference  compounds  and  thus  indicating  potential
inhibitory effects against FAK and PI3K (Fig. 2). Moreover,
current results in Fig. 4 exhibited the same binding sites of
interactions  with  FAK  but  less  similarity  with  PI3K  as
reported  by  other  studies  in  the  literature52-54.  Thus,  the
affinity scores with visualization of the interactions could
provide  clear  evidence  that  these  macromolecules  could
be inhibited through binding to the aforementioned amino
acids.
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Fig. 8(a-d): ADME and drug-likeness profiles estimation, (a) Absorption: Caco-2 and MDCK cell permeability; the blue dashed line
defines the lower limit for Caco-2 permeability, whereas the red dotted line margins the upper limit of MDCK
permeability, (b) Distribution: The black dashed line defines the upper limit of PPB, whereas the score of BBB is
interpreted as: 0-0.3: Excellent; 0.3-0.7: Medium; 0.7-1.0: Poor, (c) Excretion: The purple dashed lines indicate the
moderate clearance range; however, the half-life time (T1/2) is estimated at <3 hrs if the score is 0 and >3 hrs at the
score of 1 and (d) Heatmap of the drug-likeness rule filters

The  MMP2  (gelatinase  A)  and  MMP13  (collagenase  3)
are matrix metalloproteinase enzymes. These enzymes are
vital in tissue remodeling, wound healing and extracellular
matrix  (ECM)  degradation.  They  are  involved  in  the
pathogenesis of liver cirrhosis. Under normal conditions, ECM
homeostasis is maintained by MMPs and the Tissue Inhibitors
of Metalloproteinases (TIMPs). Even though that MMPs have
inhibitory functions in early stages of liver fibrosis but
excessive and prolonged activity may promote the

progression of cirrhosis by allowing the invasion of
inflammatory cells and promoting angiogenesis55,56. Moreover,
higher serum levels of MMP2 and MMP13 is a characteristic
diagnostic features of ALC57,58. The understanding of MMP2
and MMP13 in liver cirrhosis is still an active area of research
and therapeutic targeting of these enzymes may hold promise
in the development of novel treatment strategies for liver
cirrhosis. However, it’s important to keep in mind that the liver
is a complex organ with  multiple  interacting  pathways  and
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Fig. 9(a-e): Molecular docking analysis of experimentally validated compounds, (a) 2D chemical structure of Luteolin, (b) 2D
chemical structure of Diosmetin, (c) Docking scores of Luteolin and Diosmetin with TGFBR1, illustrating their relative
binding affinities and potential inhibitory strength, (d) 3D visualization of the co-crystallized structure of TGFBR1 with
Luteolin, highlighting the binding pocket and specific interacting amino acid residues and (e) Structural
representation of TGFBR1 complexed with Diosmetin, showing detailed interactions and residues contributing to
ligand stabilization within the active site

cirrhosis is a multifactorial disease with various etiologies.
Therefore,  the  role  of  MMP2  and  MMP13  in  liver  cirrhosis
may  vary  depending  on  the  specific  etiology  and  stage  of
the disease. Current bioinformatics findings revealed the
prediction  of  MMP2  and  MMP13  as  potential  targets  for
the selected KCB hit compounds. Furthermore, MD results
showed  off  lower  affinity  scores  than  the  threshold  score
(-6.0 kcal/mol), indicating  the  good  binding  interactions
with  MMP13 (Table S4).

Dihydrosanguinarine (DHS) is a derivative of the alkaloid
sanguinarine, which is found in various plant species,
including Papaveraceae. Sanguinarine and its derivatives have
been  of interest to researchers due to their potential

biological   activities,  including  antimicrobial,  anticancer,
anti-inflammatory and antioxidant properties59,60. Among the
best selected hit compounds, DHS had the lowest binding
affinities to TGF$R1 and FAK. However, eriocitrin had the best
affinity to PI3K and MMP13 (Fig. 2 and Table S3). Eriocitrin
(Eriodictyol 7-O-rutinoside) is a flavonoid glycoside found in
various plants, particularly in the peels of citrus fruits such as
lemons, oranges and grapefruits. It is a derivative of the
flavonoid eriodictyol and is known for its potential health
benefits due to its antioxidant and anti-inflammatory
properties61. According to the aforementioned, both DHS and
eriocitrin could be novel therapeutic candidates with
antifibrogenic effects against LC.
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Fig. 10(a-e): In vitro  experimental validation of flavonoids’ effects, (a-b) Cell viability of HepG2 cells and (c-e) Relative mRNA
expression
(a-b) Graphs showing the impact of flavonoid treatments-Luteolin, Diosmetin and "-NF-on the viability of HepG2 liver cancer cells after 48 hrs of
exposure. Statistically significant differences compared to the untreated control group (0) are denoted by symbols (*p<0.05, **p<0.01 and ***p<0.001),
analyzed using a two-tailed unpaired t-test and (c-e) Bar graphs representing changes in mRNA expression levels of target proteins in HepG2 cells
treated with the flavonoids for 48 hrs. Statistical differences from the control group are marked  (*p<0.05,  **p<0.01  and  ***p<0.001),  assessed  via
one-way ANOVA

The liver plays a central role in drug metabolism and
elimination and in cirrhosis, these processes are significantly
altered. The reduced hepatic blood flow, decreased functional
liver tissue and altered enzyme activity compromise drug
metabolism, leading to prolonged drug half-lives and
potential drug accumulation. Additionally, the disrupted bile
excretion impairs drug absorption into the intestines, further
contributing to altered pharmacokinetics62.  Typically, any
drug  candidate  should  have a long half-life time (T1/2) to
allow  for  dosage  reduction  and  thus  minimal  toxic

effects63. Accordingly, the ADME and drug-likeness profiles
demonstrated that DHS, trisindoline, OOA and "-NF could be
acceptable drug candidates for LC as they exhibited excellent
oral bioavailability results (Fig. 8).

According to Molinspiration bioactivity scores, the
investigated small molecules could be classified as active (> 0),
moderately active (-0.5 to 0) and inactive (<-0.5)64. Therefore
and since targeted multi-kinase receptors of LC, the prediction
results exhibited a total of seven compounds as active kinase
inhibitors (Table 1).
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The binding interaction between a ligand and a target
protein can lead to either activation or inhibition of the
receptor. The in vitro results suggested that luteolin had
inhibitory effects on the target proteins, leading to cell death.
However, the activatory effects of diosmetin and "-NF on the
target proteins represented that TGF-$R1 could play dual roles
in apoptosis and cell survival leading  to  HCC  progression
(Fig. 10). Moreover, it has been reported that luteolin and
diosmetin had anticancer effects on HepG2 cells IC50 values of
9 µg/mL (31.4 µM) and 12 µg/mL (39 µM), respectively
targeting TGF-$ signaling pathway65,66. Furthermore, Xia et al.67

reported   hepatoprotective   effects   of  "-NF  against  both
in  vitro  and  in  vivo  models  of  Non-Alcoholic  Fatty  Liver
Disease (NAFLD)67. These findings were partially correlated
with current in vitro  analysis results (Fig. 10), which supported
the anticancer effects of both luteolin and diosmetin and also
suggested the potential protective effects of "-NF against
chronic liver disease models.

CONCLUSION

This study has conducted a virtual screening of the KCB
natural compounds library with multiple kinases related to LC
pathogenesis. Using MD, promising multi-kinase ligands were
identified targeting the non-canonical TGF-$ signaling
pathway. However, through bioinformatics, an essential
enzyme receptor, MMP13, was predicted as a potential target
by the hit compounds. Moreover, the predicted ADMET profile
results exhibited  three  compounds   (DHS,  trisindoline  and
"-NF) that ideally fit the standard drug-likeness parameters as
oral drug candidates. However, strongly recommended to
conduct further preclinical studies to investigate the potential
effects of these natural compounds, particularly DHS,
trisindoline  and  "-NF  on  in  vitro  and  in  vivo  models  of
chronic liver injury for more validation and confirmation of the
docking findings and the efficacy of the targeted mechanism
of action.

SIGNIFICANCE STATEMENT

Liver cirrhosis is a major global health burden driven by
TGF-$-mediated fibrosis. This study employed molecular
docking  and  bioinformatics  to  screen  the  Korea  Chemical
Bank (KCB) natural compounds library, identifying multi-target
inhibitors for TGF-$R1, FAK and PI3K. Promising candidates,
including dihydrosanguinarine (DHS) and eriocitrin, showed
high binding affinities, while ADMET analysis confirmed their
oral bioavailability and drug-likeness. The RT-qPCR validation
revealed luteolin’s inhibitory effects on fibrogenic genes,

suggesting its therapeutic relevance. These findings highlight
the potential of natural compounds for antifibrotic therapy.
Future studies should focus on in vivo  validation, mechanistic
analyses and drug formulation to optimize their therapeutic
efficacy and clinical applicability for liver cirrhosis treatment.
This research expands current knowledge on multi-target
natural drug discovery for liver cirrhosis.
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SUPPLEMENTARY MATERIALS

Table S1: PDB codes of target receptors
Macromolecule (Receptor) PDB accession code
Transforming Growth Factor Receptor Type 1 (TGFBR1) 5E8S
Focal Adhesion Kinase (FAK) 3BZ3
Phosphoinositide 3-Kinase (PI3K) 5T23
Matrix Metallopeptidase 13 (MMP13) 4A7B

Table S2: Primer list and sequences
Name Forward (5'-3') Reverse (5'-3')
TGFBR1 GACAACGTCAGGTTCTGGCTCA CCGCCACTTTCCTCTCCAAACT
FAK (PTK2) GCCTTATGACGAAATGCTGGGC CCTGTCTTCTGGACTCCATCCT
PIK3CA GAAGCACCTGAATAGGCAAGTCG GAGCATCCATGAAATCTGGTCGC
GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

Table S3: SMILES structures and docking scores of the best 10 TGFBR1 inhibitors
Binding affinity (kcal/mol)
-----------------------------------

Compound No. Small molecule (Ligand) SMILES structure PubChem CID TGFBR1 FAK PI3K
1252 Dihydrosanguinarine CN1CC2=C3OCOC3=CC=C2C4=C1C5=C(C=C4)C=C6OCOC6=C5 124069 -11.2 -10.1 -9.1
125 Quercetin 7-O-glucoside OCC1OC(OC2=CC3=C(C(=C2)O)C(=O)C(=C(O3)C4=CC(=C(O) 5381351 -11.1 -8.9 -9.8

C=C4)O)O)C(O)C(O)C1O
225 Eriocitrin CC1OC(OCC2OC(OC3=CC(=C4C(=O)CC(OC4=C3)C5=CC=C(O) 3564542 -10.9 -9.5 -10.5

C(=C5)O)O)C(O)C(O)C2O)C(O)C(O)C1O
298 Diosmetin-7-O-rutinoside COC1=C(O)C=C(C=C1)C2=CC(=O)C3=C(O)C=C(OC4OC(COC5OC 5353588 -10.9 -9.0 -9.9

(C)C(O)C(O)C5O)C(O)C(O)C4O)C=C3O2
90 Myricetin OC1=CC(=C2C(=O)C(=C(OC2=C1)C3=CC(=C(O)C(=C3)O)O)O)O 5281672 -10.7 -8.6 -9.0
119 Trisindoline O=C1NC2=C(C=CC=C2)C1(C3=C[NH]C4=CC=CC=C34) 2883607 -10.6 -9.7 -8.6

C5=C[NH]C6=C5C=CC=C6
304 Luteolin-8-C-glucoside OCC1OC(C(O)C(O)C1O)C2=C3OC(=CC(=O)C3=C(O) 5382105 -10.5 -8.4 -8.4

C=C2O)C4=CC(=C(O)C=C4)O
33 Luteolin 7-galactoside OCC1OC(OC2=CC3=C(C(=C2)O)C(=O)C=C(O3) 5291488 -10.4 -9.1 -9.5

C4=CC=C(O)C(=C4)O)C(O)C(O)C1O
164 3-Oxolup-20(29)-en-28-oic acid CC(=C)C1CCC2(CCC3(C)C(CCC4C5(C)CCC(=O) 289985 -10.4 -8.1 -6.8

C(C)(C)C5CCC34C)C12)C(O)=O
438 Alpha-naphthoflavone O=C1C=C(OC2=C1C=CC3=CC=CC=C23)C4=CC=CC=C4 11790 -10.4 -9.3 -10.1
- Galunisertib CC1=CC=CC(=N1)C2=NN3CCCC3=C2C4=C5C=C 10090485 -10 -10.7 -9.4

(C=CC5=NC=C4)C(N)=O
- Vactosertib CC1=CC=CC(=N1)C2=C(N=C(CNC3=CC=CC=C3F)N2) 54766013 -10.6 -9.7 -9.3

C4=CN5N=CN=C5C=C4
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Table S4: Docking scores with MMP13
Binding affinity (kcal/mol)

-----------------------------------------------------------------
Compound No. Small molecule (Ligand) Chain A Chain B
1252 Dihydrosanguinarine -8.3 -7.6
125 Quercetin 7-O-glucoside -8.7 -9.1
225 Eriocitrin -9.5 -9.8
298 Diosmetin-7-O-rutinoside -8.9 -9.1
90 Myricetin -8.9 -8.7
119 Trisindoline -6.1 -9.0
304 Luteolin-8-C-glucoside -7.2 -8.5
33 Luteolin 7-galactoside -9.3 -9.3
164 3-Oxolup-20(29)-en-28-oic acid -5.8 -7.0
438 alpha-Naphthoflavone -9.3 -9.7
- Galunisertib -8.8 -9.0
- Vactosertib -9.6 -9.7
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