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Abstract
Background and Objective: The high cost of production, in particular feed costs in poultry production, is alarming. This study was
conducted to identify patterns of production and sources of waste in resource utilization. Materials and Methods: Stochastic frontier
production function (SFPF) model was used to measure the output elasticities and investigate the inefficiency effect in Malaysia’s poultry
layer farms. Results: Our findings reveal output elasticities of 1.461 (p<0.01), 0.275 (p<0.10), 0.048 and -0.130 (p<0.05), for day-old chicks
(DOCs), labour, operation costs and feeds, respectively; DOCs is the only elastic input and the most important. The results show the
presence of approximately 12% noise in poultry egg production. The study revealed overutilization of inputs (input slacks), with feeds
(89.46%), labour (39.74%), operation costs (1.40%) and DOCs (1.34%) ranked as the first, second, third and fourth most over utilized inputs,
respectively. Conclusion: To reduce inefficiency in poultry layer production, inputs should be reduced by the proportion of input slacks
evaluated and farmers should strive to operate closed systems of layer production and update their knowledge and skills with the latest
production and managerial techniques for improved efficiency and least-cost production. Finally, we recommend that farmers produce
at a scale commensurate with the availability of inputs to achieve increases in scale efficiency.

Key words:  Layer production, layer farms, feed cost, table eggs, Malaysia

Citation:  Elpawati, Bashir Hamman Gabdo, Mohd Mansor Ismail and Ilmas Abdurofi, 2018. Stochastic frontier production function and efficiency status
of poultry layer farms in Malaysia. Int. J. Poult. Sci., 17: 568-577.

Corresponding Author:  Ilmas Abdurofi, Institute of Agricultural and Food Policy Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Copyright:  © 2018 Elpawati et  al.  This is an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest:  The author has declared that no competing interest exists.

Data Availability:  All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/ijps.2018.568.577&domain=pdf&date_stamp=2018-12-15


Int. J. Poult. Sci., 17 (12): 568-577, 2018

INTRODUCTION

Table eggs an essential part of our daily meals; they are a
cheap  source  of  protein  with  several  essential  nutrients
and  health benefits.  Globally,  egg  production  grew  from
51-64 million tons from 2000-2010 but has declined since
then1. In the year 2000, a total of 5 billion laying flocks
produced 51.2 million tons of eggs, which increased to
approximately  6.4  billion  hens  with  a   production   record
of 62.1 million tons of eggs in 20092. There are an estimated
6556  million  layers  (hens)  globally,  509 million in Africa,
4211 million in Asia, 765 million in Europe, 1053 million in the
Americas and 18 million in Oceania1. In general, Asia is ranked
first in terms of total output, then the Americas, Europe, Africa
and Oceania. China is the world’s largest egg producer, with
27.1 million tons produced in 2010 alone1. Brunei is the
country  with  the  highest  individual  egg  consumption
(57.52 kg/person/year in 2007), then Denmark, Japan and the
rest. Egg consumption per person per  year  decreased to
247.7 units from 248.3 units in 20082.

Smith3 reported a production index for table eggs in
peninsular Malaysia at 8.57 billion units in 2010, up 11.8% from
7.6 billion in 2009. In the same year, a total of 0.85 million
fertile eggs were produced and 59% of those were exported
to Brunei. Of the table eggs produced in Malaysia, most
(approximately 86%) are for domestic consumption. The
remaining 14%, or approximately 1.2 billion, of the table eggs
produced in Malaysia in 2010 were exported; 64% of the
exports were to Singapore3. In terms of the value of
production,  the  2010  egg  production  represented  RM
2.569 billion (USD 860 million), including  exports  of  RM
346.84 million to obtain  a  gross  profit  of  RM  85  million
(USD 28 million)3. Despite these exports, importation of eggs
or their products is common in Malaysia. For instance, specific
pathogen-free eggs are often imported. Popular layer breeds
in Malaysia include Hisex, Lohmann, Novogen and HSH Brown
Nick, imported from Germany, the Netherlands and France3.

Generally, the high cost of poultry production (feed cost)
is worrisome. The production costs of eggs relate to the sum
of all variable and fixed costs incurred in producing a given
number of eggs. In view of the continued high costs of layer
production and the frugality of consumers, future growth will
probably slow down in the layer sub-sector to approximately
1% in a year1. A mixture of high feed costs, legislation and the
ban on  cages and other peculiarities around the globe has
put the cost of egg production at the highest rate ever4.
Furthermore, feed is the costliest input in egg production and
when the feed costs for the pullets are included, the share of

feed to total production cost can reach 70%4. In addition, layer
farms in Europe changed their housing structure for layers to
enriched cages and aviaries, which further increased the cost
of housing and labour per hen. Feed cost is a universal reason
for the increase in costs of production in poultry layers but
nations may vary in peculiarities for other additional costs of
production. Ariffin et al.5 states that the poultry industry in
Malaysia is faced with many challenges, including the cost of
feeds, which comprises approximately 70% of production
costs. High feed costs from farms adds substantially to the
burden of production costs. There are many quality control
issues in egg production  in Malaysia and of immediate
interest is the issue of feed adulteration6. The issues of feed
adulteration and feed waste during production both add to
the high cost of production. Despite the investment in poultry
egg production in Malaysia, not much is known about its
production patterns and resource use efficiency. Given the
high production costs, this research employs a stochastic
frontier approach (SFA) model to estimate the output
elasticities of production and examine the inefficiency effect
model. In addition, a scale-based model of technical efficiency
(SBMTE) is also used to investigate the excessive input
utilization (input waste) in poultry layer production. Finally,
the bootstrap technique is used to simulate the bias-corrected
technical efficiency (BCTE) and examine scale efficiency and
returns to scale in production.

MATERIALS AND METHODS

Data collection: Data for this study was collected from a total
of 96 layer farms in peninsular Malaysia. Simple random
sampling was used in the selection of the layer farms in the
major producing states of Negeri Sembilan, Johor, Penang,
Melaka, Pahang, Selangor and Kedah. A total of one output
(Number of eggs) and four (4) inputs (Feeds, Operation cost,
Labour and total day-old chicks) were used in the analysis.
Detailed descriptions of the production and inefficiency
variables used in this study are presented in Table 1.

Analytical techniques
Stochastic   frontier   production   function   (SFPF):   The
generalized  form  of  the  SFPF,  originally developed by
Aigner et al.7 and Meeusen and Van den Broeck8 and refined
by Battese and Coelli9,10, is adopted to assess the production
frontier and inefficiency issues in the layer farms. It is as
follows:

Yi = f (Xi, αi) exp (εi) (1)
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Table 1: Description and mean values of variables used in the study
Variables Description Unit Mean
Production variables
Output Total eggs produced Number 893971.40
Feeds Quantity of feeds used Kilogram 220931.70
Operation costs Costs of variable inputs Ringgit* 97889.35
Labour Total labour utilized Man-hours 1564.02
Day-old chicks (DOCs) Total DOCs purchased Number 95114.00
Inefficiency variables
Age Age of farmers Years 46.56
Education Educational status (1= tertiary education; 0 other) - 0.34
Experience Years of production experience Years 27.93
Farm ownership Farms owned (1= one farm; 0 other) - 0.85
Production system System (1 = closed; 0 other) - 0.45
Mortality rate Rate of birds’ mortality Rate (%) 3.89
Number of coops Number of coops owned by farmer Number 18.80
*Malaysian currency (1 USD: 4.2 Ringgit)

Table 2: Hypotheses tests for model specification and statistical assumptions
Null hypotheses Test statistics Critical values Decision
H0: βij = 0 (2nd-order coefficients are zero, or the cobb-douglas function better fits the data) 40.250 17.670 Reject H0
H0: γ = δ0 = δ1 = …δ7 = 0 (Inefficiency is absent in the model) 199.886 16.274 Reject H0
H0: δ1 = δ2 = …δ7 = 0 (Farm-specific factors do not influence inefficiency) 17.940 13.401 Reject H0

where, Yi is egg output, Xi is matrix of inputs and αi is a vector
of parameter to be estimated. The error term (εi) is made  up
of  two  components  Vi and Ui which are related as εi = Vi- Ui.
Vi accommodates random variations in the output that are
caused by factors beyond farmers’ control and the effects of
errors  of  measurement  in the output variable11. In contrast,
Ui is a random variable that handles stochastic shortfall in
outputs relative to the most efficient decision-making unit
(DMU)9.
Thus:

Yi = f (Xi, αi) exp (Vi-Ui) (2)

Vi is normally distributed  with  mean  and  variance = δv2. Ui is
a truncated  normal  distribution  with mean 6Ui =δ0+

J
j 1 j jiZ 

and variance = δ2. Note that Zji represents the value of the jth
explanatory variable related with the technical inefficiency
model of the DMU and δ0…δj are unknown parameters that
are to be estimated. Parameters of both the stochastic frontier
model and the inefficiency effects are jointly estimated in a
single step solution with the maximum likelihood estimation
technique. Parameters of variance in the likelihood function
are estimated from the study of Battese and Coelli9 as:

2
2 2 2
s v 2

s

and


    


Functional    form    specification:    We    use   both   the
Cobb-Douglass and translog functional forms in this study.
The Cobb-Douglass is a special form of the translog function

known for its disadvantage of strict restrictions on production
technology by specifically limiting elasticities of production to
be constant and elasticities of inputs to be 1. We therefore
tested the Cobb-Douglass function against the translog
function to determine whether it was sufficient enough to
represent the data and we obtain conclusive evidence that it
indeed is not (Table 2). Hence, the Cobb-Douglass function is
discontinued from further consideration in this study. The
functional form specification for the translog9 is presented
below:

(3)
4 4 4

i 0 j ij jk ji ki i i
j 1 j 1 k 1

ln Y ln X 0.5 lnX lnX (V U )
  

         

Where
Yi = No. of eggs
X1 = Quantity of feed used (kg)
X2 = Operation costs (RM)
X3 = Labour (person-hours) 
X4 = Total day-old chicks (DOCs)

Slack-based measure of technical efficiency (SBMTE): Since
the advent of data envelopment analysis (DEA) in 1978,
several modifications have been developed to overcome some
perceived limitations. The DEA models are of two kinds: radial
and non-radial. The Charnes-Cooper-Rhodes (CCR) model is a
typical radial model, while the slack-based measure (SBMTE)
is typically a non-radial measure12. The radial approach differs
from the non-radial in two ways. First, the radial model
assumes that inputs and outputs (q) change proportionately,
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while the non-radial (SBMTE) model assumes that some inputs
can be substituted and, as such, exhibit non-proportional
change. Second, the radial approach does not capture slack
but the non-radial approach (SBMTE) handles slack. From the
intuition of Charnes et al.13 on the development of the additive
DEA  model,  Tone14 non-radial model; the slack-based model
of technical efficiency (SBMTE). Torgersen et al.15 stated that
the SBMTE estimates scores that are unit invariant, monotonic
and reference-set dependent16, which impedes the influence
of outliers or extreme observations on the efficiency scores. In
this study, the non-radial (SBMTE)-input oriented approach in
line with Tone14 is adopted, as below:

To assess the relative efficiency of DMU0 = (x0, y0), the
following linear program needs to be solved14. This step is
then repeated n times for 0 = (1,..., n):

(4)
m

* min i
I ,s¯,s

i 1 i0

s1
1

m x







   

Subject to:

n

i0 ij j i
j 1

x x s (i 1,...,m),



   

 
n

r0 rj j r
j 1

y y s r 1,...,s



   

j j i i r r0( ),s 0( ),s 0( )       

where, DI*denotes SBMTE-input, n is the number of DMUs (96),
m is the number of  inputs  (4),  s  is  the  number of outputs
(1),  si excess,  sr+ is  output  shortfall  and  λj  is  a non-negative
vector that permits the construction of the production
possibility set for j DMU. Furthermore, xij (m is feeds, operation
costs, labour and day-old chicks) and yrj (s is number of eggs).
Note that if ρI*=1 6 efficient level, meaning that  both  the  
(siG* = 0) and output shortfall (si+* = 0) for all i and r entries are
zero.

DEA-bootstrapping   methodology   for   robust   technical
efficiency estimation: The application of bootstrapping in
efficiency measurement is premised on one of the major
shortcomings of the DEA estimator. Linh17 asserts that DEA
results lack statistical properties, which results in biased and
spurious estimates. Simar and Wilson18 assert that applying
the bootstrapping method is currently the most feasible
approach for establishing a consistent  statistical  property for

a DEA estimator; subjecting the DEA scores to further
estimation allows us to obtain  a  more  robust and reliable
DEA score through bootstrapping. Bootstrapping entails
generating a new set of data by simulating the original data
using  a given number of  iterations.  It  is  a  simulation
method that involves Monte Carlo estimation. The Monte
Carlo  method  is  used  in  bootstrapping  to simulate the
data-generating process (DGP) to produce a valid estimator;
it tests and confirms the presence of stochastic effects in
observations via bias and the  confidence  interval  for the
bias-corrected scores19. The procedure for executing the
homogenous smoothed bootstrap methodology is shown
below.

Assume you are given a  DMU,  and  input-output  data,
(xk, yk). If k = 1,...,n, compute with a linear programming

k
approach to estimate efficiency. In this case, the specifications
of the linear model are different estimators of the same
unknown θk. Thus, estimators represent random variables

k
and, ordinarily, a specific realization of different random
variables.

The smoothed bootstrap sample, θ1*,...,θn*, for i = 1,..., n 
are obtained by making β1*,...,βn*, a simple bootstrap sample
derived by drawing with replacement. Thus, a random sample
size can be obtained as follows19:

(5)
* * * *

* i i i i
i * *

i i

h if 1

2 h otherwise

          
     

and the corrected bootstrap sample is obtained via:

(6)
 

*

*
i

2
* *
i2

1

1 h



 
 

       

Where


2* n *

1i 1
1 / n , 

    

denotes the sample variance of θ1*,...,θn*, is the bandwidth
factor and εi* is a random deviate. In accordance with the work
of Simar and Wilson18 on the computation of the bandwidth
factor, we suggested the use of normal  reference  rule  and
set the bandwidth as for a normally distributed

2
1/5h 1.06 n¯ 

data set . Furthermore, they suggest the use of least-square( )

cross validation that relies on a choice of bandwidth that has
the  minimal  approximation  ability  of  the  mean   integrated
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square The second method is applicable  in  DEA  estimation, 
being a non-normally distributed data set; hence, in this
research, the least square cross validation approach is used.

Use the smoothed bootstrap sample sequence above to
compute the new data 

where,  (7)  *
ib ix , y |i 1,...,n


i*

ib i*
ib

x x ,{i 1,...,n}
 

    

Finally,  compute  efficiency   estimates . This *

i | i 1,...,n 

is done by using the new data xb* to solve the DEA model for
each DMU. An example is illustrated below for a single DMU,
k = 1, for which the bootstrap estimates can be obtained by
solving the model below:

(8)
 


k

* n n *
k,b k i i x i ii 1 i 1

n

i ii 1

min 0 |y y | x ,

b | 1, 0,i 1.,n

 



        

    

 



Steps 2-4 are iterated B times to provide for k = 1,...n a set
of estimates . Simar and Wilson20 recommend a *

k,b b 1,...,B 

minimum of 2000 bootstrap iterations; in line with that
suggestion,  we also set 2000 iterations for the simulation.
Note that the bootstrap efficiency scores and DEA*

k
efficiency scores represent approximations of and θk,

k 
k

respectively.

RESULTS AND DISCUSSION

Tests of hypotheses: We used the generalized likelihood ratio
(LR) to test the null hypothesis that the second-order and
interaction variables in the transcendental function are zero
(H0: βij = 0). This  hypothesis  implies  that  the  log-linear
(Cobb-Douglass) function better explains the phenomena of
poultry egg production than the transcendental function.
However, this hypothesis, as presented in Table 2, is rejected
following an estimation of the LR statistic (= 40.25), which is
higher than the critical value (= 17.670) in Kodde and Palm21.
The rejection of the null hypothesis suggests that the
transcendental function better fits and more appropriately
explains the production scen eggs  in  Malaysia than the Cobb-
Douglass function. Hence, the transcendental function  results 
were  chosen   and   presented   to   derive the conclusions of
this study. Studies such as those of Ashagidigbi et al.22 and
Adeyonu et al.23 also concur in the selection of the translog
function over the Cobb-Douglass function in describing the
scenario of poultry egg production.

In addition to the first hypothesis on the selection of
functional form, as explained earlier, Table 2 also presents the
other important hypotheses of the study. The second null
hypothesis portrays the absence of technical inefficiency in
the model (H0: γ = δ0 = δ1 = ... δ7 = 0). Failing to reject this
hypothesis indicates the absence of technical inefficiency in
the poultry layer production. This further suggests that the
ordinary least square (OLS), a measure of traditional average
response function that assumes all farmers are technically
efficient, would have been adequate to describe the data in
this study. Nevertheless, the hypothesis is also rejected owing
to a higher LR (199.886) relative to critical value (16.274). Thus,
there is presence of technical inefficiency in the model, hence
the need to identify the sources of inefficiency in the poultry
layer production system. We use the third hypothesis to test
whether or not farm-specific factors are truly a source of
inefficiency in poultry layer production. The null hypothesis is
that coefficients of variables incorporated in the inefficiency
model, precluding the intercept, are zero (H0: δ1 = δ2 = ... δ7 = 0).
This scenario, as observed by Stevenson24, asserts that the
impacts of technical inefficiency assume a truncated-normal
distribution with a mean not equal to zero. This hypothesis is
also incorporated, suggesting that the joined effects of the
factors incorporated in the technical inefficiency model are
significant (LR = 17.940> the 13.401 critical value).

Estimated parameters of the SFPF: Table 3 presents the
maximum likelihood estimates (MLE) of the Stochastic Frontier
Model. With the exception of feeds, the coefficients of
parameters estimated in the SFPF have the expected positive
signs; feeds (-), operating costs (+), labour (+) and DOCs (+).
However, operating cost is the only input that did not show
statistical significance, while the others  show  varying levels
of significance; feeds (p>0.05), labour (p>0.10) and DOCs
(p>0.01). In this study, the first-order parameters are
interpreted as output elasticities. Coelli et al.25 stated that if
data is subjected to mean correction, then the first-order
coefficients can be interpreted as output elasticities. Thus,
output elasticity with respect to day-old  chicks (DOCs) was
the  highest  (1.461);  this  means  an  increase  in   DOCs   by
1% increases egg output  by  1.461%.  Nmadu  et  al.26,
Adeyonu et al.23, Adedeji et al.27 and Adepoju28 also found a
similar positive correlation between DOC and egg output. As
the second most important input, labour has 0.275 output
elasticity  and  was  significant  (p>0.10).  This  means that a
1%  increase  in  labour  increases  egg  output  by  0.275%.
This finding concords with those of Adeyonu et al.23 and
Adedeji et al. 27, who also found a positive correlation between
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Table 3: Maximum likelihood estimates of the SFPF (translog) and inefficiency models of poultry eggs
Variables Parameters Coefficients Standard error T-ratios
Stochastic frontier model
Constant β0 0.122 0.437 0.281
Feeds (X1) β1 -0.130‡ 0.072 -1.799
Operating costs (X2) β2 0.048 0.534 0.089
Labour (X3) β3 0.275§ 0.176 1.565
DOC (X4) β4 1.461† 0.560 2.620
(X1)2 β5 -0.006§ 0.004 -1.432
(X2)2 β6 -0.233 0.292 -0.796
(X3)2 β7 -0.023 0.033 -0.698
(X4)2 β8 -0.290 0.352 -0.825
(X1 X2) β9 0.056 0.057 0.971
(X1 X3) β10 0.008 0.020 0.400
(X1 X4) β11 -0.024 0.054 -0.446
(X2 X3) β12 0.053 0.116 0.452
(X2 X4) β13 0.456 0.640 0.713
(X3 X4) β14 -0.092 0.116 -0.792
Inefficiency effect model
Age δ1 -9.524×10-4 5.962×10-3 -0.160
Education δ2 -0.064† 0.024 -2.690
Production experience δ3 -0.005† 0.001 -4.428
Number of farms owned δ4 -0.005 0.024 -0.225
Type of production system δ 5 -0.031§ 0.021 -1.466
Mortality rate δ6 7.125×10G3‡ 3.620×10-3 1.968
Number of coops δ7 -0.006‡ 0.003 -1.874
Sigma square δ2 0.003† 3.550×10-3 7.719
Gamma γ 0.999† 2.036×10-3 4.913×104

Log-likelihood ratio 164.430
Mean TE 0.8858
†: 1% level of statistical significance, ‡: 5% level of statistical significance, §: 10% level of statistical significance

labour  and  egg  production.  However,  studies  conducted
by Adeyonu et al. 23,  Afolabi et al.29 Ashagidigbi et al.22 and
Nmadu et al.26 identified a negative association owing to over
utilization of labour. Next is operating costs, which has a 0.048
output elasticity but is not significant, denoting a 0.048%
increase in egg output from a 1% increase in operating costs.
Adepoju28 and Ojo30 also reported positive coefficients of
operating costs on poultry layer egg production in their
studies.
In contrast, feed is inversely proportional to egg output;

its coefficient (-0.130) implies that a 1% increase in feed
reduces egg production by 0.130%. This negative sign
indicates over utilization or waste of feed in layer farms. This
negative  sign  is  consistent with many poultry egg studies.
For instance, Ojo30, Adepoju28, Ashagidigbi et al.22 and
Adeyonu et al.23 found negative coefficients of feed and stated
its non-optimal use as the cause of the negative relationship.
A scale elasticity of 1.654 is estimated (summation of output
elasticities) and since 1.654>1, on average, the layer farms
produce at increasing returns to scale (IRS) or stage 1 of the
production function, which further implies that farms are not
scale efficient. By implication, if the layer farms jointly increase
all factor inputs (feed, operating costs, labour and DOCs) by

1%, then egg output will increase by 1.654%, ceteris paribus.
The finding that poultry layers produce at stage 1 agrees with
the finding of Adedeji et al.27 but is in contrast with that of
Nmadu et al.26 and Afolabi et al.29.

Estimated parameters of the inefficiency model: All the
variables included in the inefficiency model present the
expected negative signs except mortality but only five out of
the seven are statistically significant. Education is (-) and
significant (p>0.01); this indicates that higher education
decreases  technical   inefficiency   since   new   knowledge
and skills are developed  for  better management of farms.
This agrees with Akinyemi et al.31, Yusuf and Malomo32,
Ashagidigbi et al.22 and Adepoju28. Production experience is (-)
and significant (p>0.01); this also indicates that higher
production experience reduces inefficiency. These findings
show that poultry (layer) farmers learn to improve on their
production deficiencies for better production over time.
Production experience in itself is another form of education for
the farmer, has to learn and adjust for improved productivity.
Adeyonu et al. 23 and Ashagidigbi et al. 22 found in their studies
a negative relationship between production experience and
inefficiency in layer production. The number of coops owned
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is (-) and significant (p>0.05); this indicates that inefficiency
decreases with the acquisition of more coops on the farm. The
number of coops owned on a layer farm depends on the
number of chicks reared. The more coops there are, the
greater the layer stock (birds) is and vice versa. This
corroborates Adedeji et al.27, who also revealed a negative
correlation between DOCs and inefficiency.
As in the broiler sub-sector, there are two types of

production systems in layer farms; closed and open systems.
Thus, the negative sign and significance (p>0.10) level
indicates that inefficiency could be reduced by operating a
closed system of production and conversely. Under the closed
system, the layers receive better management in terms of
regulating the environment, which helps to reduce mortality
and ultimate reductions in inefficiency. Similarly, lower
mortality of the layers reduces inefficiency evident from the
positivity and significance (p>0.05). Egg production depends
on the number of layer stock; lower mortality indicates
insignificant reduction in the layer stock and this aids in
reducing inefficiency. In contrast, higher mortality reduces the
number of layer stock and egg production which ultimately
results in higher inefficiency. Other farm-specific variables with
appropriately negative signs but which were not significant,
are age and total number of layer farms owned.
The result of the slack-based model (SBM) for the radial

measure of excess input utilization or slack is presented in
Table 4. The input slack shows feed, labour, operation costs
and  DOCs  with  mean  slacks  of  89.46,  39.74, 1.40 and 1.34,
respectively. This means that feed,  labour,  operation costs
and  DOCs  are  over-utilized  by  89.46,  39.74,  1.40 and 1.34%,

respectively.  This  f could be withdrawn from the production
process by their respective proportion and the output of eggs
will remain unchanged. Ranking of input slack shows feed,
labour, operation costs and DOCs, with ranks of 1, 2, 3 and 4,
respectively, as the most over-utilized inputs in decreasing
order. If these input slacks were monetized based on the
prices of the inputs on individual farms affected, then the
amount could be quite substantial on some farms. Their
reduction will help save production costs and, eventually,
attain technically efficient levels (frontiers).
 (BTE) and the bias-corrected technical efficiency (BCTE)

scores in the layer farms; the BCTE is lower than the BTE, which
indicates the presence of production noise. Having adjusted
for bias, the BCTE scores are robust estimates19. The BCTE of
the layer farms ranges between 0.1613 and 0.8784, with a
mean of 0.5745. On average, the layer farms operate at 57.45%
efficiency; in other words, the layer farms are 42.55%
technically inefficient. By implication, possibilities abound for
production inputs in the layer farms to be reduced by 42.55%
without any loss in total output (egg production). The
maximum and minimum values are wide in range, suggesting
wide variations in the level of input use and output among the
poultry layer farms in Malaysia (Table 5). The level of
inefficiency in the layer sub-sector is high and indeed
worrisome but indicates the level of adjustment needed for
judicious and improved egg production. We also observed the
confidence interval, a means of testing the hypothesis for the
 BCTE scores, which shows a mean BCTE (0.5745) lying
between the lower mean (0.4958) and the upper mean
(0.6796)    confidence    interval.   The   bias   estimates   range

Table 4: Input slacks in poultry egg production in Malaysia
Input slacks (%)
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Feeds (X1) Operation costs (X2) Labour (X3) Day-old chicks (X4)

Mean slacks 89.46 1.40 39.74 1.34
Ranking 1 3 2 4

Table 5: Distribution of BTE, BCTE and bias in poultry layer production in Malaysia
TE range TE-SFA BTE BCTE Conf. Interval for BCTE Bias
Efficiency range
Very low (0.0000-0.2500) 0(0.00) 0(0.00) 0(0.00) - -
Low (0.2501-0.5000) 0(0.00) 0(0.00) 0(0.00) - -
High (0.5001-0.7500) 2(2.08) 4(4.17) 8(8.33) - -
Very high (0.7501-0.9999) 94(97.92) 64(66.67) 88(91.67) - -
Fully efficient (exactly 1.0000) 0(0.00) 28(29.17) 0(00) - -
Total 96(100) 96(100) 96(100)
Summary
Min 0.6822 0.1956 0.1613 0.1423-0.1922 0.0305
Max 0.9999 1.0000 0.8784 0.8135-0.9850 0.2626
Mean 0.8858 0.6929 0.5745 0.4958-0.6796 0.1183
SD 0.0670 0.2494 0.1910 0.1613-0.2443 0.0693
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Fig. 1: Trend of efficiency indicators of poultry layer farms in Malaysia based on 2000 bootstrap iterations

Fig. 2: Trend of technical efficiency estimates under BTE, BCTE and SFA estimators

Table 6: Scale efficiency and returns to scale based on the DEA model in poultry layer farms
Scale efficiency (SE) Returns to scale (RTS)
Scale efficient farms = 21(21.00)- Optimal DRS farms = 26(28.00)-Super optimal
Scale inefficient farms = 75(79.00)-Non-optimal IRS farms = 49(51.00)-Sub-optimal
Total 96 (100) Total = 75(79.00)
Mean SE 0.938

between 0.0305 and 0.2626, with a mean of 0.1183; this
indicates the presence of 11.83% noise on average in the
Malaysian poultry layer sub-sector. Figure 1 and 2 show the
trend of efficiency indicators estimated  at  2000  boots  and 
the trend of technical efficiency estimates under BTE, BCTE
and SFA estimators, respectively.
Table 6 shows the scale efficiency and returns to scale

status based on the DEA model in poultry layer production.
Approximately  21  (21%),  26  (28%)  and  49  (52%) of the
layer   farms   produce  constant  (CRS),  decreasing  (DRS)  and
increasing (IRS) returns to scale, respectively. In other words,
only 21% of the farms are scale efficient or  produce  at
optimal levels,  while  52  and  28%  produce  at sub-optimal
and  super-optimal  levels,   respectively.   In    line   with

Padilla-Fernandez and Nuthall33, production at an appropriate
scale is  recommended in the Malaysian layer sub-sector.
Accordingly, farms producing at an optimal scale should
maintain the use of current inputs, those at sub-optimal scale
should  produce  at  higher  levels  of inputs and those at
super-optimal scale should reduce input levels, at least in the
short term, to gain the benefit of high marginal returns and
low marginal costs.

CONCLUSION

We used a holistic approach including stochastic
production frontier, slack-based model of technical efficiency
and robust bootstrap simulation techniques in the efficiency

575



Int. J. Poult. Sci., 17 (12): 568-577, 2018

analyses of layer farms in Malaysia. The key findings of the
study include the following. The study finds day-old chicks to
be the only elastic and most important input in layer
production. In addition,  the  study  estimates 69% as the
mean bias technical  efficiency,  57%  as  the bias-corrected
technical efficiency and a noise effect of approximately 12%.
Furthermore, the study revealed that 90% of feed and 40% of
labour inputs in layer production are over utilized. Thus, only
21% of layer farms are optimal, 28% are super-optimal and
51% are sub-optimal. Finally, inefficiency can be improved
with education, production experience, production systems
and number of coops.
Despite the significant contributions of the poultry layer

sub-sector to the economy of Malaysia, the results in this study
reveal that much needs to be done to improve the efficient
resource utilization of this section and to reach a more
competitive level. To minimize inefficiency and enhance
productivity in layer production, the following measures are
imperative. On average, farmers should curtail waste in feeds
by almost 90% and labour by almost 40%; this will improve
input slack and, ultimately, efficiency. Farmers should also
aspire to more education (knowledge, techniques or skills) in
layer production and operate a closed system of production;
this will reduce the effects of inefficiency and, ultimately, the
efficiency itself. To achieve frontier production in layer farms,
production at an appropriate scale is also imperative.
Optimally producing farms should continue production with
their current input bundles. Similarly, sub-optimal farms
should increase their input bundles, while super-optimal farms
should decrease their input bundles in production to attract
high marginal returns and low marginal costs.

SIGNIFICANCE STATEMENT

This study focuses on identifying  the  inefficiency
problem of layer production in Malaysia. This study will assist
farm management in  reducing  inefficiency  levels in the
inputs of production and lead to proper scale efficiency.
Hence, the new theory of stochastic frontier production and
the efficiency status of poultry farms in Malaysia may be
obtained.
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