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Abstract
Background and Objective: It seems that current broiler chickens have modified the dietary nutrient needs and body composition over
time. Further, the relationships between dietary nutrients and feed cost or biological nutrient requirements are unknown. The aim of this
study was to understand and explain current energy and amino acid tendencies of dietary levels and requirements, to evaluate
relationships between dietary energy and lysine among levels, feed cost and requirements and to compare energy and lysine efficiency
from 2001-2017. Methodology: Data from literature were evaluated to predict the dietary ME and amino acids as well as the body fat
content by multiple regression. Actual dietary ME and digestible lysine levels were linearly regressed with diet cost and ME and lysine
requirements. Efficiencies of lysine and ME were calculated taking into account the broiler genetic improvement through body
composition. Results: Dietary energy levels have been reduced at a rate of 5 kcal per year while digestible lysine has increased by 0.009%
per year from 2001-2017. Nutritionists during the process of selecting dietary energy and lysine levels have been influenced by feed cost
(r2 = 0.75) and lysine requirements (r2 = 0.86), respectively. During a period of 16 years, modern broiler chickens deposit less body fat (-6%
of body weight) and more body protein (+4% of body weight) and convert energy and amino acids into meat more efficiently than older
broiler genotypes. Conclusion: These data indicate that dietary energy and lysine are reduced and increased, respectively, influenced by
feed cost and requirements, resulting in better energy and lysine efficiencies due to feed intake and body composition changes.
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INTRODUCTION

Globally, different energy and amino acid levels are used
in different regions, although it is unknown the magnitude by
which these dietary nutrients are influenced by feed cost or
biological nutrient requirements. Furthermore, a study that
explains nutrient trends, body composition and nutrient
efficiency in one systemized approach over time as a way to
gain insight into the future should shed light on biological
mechanisms in modern broiler chickens.
As compared to slow growing birds, fast growing birds

require more amino acids1 or methionine2 but less dietary
energy3. However, these differences cannot be extrapolated to
evaluate the magnitude of dietary nutrient changes in current
broiler chickens. Many peer-reviewed papers studying nutrient
needs from the last few years could be compiled and analyzed
to calculate the genetic progress and future nutrient trends.
Furthermore, a comparison between commercial nutrient
levels and biological nutrient requirements could be analyzed
which may suggest what is  the main driving force that
dictates nutrient levels used in the field. On the other hand, it
seems that genetic progress has changed body composition
significantly. The body protein can be accurately predicted by
breast meat regardless of sex and broiler strains4, whereas the
body fat can be affected by sex, type of feed, age and strains4-7.
Body fat was, for example, reduced in chickens with improved
feed conversion or faster growth rates compared to birds of
poorer feed conversion or slower growth rates8,9. In contrast,
the carcass protein is enhanced by genetic progress3.
However, when the breast yield is less than 15% of body
weight (BW), the carcass protein is similar between chickens
of fast and slow growth rate3,9,10. The objectives of the present
study were to understand and explain current energy and
amino acid tendencies of dietary levels and requirements, to
evaluate relationships between dietary energy and lysine
among levels, feed cost and requirements and to compare
energy and lysine efficiency from 2001-2017.

MATERIALS AND METHODS

Metabolizable energy (ME) lysine and body fat: Data from
literature were evaluated to quantify the ME and amino acids
(AA) requirements for broiler starter, grower and finisher feed.
The data were obtained from peer-reviewed journals and from
performance results of 2 research studies at Aviagen Inc
(unpublish data). The main criteria used for article selection
were the following: a) commercial broiler chickens (Avian,
Cobb, Hubbard and Ross), minimum of 3 nutrient levels and

normal temperature or moderate heat stress. For each article,
the year of publication, start and end period of each feeding
phase, lysine or ME requirements, dietary ME, digestible lysine
(dLys), dietary protein and body fat were included in the
database. Further, other variables (genetic strains, feed form,
sex, feed conversion, live body weight, body weight gain and
method of estimated requirement) were registered to allow a
more descriptive analysis. The nutrient requirements were
recorded according to published journals using linear broken
line, quadratic broken line, quadratic polynomial regression or
difference of means based on feed conversion, body weight
gain and breast muscle yield. The energy database included
articles between 1996 and 2016, containing equal levels of
amino acids11-32. The database for lysine requirements
included journals considering constant amounts of amino
acids between 2001 and 201718,33-67 and changing the amino
acids proportionally to lysine between 2001 and 201441,68-77.
The body fat database included studies between 1991 and
2014, including  the year of publication, broiler age, dietary
ME, dLys and dietary crude protein (CP) as independent
variables4-6,65,73,78-88.

Comparisons among diet cost, dietary and requirements of
lysine and energy: Average nutrient requirements were
calculated to show trends over time using the following
variables:  year  range  (2001-2017),  starter  period  between
0-10 days, grower period between 11-25 days and finisher
period between 26-39 days and assuming feed intake
proportions of 7.1, 30.2 and 62.8%, respectively. Thus, the
actual ME or dLys values and diet costs were obtained from a
US industry reporting service89.

Body composition: Body fat was calculated from year, age
and ME/dLys. Body  protein  was   calculated  from breast
muscle yield using an allometric relationship between breast
and body protein (lnBreast meat weight = -2.379
+1.409xlnbody protein weight) as described by Danisman and
Gous4 and breast meat yields reported by Agri Stats89.

Lysine efficiency: Efficiencies of dlys from 2001 and 2017
were calculated considering the lysine used for maintenance
and deposited for protein gain.

Lysine for protein gainEfficiency of dLys = 100
Actual dLys intake-dLys for maintenance



Lysine for maintenance (g/period) = {35.73× [(0.040+2.268)/2]0.75

/1000}× [#days to reach 2268 g] 
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where  35.73  mg/kg0.75/day was developed from data of
Fatufe et  al.38 (dLys intake =  35.73+1.337×[Lysine  accretion],
r2 = 0.97).

Lysine for protein gain (g/period) = [6.7/100×protein
gain]×[# days to reach 2268 g], calculated using 6.7% of lysine
for whole body protein from Fatufe et al.38, protein gain as
difference between gain at day 1 and market age of 2268 g
(2268×body protein/100-40×16/100) and # days to reach
2268 g as division between target weight and body weight
gain per day (2265 g/[body weight gain, g dayG1]).

Digestible lysine intake was calculated as follow:

dLys intake = Actual dietary dLys (%)×(FCRadj×2265)/100

where, the feed conversion adjusted by target body weight
(2265 g) (FCRadj) was calculated as:

FCR adj = FCRactual+[(2265-BWactual)/45×0.01]

where, 45 g difference  in  BW  is  equivalent to 1 point or one
hundredth of  FCR,  as described by Lesuisse et al.90

BW actualFCR actual = 
FIactual

where, actual BW and FI from 2001-2017 as reported by Agri
Stats89.

Energy efficiency: Efficiencies of energy from 2001 and 2017
were calculated as the energy used for gain and maintenance:

Efficiency of ME for gain and maintenance = [net energy for body
gain and maintenance]/MEintake×100

where, net energy for body gain was calculated using the
body protein (BP) and body fat (BF) gain and their
corresponding caloric values of 5.66 and 9.35 kcal gG1

respectively, as described by Fraps and Carlyle91.

Net energy for body gain = 5.66×(2268×BP) + 9.35×(2268×BF)

Net energy for maintenance = 1.15×90×[(2268+40)/2]0.75

×[# days to reach 2268 g]

where, 90 kcal kgG1 0.75 as reported by Sakomura et al.92 and
assuming 15% more of physical activity.

ME intake = Actual dietary ME (kcal kgG1)×FCRadj×2265

Nutrient efficiencies: Nutrient efficiencies in relation to a year
were calculated as follows:

Nutrient 2001-2017Nutrient efficiency 100
Nutrients, 2001

 

where, nutrients were ME intake, dLys intake, energy
requirement (NEm+NEgain) and lysine requirement (dLys for
maintenance and protein gain).

Design of the analysis: Actual dietary ME and dLys levels were
linearly regressed with diet cost and requirements of ME and
dLys. To gain insight into possible future nutrient needs,
efficiencies of dLys and ME were calculated taking into
account the broiler genetic improvement through body
composition for each year from 2001-2017. Body protein was
estimated from breast meat yield, and body fat  was calculated
by multiple regressions in function of year, age, dLys, protein,
ME/dLys or ME/CP. Further, ME intake, dLys intake, energy
requirement (NEm+NEgain) and lysine requirement (dLys for
maintenance and protein gain) were plotted against one
specific year to observe the trends during the time. The actual
dietary ME, digestible lysine, breast muscle yield, BW and FI
were retrieved from a US industry reporting service89 from
2001-2017. Because the genetic selection pressures on feed
conversion and body composition had reduced the numbers
of days to reach market weights, the nutrient intakes and
efficiencies were adjusted to 2265 g of body weight, removing
the age of market weight during the trends.

Statistical methods: Multiple linear regressions for estimating
energy and digestible lysine requirements and linear
regressions to evaluate the determination between dietary
and requirement of ME and dLys were obtained using JMP
Software93. Further, coefficients for year and market age,
dietary ME, dLys, CP, or ME/dLys to estimate body fat were
plotted by multiple linear regressions. Regression coefficients
were compared among independent variables using
confidence intervals derived from the SE of respective
regression coefficients94.

RESULTS AND DISCUSSION

Energy and lysine requirements: The energy and lysine
requirements were statistically influenced by year and age
(Table 1). Coefficients of lysine and amino acid (AA)
requirements, though numerically higher, were statistically
similar to those of lysine needs with constant levels of AA.
Lana et al.41,42 reported that lysine requirements based on
equal lysine: AA ratios  were  higher than lysine needs based
on constant levels of AA (+3% starter  or +6%  grower). Herein,
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Table 1: The energy and lysine requirements predicted from year and age period
Variables Intercepts Year Mean period (day)1 n SEM R2 p-value
ME (kcal kgG1) 13599.00 -5.2900 6.5100 52 96 0.50 <0.0001
  SE 5230.00 2.6000 1.0900
  p-value 0.01 0.0500 <0.0001
dLys (%) -17.52 0.0093 -0.0055 57 0.09 0.49 <0.0001
  SE 5.43 0.0027 0.0009
  p-value <0.01 <0.0100 <0.0001
dLys:AA2 (%) -22.14 0.0117 -0.0067 21 0.07 0.64 <0.0001
  SE 7.77 0.0039 0.0013
  p-value 0.01 <0.0100 <0.0001
1Mean period for energy and lysine needs is middle age of feeding period and for body fat, the period age is the final broiler age, 2dLys:AA: digestible lysine and amino
acids were formulated proportionally

Table 2: Linear regression analysis comparing dietary energy and lysine with diet cost or lysine and energy requirement
Equations SEM p-value r2

ME ( kcal kgG1 ) = -0.24x[diet cost, $/t]+3197.3 10.100 <0.0001 0.75
dLys (%) = 0.0004×[diet cost, $/t]+0.95 0.025 0.0010 0.53
ME (kcal kgG1) = 0.54×[ME requirements]+1335 14.700 0.0020 0.47
dLys (%) = 0.70×[dLys requirements]+0.30 0.014 <0.0001 0.86
dLys (%) = 0.56×[dLys:AA1 requirements]+0.42 0.014 <0.0001 0.86
1dLys:AA: Digestible lysine and amino acids were formulated proportionally

similar increments of lysine requirements (+6% starter and
+4% in grower) were found when lysine and AA were adjusted
proportionally as compared to constant dietary AA. Nutrient
requirement trends depict mainly the expression of genetic
advancements for commercial broiler chickens used in the
poultry industry. From the previously described, during each
feeding phase, the ME needs are being lowered by 5 calories
per year, while dLys levels have been increased by 0.009% per
year. Further, trends in the US industry show that dietary ME
and dLys levels in broiler diets are displaying opposite trends.
From 2001-2017, dietary ME has shown a tendency of being
reduced by 38 kcal kgG1 or 2.4 kcal yearG1, whereas dLys has
shown to be increased by 0.12 or 0.008% per year (Fig. 1). Even
though, the lysine requirement increment per year originated
from different countries matches closely to the commercial
dLys which represent  values  from  the  US  poultry industry.
In line with current reviewed tendencies, Wen et al.2

demonstrated that fast growing broiler chickens need more
dietary methionine compared to slow growing chickens. On
the other hand, a more efficient digestion of energy in modern
chickens with good FCR compared to those with poor FCR95,96

suggest that modern chickens metabolize nutrients more
efficiently and might need less dietary energy as suggested
herein. Furthermore, a pair-fed study indicated that the dietary
energy levels needed to improve feed conversion were lower
in modern broiler chickens (3200 vs 3400 kcal kgG1) than those
in random bred chickens3. As broiler chickens age, the energy
needs are increased by 6.5 kcal dayG1, whereas the digestible
lysine is reduced by 0.006% per day. In agreement with these
trends, lysine and energy requirements are reduced and
increased, respectively, as broiler chickens aged22,35,68.

Fig. 1: Trends of ME and digestible lysine (dLys) in the poultry
industry (adapted from a US industry reporting
service91). The dLys was calculated from total lysine with
an average digestibility of 0.89%, based on ingredients
typically used in broiler chickens

Associations among diet cost, energy and lysine
requirement: The relationship between dietary ME and diet
cost, for example, indicates that when feed cost is higher,
dietary ME is lower. The higher best fit to predict energy from
feed cost (r2 = 0.75) suggests that dietary ME over time is
being driven by feed cost  (Table  2).  Other  economic
variables such as broiler meat price might also influence the
dietary energy selection97,98. Conversely, a smaller coefficient
of determination (r2 = 0.53) is observed when predicting dLys
from average feed cost as compared to dietary ME, inferring
that other variables may be associated with the behavior of
dLys values in recent years. When considering the relationship
between average nutrient requirements and actual poultry
industry nutrient levels, it seems  that  the  actual  dLys level is

31



Int. J. Poult. Sci., 18 (1): 28-38, 2019

1.95

1.90

1.85

1.80

1.75

1.70

1.65

1.60

FC
R

 a
dj

us
te

d 
to

 2
26

8 
g

26
24
22
20
18
16
14
12
10
8

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Years

1.91

10.8

B
W

 (%
)

1.88 1.87
1.85 21.3

22.9
24.0 24.7 25

19.4 20.3 20.4 1.84

18.217.817.617.316.6
15.2

14.1
13.3 12.6 11.9 10.2

1.73

9.4 9.0

1.66
1.68

19.719.919.418.9

FCR                Breast yield                Body protein                  Body fat

Table 3: Prediction of body fat, (%BW) from year, age, dietary energy, lysine and protein
a1 Year Age days ME (kcal kgG1) dLys2 (%) CP (%) ME/dLys (kcal kgG1/%) N SEM R2 P
571.0 -0.28 0.194 89 2.60 0.65 **

SE 98.6 0.05 0.020
P ** ** **

588.0 -0.30 0.173 0.0057 88 2.53 0.68 **
SE 96.6 0.05 0.021 0.0022
p ** ** ** 0.0100

579.0 -0.28 0.144 -3.94 70 2.71 0.59 **
SE 110.0 0.05 0.031 2.36
p ** ** ** 0.10

603.0 -0.29 0.167 -0.38 89 2.51 0.68 **
SE 96.0 0.05 0.022 0.14
p ** ** ** 0.01

606.0 -0.30 0.131 0.00154 69 2.67 0.60 **
SE 113.1 0.06 0.03 0.00062
p ** ** ** 0.02000
1aintercept. Age: last day of experimental trial. P: p-value, **<0.001, *<0.01. a,bValues within columns having superscripts letters differ significantly (p<0.05) according
to confidence interval. 2Digestible lysine and amino acids were changed proportionally

primarily influenced by dLys requirements (r2 = 0.86) but
actual dietary ME is less related  to  actual  ME  requirements
(r2 = 0.47). According to these associations, it can be inferred
that decisions made by commercial nutritionists for selecting
ME values are mostly influenced by feed cost, whereas dLys
values are mainly influenced by amino acid requirements.
Both coefficients of dLys and dLys:AA requirements showed
similar significance and r2 for predicting dietary dLys.

Body composition and nutrient efficiency: Body fat was
significantly predicted by year, age, ME, dLys, protein and
ME/dLys (Table 3). The negative coefficient of dLys to predict
body fat shows a tendency to be significant (p = 0.10). The
body fat is reduced by 0.28% each year, by 0.39% for +0.10%
of dLys and by 0.38% for +1.0% of CP. In contrast, the body fat
is increased by 0.57% for +100 kcal of ME kgG1 and by 0.15%
for +100 kcal of ME/kg/% of dLys. When plotting the
predictive  equations  for  body fat and protein, over the last
16 years, body protein has been increased by 4%, whereas
body fat has been lowered by around 6% (Fig. 2). In general,
these body compositions and feed conversion trends suggest
that FCR is inversely related to body protein and positively
related to body fat, especially from 2010-2012 where drastic
changes for FCR, breast yield and body fat occurred. Corporal
body fat at similar age or body weight was smaller by 2% in
birds with good FCR compared to those with poor FCR8,9. In
these old broiler lines, the body protein content was similar
between high and low feed efficient birds8-10. However, both
types of birds had small breast yield (#15%) compared to
modern broiler chickens and had not changed body
composition with the exception of body fat. The breast muscle
yield has been drastically increased during the last 10 years
(Fig. 2) and these new  differences  in breast meat yield might

Fig. 2: Feed   conversion  (FCR),  breast  yield  and  body
protein and fat changes over time. Breast yield and FCR
adjusted to 2268 g of body weight

change the whole body protein in the modern broiler
chickens. Thus, broiler chickens with higher growth
performance and breast meat yield produced higher carcass
protein than random broiler chickens3. In agreement with
current results, the body fat is increased by 0.6% when dietary
energy was augmented by 100 kcal 6,85. In contrast, as
observed herein, body fat was lowered as the protein and
lysine were proportionally increased4,66,86. The limited data
evaluating only dietary dLys considering constant amounts of
amino acids on carcass composition did not allow predicting
the body fat in the current study. However, it is interesting to
note that body fat was not affected when broilers were fed
lysine above their requirements, although feeding lower lysine
levels resulted in an increase in body fat33,44,53.63,66.
Trends of dLys intake, dLys for maintenance, lysine for

protein  gain  and  efficiency  of lysine are shown in Fig. 3.
Since 2001, dLys efficiency has  been  positively improved
from  61-76%  due  to  body  protein  gain. Digestible lysine for
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Fig. 3: Trends of digestible lysine (dLys) intake, dLys for
maintenance  (dLys  maint),  lysine  for  protein  gain
(Lys gain) and efficiency of lysine. Actual dLys intake is
adapted from a US industry reporting service91

maintenance has remained almost constant and relatively
small, around 4% of actual dLys intake, and actual dLys intake
remained almost constant due to reduced feed intake.
Research studies also indicate that the modern broiler
chickens or lines with best feed conversion had higher protein
efficiency compared to random-bred chickens or lines with
poor feed conversion. The improved protein efficiency can be
attributed to a reduction in protein degradation and an
increment in protein synthesis10,99-102.
Trends of ME intake, net energy for maintenance and

body weight gain and ME efficiency are shown in Fig. 4. The
efficiency of ME for gain has remained almost constant (~74%)
from 2001-2017. This efficiency has not increased because the
energy gained from body fat has been decreased, whereas the
energy gained from body protein has increased over the last
years. Further, both the energy for body gain and the actual
ME intake were also reduced in parallel, as a result of
decreasing the feed intake and number of days to reach the
target body weight. However, when energy efficiencies were
compared to similar ages, birds with improved feed
conversion or modern broilers had better energetic efficiency
(energy gain/ME intake) compared to random-bred broiler
chickens or lines with poorer feed conversion103,104. Therefore,
the efficiency of nutrients by comparing the nutrient intake
and requirements from a previous year shows another
approach to measuring the energy efficiency (Fig. 5). When
yearly nutrients were, for instance, compared to nutrients in
2001, the ME intake and NE for maintenance and body gain
were observed to be more efficient by approximately 18%
from 2001-2017. This type of ME efficiency by a specific year
indicates that advancement from genetic progress is similar to
that observed in dLys efficiency (Fig. 3). But when using the
specific year approach for lysine, the  dLys  intake  was found

Fig. 4: Trends of ME intake (MEi), net energy for maintenance
(NEm) and body gain (NEg) and ME efficiency
[(NEm+NEg)/MEi]. Actual ME intake is adapted from a
US industry reporting service91

Fig. 5: Nutrients    relative    to     2001   [(Nutrients,    2001-
2017)/(Nutrients, 2001)×3100]. Nutrient intakes were
obtained from a US industry reporting service91. Net
energy for maintenance (NE maint.), net energy for
body gain (NE gain), digestible lysine for maintenance
(dLys maint.) and lysine for protein gain (Lys gain).
Digestible lysine (dLys)

to be constant. As  expected,  the  lysine  for maintenance
(dLys main.) and for body protein gain (Lys gain) was
augmented from 100-119%. This 19% increase in lysine needs
might be misunderstood as inefficiency; however, this higher
lysine demand is accounted for by observed improvements in
breast meat yield. From industry reports and research trials
carried out over the last 16 years, it could be assumed that
caloric values will continue to be influenced mostly by feed
ingredient cost and less  influenced by energy needs.
However, future reduction trends of ME requirements might
be evaluated by nutritionists when conducting field trial
evaluation, which could result  in this being the primary
reason for selecting dietary ME values. Evidence from the
scientific literature regarding the benefits of fiber-contributing
ingredients in current broiler chickens105-107  might suggest
that  birds  in  the future may eat diets lower in ME. In addition,
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primary breeder companies may also choose to select their
birds based on diets with reduced caloric density. In the
future, we can expect that amino acid trends will depend
more on amino acid requirements mainly influenced by breast
muscle yield rather than feed cost. However, if other traits
such as robustness or health status were to take priority over
breast muscle yield, this continuous tendency of increasing
amino acid needs might plateau and become more impacted
by feed cost.

CONCLUSION

Based on  the  research  papers  discussed  and an
industry report,  the  energy and lysine levels have been
reduced and increased, respectively, over the last 16 years. The
employment of commercial energy and amino acid levels in
commercial feed formulation seem to be influenced by feed
cost and lysine requirements, respectively. From genetic
selection, the reduction of feed intake and body fat and the
increment of weight gain and body protein have resulted in
an improvement in the energy and lysine efficiencies based on
available data.

SIGNIFICANCE STATEMENT

This study discovers the possible dietary energy and
amino acid trends and body composition changes that can be
beneficial for Nutritionist in the process of selecting the
dietary energy and amino acids. This study will help the
researcher to uncover the critical areas of energy and amino
acid efficiencies over time that many researchers were not
able to explore. Thus, a new theory on future nutrient levels
and physiological mechanisms may be arrived at.
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