ISSN 1682-8356 ansinet.com/ijps

INTERNATIONAL JOURNAL OF POULTRY SCIENCE

∂ OPEN ACCESS

International Journal of Poultry Science

ISSN 1682-8356 DOI: 10.3923/ijps.2020.294.302

Review Article Heat Stress and Gut Microbiota: Effects on Poultry Productivity

¹Fisayo T. Akinyemi, ²Semiu F. Bello, ³Victoria A. Uyanga, ⁴Charles Oretomiloye and ¹He Meng

¹Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China

²Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China

³Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province, 271018, China

⁴Department of Nutrition and Dietetics, Obafemi Awolowo University, Ile -Ife, Osun State, Nigeria

Abstract

The gut microbiota has been extensively examined because it plays pivotal roles in poultry health, growth and development. In poultry flocks, gut microbiota and host health and productivity are interwoven and influenced by factors including host derived, environmental and nutritional factors, which consequently influence the growth and performance of these birds. The responsiveness of chickens' gut microbes during stress conditions such as heat stress that is commonly encountered during production is of imminent concern because healthy maintenance of the host-gut-microbiota relationship will result in improved bird growth and productive performance. Previous studies have established the link between gut microbiota alterations and immune system dysfunction in poultry birds, which is primarily initiated by stressors. However, shifts in the gut microbiota could also be linked to several diseases that negatively affect the immune system. The goal of this mini review was to focus on understanding the impact of heat stress on the gut microbiota and how this affects the health of the birds. We also suggest possible ways to ameliorate stress in poultry for improved productivity. Good knowledge of these salient points would help to develop new approaches to provide a better environment and feeding conditions for poultry birds, as strategies toward achieving improved poultry production.

Key words: Heat stress, gut microbiota, poultry health, poultry productivity, gut health, immune system

Citation: Fisayo T. Akinyemi, Semiu F. Bello, Victoria A. Uyanga, Charles Oretomiloye and He Meng, 2020. Heat Stress and gut microbiota: Effects on poultry productivity. Int. J. Poult. Sci., 19: 294-302.

Corresponding Author: He Meng, Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China

Copyright: © 2020 Fisayo T. Akinyemi *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Heat stress poses a major threat to the poultry industry and has negative consequential effects on the immune system, production, and the health and well-being of poultry birds¹⁻³. Heat stress affects global poultry production by reducing feed consumption, egg production and quality and increasing the mortality rate of laying hens, which adversely influences intestinal growth and development and leads to decreased nutritional digestibility⁴⁻⁸. Heat stress occurs when the heat produced in animal body exceeds its dissipation capacity and the body becomes unable to get rid of excess heat⁹. Nearly all species respond to heat stress but poultry birds are extremely vulnerable temperature-related stress. Poultry birds react differently to high temperatures depending on the duration and amount of heat stress¹⁰. They undergo thermal homeostasis under environmentally stressful situations, which results in an increase in the breathing rate that causes the body to enter oxidative stress¹¹.

The hen undergoes different physiological and environmental stresses during the hatching process, which also influences the gut microbiota composition¹². In poultry birds, the gastrointestinal tract (GIT) encompasses microbial communities that essentially function in gut homeostasis and host metabolism as well as the animals' physiology, production and health¹³. Heat stress has been shown to alter the composition and population of microbiota in chicken intestines¹⁴⁻¹⁶. Additionally, it allows for proliferation of bacteria that are pathogenic such as Escherichia coli, Salmonella and total aerobic bacteria in the cecum microflora¹⁷; there is also an increasing abundance of zoonotic pathogens such as the family Moraxellaceae and order Pseudomonadales in the jejunum and order Rickettsiales in the cecum¹⁸. Heat stress can result in gut dysbiosis because the intestinal tract of poultry birds is highly susceptible to stressors, which can lead to intestinal mucosal damage, alterations and upset of the defensive microbiota^{19,20}.

While the impact of heat stress on poultry production has been well reviewed^{2,9,21-23}, much less has been documented concerning its effects on the gut microbiota and host health. It is imperative to understand the association of heat stress with the gut microbiota and its implications on poultry health and production performance. To aid our understanding, we reviewed published studies covering aspects of heat stress in poultry birds, the impact of heat stress on gut microbiota and its composition, the role of gut microbiota in host health and measures to alleviate heat stress to improve proper functioning of gut microbes. **Role of the gut microbiota in host health:** A fundamental part of a functioning ecosystem is the gut microbiota, which interrelates and benefits its host at various multifaceted levels to achieve a mutual association²⁴. The interactions between the host and the microbiota is a symbiotic relationship that is vital to poultry well-being, health and production^{25,26}. Thus, the interactions must be balanced within the intestinal mucosa to maintain a healthy gut, which translates into a healthy animal²⁴. One of the major protective components in the chicken GIT against enteric and harmful pathogens is the gut microbiota²⁷. Disturbance of the gut microbiota in poultry has been considered to be a major cause of bacterial infection in chicks²⁸. Gut microbiota has a noteworthy impact on host health²⁹ and productivity³⁰ and it serves as an essential mediator of host health³¹. For example, the intestinal microbiota plays a substantial role in normal host physiology, maintaining immune metabolic homeostasis and protecting the host against pathogens^{32,33}.

The microbiota plays a prominent role in the control of the gut-brain axis, especially when the body system is stressed³⁴. During acute stress, the gut microbiota contributes to the innate immune system recovery after the animal is stressed³⁵. In animals, research has shown that the gut microbiota strongly influences nutrient metabolism and the maintenance of homeostasis¹⁴, thereby mediating the pivotal link between health and disease. These microorganisms also interact with several organs and systems in the body, including neurological, respiratory, digestive, skeletal and cardiovascular system³⁶ and they have the capability to produce nutrients from remnants that host cannot digest³⁷. A balanced gut microbiota is involved in a broad metabolic range of activities that is of great advantage to the host³⁸.

The health status of animals and their nutrient uptake are largely determined by gut health, which is influenced by both the gut microbial flora and the host immune functioning system³⁹. The effects of the gut microbiota on immune system development cannot be overemphasized and it has some likely implications on sound health and productivity⁴⁰. Intestinal microbial establishment and development of immune fitness are interwoven and both are affected by early-life stressors such as environmental and management stress⁴¹.

Impact of heat stress conditions on gut microbiota composition: The GIT is an organ that is most affected by heat stress⁴². The balance of gut beneficial bacteria is essential for a healthy intestinal microbiome and associated physiological homeostasis. Imbalance of gut microbes might be attributed to heat stress, especially during nutrient competition between the host and harmful bacteria⁴³.

A previous study revealed that heat stress tends to decrease cecal Lactobacilli counts while increasing Clostridia populations in poultry¹⁶. Beneficial bacteria including Lactobacilli and Bifidobacteria in poultry are depleted during heat stress¹⁵, suggesting that their role against pathogen colonization may be impaired, which enhances gut susceptibility to enteric pathogen invasion and colonization⁴⁴. Further analysis observed that during heat stress in birds, decreased similarity coefficients of bacterial communities occurs, which suggests an increased variability in intestinal barrier composition rather than enrichment of the amount of bacterial diversity¹⁵. Similarly, in ducks, microbiota composition differs significantly between the jejunum and cecum during heat stress¹⁸. The cecal composition of the gut microbiota was markedly affected during heat stress with changes at the phyla and genus levels. The relative abundance of Firmicutes, Proteobacteria and Tenericutes were increased, while that of Bacteroidetes and Cyanobacteria decreased. Genus level changes involved Bacteroides as the most dominant species, which was followed by Oscillospira and Faecalibacterium²⁰. Table 1 shows the summary of the effect of heat stress conditions on gut microbiota populations (Table 1).

Moreover, the gut segments have been described as responding differentially in susceptibility to heat stress, with the most severe effect was on the ileum⁴⁵. Broilers exposed to cyclic heat stress at 33°C for 10 h daily had lower viable Lactobacillus and Bifidobacterium counts and improved coliform and Clostridium viable counts in the small intestinal contents¹⁶. During heat stress conditions, alterations to the intestinal epithelial barriers resulting dysfunction (or "leaks")⁴⁶ that allows permeation of endotoxins, luminal antigens and bacteria reaching the bloodstream⁴⁷. The derived endotoxins from the gut and pathogenic bacteria are implicated in morbidity and mortality⁴⁸. Similarly, because oxidative stress is induced after heat stress, the interaction between the mucosa and microbes or microbial toxins triggers the severity of oxidative stress, which leads to coccidiosis caused by Eimeria. Coccidiosis caused by Eimeria is one of the most common poultry diseases. It is parasitic in nature and destroys the intestinal epithelial barriers, promoting nutrient malabsorption during oxidative stress⁴⁹.

Taken together, heat stress exposure leads to microbe instability and the bacterial translocation¹, which impacts behavior, immune response and the physiological parts of animals and humans^{9,50}. The production rate in poultry can be adversely affected because of physiological changes that are caused by chronic heat stress⁵¹. Extensive studies have revealed the impact of stress on gut microbiota composition and stability, which is unfavorable to chicken health, welfare

and the poultry industry^{16,18,45}. Important measures must be implemented to improve the resistance of poultry birds to heat stress because the inability to curb this detrimental situation will result in repeated disruption of the gut microbial population, which enhances the continuous decline in productivity.

Measures to alleviate heat stress to improve gut microbes in poultry production: Heat-stress is a major environmental stressor in poultry production globally because of increasing global temperatures and its associated effects of compromising physiological composition, microbiology and the immune system, which results in anomalies and poor performances in poultry^{9,52}. It is necessary to understand and regulate heat stress conditions in poultry farming because of their influences on successful production. To combat the impact of heat-stress in poultry birds, poultry farmers need to adopt the measures that are described below.

Genetic manipulation: Multiple interrelated factors influence the development, composition and population of the host gut microbiota, with host genetics playing a significant but ambiguous, role^{53,54}. The microbial flora in the gut are acquired before birth and it is then developed and shaped dynamically after birth into complex physiological networks with environment and dietary factors influencing the abundant diversity of microorganisms that are developing within neonates⁵⁵. The uncertainty encountered in clearly defining the influence of host genetics on gut microbiota stems from the interaction between environmental and host genetics including factors such as age, environmental conditions, genetic distance and population variation⁵⁶, as such overlapping the direct effects of host genetics on gut microbiota confirm under controlled environmental conditions. The host genetic background is responsible for a sizable amount of microbial abundance in the gut⁵⁷.

Heritability studies on gut microbiotas revealed that host genetics may be partly responsible for genetically determining the abundance of a subclass of microbes⁵⁸. This shows the significant contribution of host inheritance in early development of the gut microbiota, thus highlighting the influence of animal breeding on gut microbiota. Future studies to identify the host-microbe-metabolite interactions and demonstrate the functions of host genetics in determining gut microbiota composition are required⁵⁹.

Environmental modification strategies: Poultry birds lack sweat gland, which makes them very sensitive to heat stress⁶⁰ and the use of non-evaporative (radiation and convection) heat dissipation is highly important. The

Poultry species	Heat stress condition	Experimental diets	GIT segment	Enriched	Decreased	References
Broilers	CT (24 to 26°C) vs HS (34-38°C) for 28 days	Standard diets	Caecal contents	Firmicutes, Tenericutes and Proteobacteria, Anaeroplasma and Lactobacillus phyla	<i>Bacteroidetes</i> and <i>Cyanobacteria</i> phyla; <i>Bacteroides, Oscillospira</i> <i>Faecalibacterium</i> and <i>Dorea</i> genera	[20]
Broiler chick	CT (21±1°C) vs HS (31±1°C) from 28-42 day old	Standard diets	lleal contents	Clostridium XIVb, Streptophyta, Faecalibacterium, Rothia, Alistipes, Azospirillum and Oscillibacter	Coprococcus and Streptococcus	[14]
Ducks	CT (25°C) vs HS (32°C) for 8 h day ⁻¹ for 3 weeks	Standard diets	Jejunum, Ileum and Cecum contents	<i>Proteobacteria</i> (phylum), <i>Pseudomonadales</i> (order), <i>Moraxellaceae</i> (family), <i>Acinetobacter</i> (genus) and <i>Mitochondria</i> (genus) in jejunum <i>Rickettsiales</i> (order) and <i>Mitochondria</i> (family) increased in caecum	Firmicutes (phylum), Bacilli (class), Lactobacillales (order), Lactobacillaceae (family) and Lactobacillus (genus) in jejunum <i>Negativicutes</i> (class) and <i>Selenomonadales</i> (order) in caecum	[18]
Laying hens	Minimum temperatures (25.2-29.4-C) vs maximum temperatures (29.6-34.1°C) at 6-8 h day ⁻¹	Standard diets	Fecal samples	Bacteroidetes spp.	Firmicutes spp.	[84]
Broilers	CT (23±1°C) vs HS (34±1°C) for 7 h day ⁻¹	Normal protein (NP) diet or Low protein diet fortified with glycine;	caecal	<i>Clostridia</i> spp.	Lactobacili spp.	[44]
Broilers	HS (30°C) for 24 h+24 h feed withdrawal	Standard diet	lleal contents	Salmonella enteritidis -		[15]
Broilers	HS at 32°C for 9 h day ⁻¹ from 15-42 days	Poultry Star (synbiotic supplements consisting <i>Bifidobactenium animalis</i> , <i>Enterococcus faecium</i> , <i>Lactobacillus reuteri</i> , <i>Pediococcus acidilactici</i> and <i>fructooligosaccharide</i>)	Caecal contents	Lactobacill and Bifidobacterium spp.	Escherichia coli and Coliforms,	[76]
Broilers	CT (22°C) vs cyclic HS (33°C for 10 h, at 0800-1800 and 22°C from 1800 to 0800)	Probiotic mixture with Bacillus licheniformis, Bacillus subtilis and Lactobacillus plantarum	Duodenum, ileum and caecal contents	<i>Coliforms</i> and <i>Clostridium</i> spp.	<i>Lactobacillus</i> and <i>Bifidobacterium</i> spp.	[16]
Shaoxing ducks	CT (25°C), vs cyclic HS (30-40°C) for 15 days	Standard diet	Duodenum, jejunum, and ileum contents	Phylum <i>Firmicutes</i> , genus <i>Lactobacillus</i>		[85]
Laying hens	CT (21± 1°C), cyclic vs HS (29-35°C)	Standard diet	Caecal contents	Phyla Bacteroidetes and Firmicutes, order Bacteroidales and Clostridiales, genre Bacteroides and Rikenellaceae	1	[86]
Laying hens	Laying hens CT (26°C) vs H5 Probiotic mix containi (33°C) for 20 days Bacillus subtilis and Enterococcus faecium	Probiotic mix containing Bacillus subtilis and Enterococcus faecium	lleal and caecal contents	lleal and caecal <i>Escherichia coli</i> increased with HS	<i>Lactobacili</i> in ileal and caecum	[11]

Table 1: Impacts of heat stress conditions on gut microbiota populations in poultry species

Int. J. Poult. Sci., 19 (7): 294-302, 2020

strenuous environmental conditions could be drastically reduced using basic designing layouts to enhance poultry production during the hot season. The shape of the pen (semi-open building), ventilation (air movement within and out of the poultry pens to remove ammonia, carbon dioxide and moisture) in hot and moist locations, natural or artificial shading (planting of trees round the pen) and provision of more water for bird consumption^{21,22,61} are viable strategies to reduce heat stress. It is also important to consider the type and management of the roofing. The roofs should be clean and rust- and dust free. A rusty or dark-coated roof reflects solar radiation less than those with a shiny surface. Roof reflectivity could be improved by painting and decorating an aluminum roof or with zinc-metallic pigment⁶¹. Ventilation fans could be used to maintain the temperature in the pens and installing an alarm method that gives signals during ventilation system failure is necessary, especially in the hot season². In addition, reducing the population density of the birds might be important during intensely hot periods². In underdeveloped countries, ice blocks could be provided into the birds' water serving tanks during harsh weather conditions. Environmental conditions must be properly monitored. An environmental modification strategy is a key factor to reduce the effect of heat stress. However, proper management of the environment without a good nutritional program, poultry bird disease management and genetic characteristics cannot alleviate heat stress on poultry farms².

Nutritional management: Nutritional management such as restricting feed^{23,62}, adding fat and reducing excess protein⁶³ have been highly recommended to reduce the adverse impacts of heat stress and enhance the performance in birds^{23,62,64}. Lin et al.²² reported that feed restriction (about 60%) for chicks on days 4, 5 and 6 increased growth and the survival rate in response to exposure to heat stress on days 35-41 (marketing age). Kapetamov et al.² reported that poultry feedstuff should be completely balanced, comprising easily digestible and edible nutrients during severe stressful conditions². Researchers have suggested the use of quality protein and amino acids (e.g. methionine and lysine) to reduce the detrimental effects of high temperature and heat increment^{23,62,64}. Diversity and composition in the gut microbiome is highly impacted by varying compositions in poultry diets¹³.

Dietary supplementation: Nutritional supplements possessing anti-inflammatory and/or antioxidant effects may enhance host immune responses. These effects are achieved via their actions on the microbiota environment, intestinal permeability, liver function and/or immune defenses⁶⁵.

Different nutritional approaches were shown to minimally alleviate this effect through the diet by increasing energy composition of the feed, vitamins, minerals and salts antioxidant^{66,67} because of a high rate of excretion of vitamins A, C and E and minerals such as selenium, iron, zinc and chromium from the chicken body during hot weather^{61,64,66}. Therefore, dietary supplementation of minerals and vitamins and balancing electrolytes could potentially reduce mortality and improve growth in poultry birds in harsh environments²¹.

Feed additives and amino acids supplementation were also shown to impact positively on gut health during stress conditions^{68,69}. *Lactobacilli* and other bacterial forms within the small intestine compete for amino acids, unavoidably absorbing and using these amino acids for cellular anabolism⁷⁰. L-arginine restored the ileal microbiota composition and functionality of *Clostridium perfringens*challenged chickens including the *Nitrospira* sp., *Nitrospira bacterium, Bradyrhizobium elkanii* and *Pseudomonas veronii*⁷¹. Amino acids, including threonine, glutamine and arginine may modulate intestinal mucosa functions by improving epithelial turnover rates and, thus, promoting intestinal recovery during an insult⁷². L-arginine was shown to attenuate heat stress-induced intestinal permeability, thereby preserving intestinal epithelial integrity⁷³.

To enhance the resistance of poultry birds to heat stress, the poultry birds' diet can be supplemented with phytogenic feed additives rich in phenolics and flavonoids⁴². Lan et al.⁷⁴ also affirmed that the gut microbiota in chickens with a high temperature can be balanced through supplementation of probiotic-based Lactobacillus strains, thereby restoring cecal microbial communities during heat stress by shifting the microbiota balance towards equilibrium during stress conditions⁷⁴. During heat stress, supplementation with a probiotic mixture containing Lactobacillus plantarum, Bacillus subtilis and Bacillus licheniformis improved intestinal Lactobacillus and Bifidobacterium as well as coliform abundance¹⁶. The inclusion of probiotics such as beneficial bacteria to improve the gut health status or prebiotics to aid in decreasing the pathogenic bacteria's colonization and enhance competition becomes necessary to maintain the microbiota homeostasis under stress conditions⁷⁵. Additionally, synbiotics, which contain combined advantages for both probiotics and prebiotics, may prove beneficial to improve intestinal nutrient absorption and microbial ecology during heat stress. Mohammed et al.76 showed that broilers fed synbiotics during heat stress had higher bacterial counts of positive microbes, such as Bifidobacteriumspp. and Lactobacillusspp. with a decrease in harmful bacteria counts including *E. coli* and coliforms⁷⁶.

The antibiotic growth promoter, Lupulone, induced *Clostridium leptum, Clostridium coccoides* and *Bacteroides* in the cecum and the midgut was dominated by *Lactobacillus*, the *Enterobacteriaceae* family and *Enterococcus* whereas *Clostridium perfringens* and *Lactobacillus* were reduced⁷⁷. In addition, osmo-protective supplements might assist in decreasing the recurrence of heat stress, which increases the mortality rate in chickens^{9,21}.

Furthermore, the application of gut biomarkers such as citrulline⁷⁸ in assessing the microbiota status may be functional in evaluating intestinal dysfunction and gut health. Gut health is determined by microbial, nutritional, environmental and host (such as mucosal barrier, immunity) factors⁷⁹ and thus, it is necessary to continuously monitor intestinal health status. The use of gut biomarkers to observe changes in the microbiome status would have future health benefits for poultry production. Currently, several genetic strategies including genomic, transcriptomic, proteomic and metabolomic approaches were used to investigate alterations to microbial structures, compositions and functioning. However, future strategies may involve the combinations of several gut biomarkers such as citrulline⁸⁰, leptin and ghrelin⁸¹ along with several plasma, urine and fecal biomarkers⁸² and/or application of advanced molecular approaches such as metabarcoding and metagenomic, meta-transcriptomic and metaproteomic approaches^{79,83}.

CONCLUSION

Gut microbiota in poultry birds are significantly affected when exposed to high ambient temperatures (heat stress). Heat exposure may influence the microbial population, abundance, distribution and functioning within the gut segments. Zoonotic pathogen enrichment and a decrease in beneficial bacteria during heat stress conditions are commonly encountered. Therefore, this study sheds new light on the associations between poultry productivity and gut microbiota function. Understanding the gut microbiota composition during heat stress conditions may provide perspectives on improving poultry growth and performance. Several strategies ranging from genetic to environmental to nutritional factors have been suggested as measures to alleviate heat stress effects on the gut microbiota but detailed investigations are still required to better understand the microstructure of poultry birds' intestinal tract and to explore the role of genetics in microbial functioning.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jimoh Saheed for his extensive contributions and corrections to the manuscript.

REFERENCE

- Xu, Y., X. Lai, Z. Li, X. Zhang and Q. Luo, 2018. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci., 97: 4073-7082.
- 2. Kapetanov, M., M. Pajić, D. Ljubojević and M. Pelić, 2015. Heat stress in poultry industry. Arch. Vet. Med., 8: 87-101.
- Fouad, A.M., W. Chen, D. Ruan, S. Wang, W.G. Xia and C.T. Zheng, 2016. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci., 15: 81-95.
- Ratriyanto, A. and R. Mosenthin, 2018. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr., 102: 1634-1650.
- Mignon-Grasteau, S., U. Moreri, A. Narcy, X. Rousseau, T.B. Rodenburg, M. Tixier-Boichard and T. Zerjal 2015. Robustness to chronic heat stress in laying hens: a metaanalysis. Poult. Sci., 94: 586-600.
- Ibtisham, F., A. Nawab, Y. Niu, Z. Wang, J. Wu, M. Xiao and L. An, 2019. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. J. Therm. Biol., 81: 20-24.
- Mack, L.A., J.N. Felver-Gant, R.L. Dennis and H.W. Cheng, 2013. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci., 92: 285-294.
- 8. Sahin, N., A. Hayirli, C. Orhan, M. Tuzcu, J.R. Komorowski and K. Sahin 2018. Effects of the supplemental chromium form on performance and metabolic profile in laying hens exposed to heat stress. Poult. Sci., 97: 1298-1305.
- 9. Lara, L.J. and M.H. Rostagno, 2013. Impact of heat stress on poultry production. Animal, 3: 356-369.
- Nawab, A., F. Ibtisham, G. Li, B. Kieser and J. Wu *et al.*, 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol., 78: 131-139.
- Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian and S. de Smet, 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol., Vol. 7. 10.1186/s40104-016-0097-5

- Gürber, S., L. Baumeler, A. Grob, D. Surbek and W. Stadlmayr, 2017. Antenatal depressive symptoms and subjective birth experience in association with postpartum depressive symptoms and acute stress reaction in mothers and fathers: A longitudinal path analysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 215: 68-74.
- 13. Borda-Molina, D., J. Seifert and A. Camarinha-Silva, 2018. Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J., 16: 131-139.
- Wang, X.J., J.H. Feng, M.H. Zhang, X.M. Li, D.D. Ma and S.S. Chang 2018. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poult. Sci., 97: 2153-2158.
- Burkholder, K.M., K.L. Thompson, M.E. Einstein, T.J. Applegate and J.A. Patterson, 2008. Influence of stressors on normal intestinal microbiota, intestinal morphology and susceptibility to *Salmonella*enteritidis colonization in broilers. Poult. Sci., 87: 1734-1741.
- 16. Song, J., K. Xiao, Y.L. Ke, L.F. Jiao and C.H. Hu *et al.*, 2014. Effect of a probiotic mixture on intestinal microflora, morphology and barrier integrity of broilers subjected to heat stress. Poult. Sci., 93: 581-588.
- Kammon, A., S. Alzentani, O. Tarhuni and A. Asheg, 2019. Effect of some organic acids on body weight, immunity and cecal bacterial count of chicken during heat stress. Int. J. Poult. Sci., 18: 293-300.
- He, J., Y. He, D. Pan, J. Cao, Y. Sun and X. Zeng, 2019. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology and antioxidant capacity in ducks. Front. Microbiol., 10.3389/fmicb.2019.00903
- 19. Cryan, J.F. and T.G. Dinan, 2012. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 13: 701-712.
- 20. Dayou, S., B. Lin, Q. Qian, Z. Shanshan and Y. Meimei *et al.*, 2019. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci., 98: 2405-2413.
- Fisinin, V.I. and A.S. Kavtarashvili, 2015. Heat stress in poultry. II. methods and techniques for prevention and alleviation. Agric. Biol., 50: 431-443.
- 22. Lin, H., H.C. Jiao, J. Buyse and E. Decuypere, 2006. Strategies for preventing heat stress in poultry. World Poult. Sci. J., 62: 71-86.
- 23. Daghir, N.J., 2009. Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Inform., 44: 6-15.
- 24. Geuking, M.B., Y. Köller, S. Rupp and K.D. McCoy, 2014. The interplay between the gut microbiota and the immune system. Gut Microbes, 5: 411-418.
- Celi, P., A.J. Cowieson, F. Fru-Nji, R.E. Steinert, A.M. Kluenter and V. Verlhac, 2017. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol., 234: 88-100.

- 26. Shang, Y., S. Kumar, B. Oakley and W.K. Kim, 2018. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci., Vol. 5 10.3389/fvets.2018.00254
- 27. Pourabedin, M. and X. Zhao, 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett., Vol. 362 10.1093/femsle/fnv122
- 28. Yang, Y., P.A. Iji and M. Choct, 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J., 65: 97-114.
- 29. Dąbrowska, K. and W. Witkiewicz, 2016. Correlations of host genetics and gut microbiome composition. Front. Microbiol., 10.3389/fmicb.2016.01357
- Clavijo, V. and M.J.V. Flórez, 2018. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci., 97: 1006-1021.
- Karl, J.P., A.M. Hatch, S.M. Arcidiacono, S.C. Pearce, I.G. Pantoja-Feliciano, L.A. Doherty and J.W. Soares, 2018. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol., 10.3389/fmicb.2018.02013
- 32. Kogut, M.H., 2013. The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry. J. Applied Poult. Res., 22: 637-646.
- 33. Cisek, A.A. and M. Binek, 2014. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Polish J. Vet. Sci., 17: 385-394.
- Foster, J.A., L. Rinaman and J.F. Cryancd, 2017. Stress and the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 7: 124-136.
- Wouw, M.v.d., J.M. Lyte, M. Boehme, M. Sichetti and G. Moloney *et al.*, 2020. The role of the microbiota in acute stress-induced myeloid immune cell trafficking. Brain Behav. Immun., 84: 209-217.
- Feng, Q., W.D. Chen and Y.D. Wang 2018. Gut microbiota: An integral moderator in health and disease. Front. Microbiol., 10.3389/fmicb.2018.00151
- 37. Shreiner, A., J. Kao and V. Young, 2015. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 31:69-75.
- Wiele, T.V.d., J.T.V. Praet, M. Marzorati, M.B. Drennan and D. Elewaut, 2016. How the microbiota shapes rheumatic diseases. Nat. Rev. Rheumatology, 12: 398-411.
- Maki, J.J., C.L. Klima, M.J. Sylte and T. Looft, 2019. The microbial pecking order: utilization of intestinal microbiota for poultry health. Microorganisms, Vol. 7, No. 10 10.3390/microorganisms7100376
- 40. Carrasco, J.M.D., N.A. Casanova and M.E.F. Miyakawa, 2019. Microbiota, gut health and chicken productivity: What Is the connection? Microorganisms, Vol. 7, No. 10 10.3390/microorganisms7100374

- 41. Schokker, D., A.J.M. Jansman, G. Veninga, N.d. Bruin and S.A. Vastenhouw, 2017. Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genomics, Vol. 18 10.1186/s12864-017-3625-6
- Song, Z.H., K. Cheng, X.C. Zheng, H. Ahmad, L.L. Zhang and T. Wang, 2018. Effects of dietary supplementation with enzymatically treated *Artemisia annua* on growth performance, intestinal morphology, digestive enzyme activities, immunity and antioxidant capacity of heat-stressed broilers. Poult. Sci., 97: 430-437.
- Zhang, M., i. Sun, Y. Wu, Y. Yang, P. Tso and Z. Wu, 2017. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunol., 10.3389/fimmu.2017.00942
- Awad, E.A., Z. Idrus, A.S. Farjam, A.U. Bello and M.F. Jahromi, 2018. Growth performance, duodenal morphology and the caecal microbial population in female broiler chickens fed glycine-fortified low protein diets under heat stress conditions. Br. Poult. Sci., 59: 340-348.
- Varasteh, S., S. Braber, P. Akbari, J. Garssen and J. Fink-Gremmels, 2015. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PloS One, Vol. 10. 10.1371/journal.pone.0138975
- Pearce, S.C., V. Mani, R.L. Boddicker, J.S. Johnson and T.E. Weber *et al.*, 2013. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE, 10.1371/journal.pone.0070215
- 47. Dokladny, K., M.N. Zuhl and P.L. Moseley, 2016. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Applied Physiol., 120: 692-701.
- Liu, Z., X. Sun, J. Tang, Y. Tang and H. Tong *et al.*, 2011. Intestinal inflammation and tissue injury in response to heat stress and cooling treatment in mice. Mol. Med. Rep., 4:437-443.
- 49. Mishra, B. and R. Jha, 2019. Oxidative stress in the poultry gut: potential challenges and interventions. Front. Vet. Sci., 10.3389/fvets.2019.00060
- 50. Galley, J.D. and M.T. Bailey, 2014. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390-396.
- 51. Goor, A.V., K.J. Bolek, C.M. Ashwell, M.E. Persia, M.F. Rothschild, C.J. Schmidt and S.J. Lamont, 2015. Identification of quantitative trait loci for body temperature, body weight, breast yield and digestibility in an advanced intercross line of chickens under heat stress. Genet. Sel. Evol., Vol. 47, No. 96 10.1186/s12711-015-0176-7
- 52. Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti and E. Kusumanti, 2017. Dietary supplementation of probiotics in poultry exposed to heat stress. Ann. Anim. Sci., 17: 591-604.

- 53. Li, W., J. Liu, H. Tan, C. Yang and L. Ren *et al.*, 2018. Genetic effects on the gut microbiota assemblages of hybrid fish from parents with different feeding habits. Front. Microbiol., 10.3389/fmicb.2018.02972
- Kemis, J.H., V. Linke, K.L. Barrett, F.J. Boehm and L.L. Traeger *et al.*, 2019. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet., 10.1371/journal.pgen.1008073
- 55. Sharma, M., Y. Li, M.L. Stoll and T.O. Tollefsbol, 2020. The epigenetic connection between the gut microbiome in obesity and diabetes. Front. Genet., 10.3389/fgene.2019.01329
- Fan, P., B. Bian, L. Teng, C. D. Nelson, J. Driver, M.A. Elzo and K.C. Jeong, 2020. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J., 14: 302-317.
- Org, E., B.W. Parks, J.W.J. Joo, B. Emert and W. Schwartzman *et al.*, 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res., 25: 1558-1569.
- Goodrich, J.K., E.R. Davenport, A.G. Clark and R.E. Ley, 2017. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet., 51:413-433.
- 59. Allen, J. and C.L. Sears, 2019. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med., Vol. 11, No. 11 10.1186/s13073-019-0621-2
- Kumar, A., B. Roy, S. Ganguly, P.K. Praveen, S. Shekhar and N. Dalai, 2014. Supplementation of Vitamin C for health promotion and combating heat stress in poultry. Int. J. Bio-Pharma Res., 3: 259-261.
- 61. Pawar, S.S., B. Sajjanar, V.D. Lonkar, K.P. Nitin and A.S. Kadam *et al.*, 2016. Assessing and mitigating the impact of heat stress in poultry. Adv. Anim. Vet. Sci., 4: 332-341.
- 62. Attia, Y.A., M.A. Al-Harthi and A.S. Elnaggar, 2017. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Italian J. Anim. Sci., 17: 686-697.
- 63. Ghazalah, A.A., M.O. Abd-Elsamee and A.M. Ali, 2008. Influence of dietary energy and poultry fat on the response of broiler chicks to heat therm. Int. J. Poult. Sci., 7: 355-359.
- 64. Kumari, K.N.R. and D.N. Nath, 2018. Ameliorative measures to counter heat stress in poultry. World's Poult. Sci. J., 74: 117-130.
- Armstrong, L.E., E.C. Lee and E.M. Armstrong, 2018. Interactions of gut microbiota, endotoxemia, immune function and diet in exertional heatstroke. J. Sports Med., 10.1155/2018/5724575
- Sahin, K., N. Sahin, O. Kucuk, A. Hayirli and A.S. Prasad, 2009. Role of dietary zinc in heat-stressed poultry: A review. Poult. Sci., 88: 2176-2183.

- 67. Das, S., T.K. Palai, S.R. Mishra, D. Das and B. Jena, 2011. Nutrition in relation to diseases and heat stress in poultry. Vet World., 4: 429-432.
- 68. Ma, N. and X. Ma, 2019. Dietary amino acids and the gut microbiome immune axis: physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf., 18: 221-242.
- 69. Abdulkarimi, R., M.H. Shahir and M. Daneshyar, 2017. Effects of dietary glutamine and arginine supplementation on performance, intestinal morphology and ascites mortality in broiler chickens reared under cold environment. Nonruminant Nutr. Feed Process., 32: 110-117.
- 70. Apajalahti, J. and Vienola, K. 2016. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol., 221: 323-330.
- Zhang, B., Z. Lv, Z. Li, W. Wang, G. Li and Y. Guo, 2018. Dietary l-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by *Clostridium perfringens*. Front. Microbiol., 10.3389/fmicb.2018.01716
- 72. Bortoluzzi, C., S.J. Rochell and T.J. Applegate, 2018. Threonine, arginine and glutamine: Influences on intestinal physiology, immunology and microbiology in broilers. Poult. Sci., 97: 937-945.
- 73. Costa, K.A., A.D.N. Soares, S.P. Wanner, R.d.G.C.d. Santos and S.O.A. Fernandes *et al.*, 2014. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male swiss mice subjected to physical exercise under environmental heat stress. J. Nutr., 144: 218-223.
- 74. Lan, P.T.N., M. Sakamoto and Y. Benno, 2004. Effects of two probiotic *Lactobacillus* strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol. Immunol., 48: 917-929.
- 75. Tuohy, K.M., H.M. Probert, C.W. Smejkal and G.R. Gibson, 2003. Using probiotics and prebiotics to improve gut health. Drug Discovery Today, 8: 692-700.
- 76. Mohammed, A.A., S. Jiang, J.A. Jacobs and H.W. Cheng, 2019. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status and immune response of broiler chickens reared under heat stress. Poult. Sci., 98: 4408-4415.

- Tillman, G.E., G.J. Haas, M.G. Wise, B. Oakley, M.A. Smith and G.R. Siragusa, 2011. Chicken intestine microbiota following the administration of lupulone, a hop-based antimicrobial. FEMS Microbiol. Ecol., 77: 395-403.
- Baxter, M,F.A., J.D. Latorre, S. Dridi, R. Merino-Guzman, X. Hernandez-Velasco, B.M. Hargis and G. Tellez-Isaias, 2019. Identification of serum biomarkers for intestinal integrity in a broiler chicken malabsorption model. Front. Vet. Sci., 10.3389/fvets.2019.00144
- Ducatelle, R., E. Goossens, F.D. Meyer, V. Eeckhaut, G. Antonissen, F. Haesebrouck and F.V. Immerseel, 49. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet. Res., 10.1186/s13567-018-0538-6
- 80. Emmanuela, C., C. Pascalb and C. Lucb, 2007. Citrulline and the gut. Nutr. Gastrointestinal Tract, 10: 620-626.
- 81. Horne, R. and J.A. Foster, 2018. Metabolic and microbiota measures as peripheral biomarkers in major depressive disorder. Front. Psychiatry, 10.3389/fpsyt.2018.00513
- Wells, J.M., R.J. Brummer, M. Derrien, T.T. MacDonald and F. Troost *et al.*, 2017. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol., 312: G171-G193.
- Shang, Y., S. Kumar, B. Oakley and W.K. Kim, 2018. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci., Vol. 5 10.3389/fvets.2018.00254
- Zhu, L., R. Liao, N. Wu, G. Zhu and C. Yang, 2019. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Applied Microbiol. Biotechnol., 103: 461-472.
- Tian, Y., G. Li, L. Chen, X. Bu and J. Shen *et al.*, 2020. High-temperature exposure alters the community structure and functional features of the intestinal microbiota in Shaoxing ducks (*Anas platyrhynchos*). Poult. Sci., 99: 2662-2674.
- Shuang, X., W. Xuejie, D. Huajie, Z. Minhong, Z. Ying and F. Jinghai, 2019. Changes in the cecal microbiota of laying hens during heat stress is mainly associated with reduced feed intake. Poult. Sci., 98: 5257-5264.