Pakistan Journal of Information and Technology 1(2): 136 141, 2002

© Copyright by the Science Publlcatuons, 2002

Optimizing Speed and Accuracy of Trigonometric
Calculations with Real Numbers

Muhammad Zaheer Aziz and Khalid Rashid
Department of Computer Science, 'International Islamic University

Islamabad, Pakistan

Abstract: A wide range of scientific areas requires caiculation of trigonometric ratios like sine and cosine
repeatedly in their computations. The calculation of these trigonometric ratios is implemented in the
library functions of programming languages using Maclaurin’s series which is a processor hungry
technique. This paper aims for introducing a method to caiculate the trigonometric ratios in an efficient
manner as compared to available technique. The proposed method of storing the resuits of sine and cosine
functions for all integer and fractional angies into separate arrays. In order to calculate the sine or cosine
value for a particular angle the integer part is considered as a and the fractional part as B. The
trigonometric relations for Sin (a + B) and Cos (a + B) are used to combine the result of integer and
‘fractional parts. The outcome of the new method was tested in terms of accuracy, storage space, and
efficiency using a program written in C++. It was found that the proposed method provides 100%
accuracy, saves storage space, and is faster as gompared to the existing methods.

Key Words: Sine Calculation, Cosine Calculation, Speed Optimization, Space Optimization

Introduction

The calculation of trigonometric ratios like Sine and
Cosine is a processor hungry task. There are many
areas of science and computing in which use of such
calculations is heavily involved. These areas inciude
engineering applications, astronomy, space science,
graphics, image processing, computer vision, machine
control, and virtual reality etc. Equations of these fields
not only contain complex use of the trigonometric
functions but also require iterations of the
computations for thousands of times (Stevens and
Christopher, 1993; Yaguchi and Springer-VBerlag,
1991). On the platform of the even latest personal
computers such processing takes a considerably long
time. Even for larger machines optimizing the speed of
computation will lead to quicker solutions to problems.
As an example we can consider rotation of a still image
having 100 x 100. This image would occupy a fairly
small area of the computer screen. Actual images that
can be used to convey reasonable information are quite
large. Our sample image has 10,000 pixels in it. The
coordinates of the transformed pixel (xt, y!) after
rotation of a single pixel from the original coordinates
(x, y) will be obtained from the equations :

Xt = Xoe (X = Xo) COSO-(Y-Yo)sino
Y= You (X =Xo)SINO-(Y~—Yo)cCOsO

where 0 is the angle of rotation and (X, Y.) is the
center of rotation (Heiny, 1994). We can see that it
involves calculation of trigonometric functions

four times. Repeating the same process for the whole
100 x 100 image would require 40,000 calls to the
functions. This was a very simple example to elaborate
the problem. The number of calculations required are
very large for other similar objects like animated

images , 3D figures, and video input. Especially in case
of computer vision lot of transformations are applied on
the still image or video camera input. In these
situations there are many objects moving or rotating in
different directions and different angles hence
significantly increasing processing time (Shah, 2000).

Materials and Methods

The simplest method to soive the equations involving
trigonometric ratios is the use of built-in library
functions for the programming languages like Fortran,
Pascal, C, and C++. In case the function call is needed
for one or few previously known anglas then the results
are saved in one or more variables and these are used
in equations rather than calculating the value each
time. On the other hand if a large number of integer
angles are involved then one way to deal with it is to’
save the sines of all the integer angles from 0 to 360 in
an array and access the array instead of calculating the
series each time. Description-of these methods is given
below :

Library Function Calls: The library functions available
in the programming languages use the Maclaurin's
Series to find the value of sine and cosine for a given
angle. These functions take a real number as
parameter for the angle measured in radians (Turbo;
MSDN). Following Maclaurin’s Series is used for finding
the values for the provided angle A (Anton, 1995).

Al A A
SinA =A- — + — - —
3! 5! 7!
A2 At AS
CosA=1- — + — = —
21 4! 6!

136

The library functions find out all the exponents and
factorials and sum up the terms up to a required
faccuracy. This requires a significant amount of
Feomputing time!

Stored Values Method: The call to library functions
-each time when needed is feasible only when there is a
 requirement of trigonometric ratios for a very small
-number of times. There are situations when a single or
'8 small number of results of trigonometric functions is
-needed repeatedly for many equations or in a loop of
the computer program. In this case the required values
-are stored in variables and they are used in equations
instead of calling the functions repeatedly (Stevens,
1993). For example if we want to rotate an image
“about an angle of 30 degrees then we store sine and
 cosine of 30 in two variables. Now the same values will
ibe used for all pixels of the image in the loop. Hence
‘result available in the variables is directly used rather
than calculating the series each time. This reduces
computation time substantially.

Array Access Method: The method mentioned in
section 2.2 speeds up the computations when there is
8 need of sine and cosine values for a very &mall
number of angles. In case the angles cannot be
predicted in advance then the said method fails to
help. For example when a 3D object is viewed in
Virtual Reality environment in a VRML browser (Charlie
Morey) or a 3D editor like 3D Studio Max (Mathew
Klare) then the angle of rotation or direction of view is
taken as input from the user at runtime. Hence it
varies continuously by pressing a key or mouse button.
Moreover if the environment comprises of animated
objects then each object uses a different angle for
computation of its coordinates.

As far as integer angles are concerned the sines and
cosines of all angles from 0 to 360 degrees can be
stored in an array (Aziz and Khalid, 2000). Taking
advantage of the nature of sine and cosine functions

that Cos (90 + X) = Sin X we can conserve storage '

space and make only one array in which sines of angles
from O to 360 degrees may be stored. To find the value
of sine for an angle X we will access the array at index
X and for finding the cosine we will access the element
at index (90 + X) ® 362 in the same array. Here ®
means remainder after division. For example we need
cosine for angle 300° then the index to access from the
array will be 30 which means we access value stored
for .Sine of 30 in the array. This method reduces
computation time by 80% without loosing the accuracy
he calculations are more that 4 times faster than
alling the library functions repeatedty.

Proposed Method: The array access method
nentioned in section 2.3 is the most suitable for angles
1aving integer values form 0° to 360°. Many scientific
omputations need results of sine and cosines for
Ingles in real numbers having fractional as well as
nteger part. For such applications the said
nethodology has to be extended so that trigonometric
atios may be available for angles other than just
tegers. Conversion of the system to cope with real
ngle involves: certain issues which are discussed
elow: :

137

Zaheer and Khalid: Optimizing Speed and Accuracy of Trigonometric Calculations ‘

Issues and Problems: The main issue in dealing with
real angles is building of an array that stores results for
all the fractional and integer angles. If we store all the
integer and fractional values then the size of array will
grow substantially large. For example, if we want to
provide an array having results of Cosines for all real
angles from 0.0° to 360.0° with fractional part from
0.1° to 0.9° then the. array size will be 360 x 10 i.e.
3600 elements, If we need more accuracy in the angle
say up to 1/100 of a degree then the array size will
grow to 360 x 100 which is 36,000 elements.

The other important issue is to access the array in
order to find the value of trigonometric ratio for a
particular angle. Suppose we make a single array that
holds all the possible values that may vary in size for
increasing accuracy. For such an array we have to
change the expression that will calculate the index that
points to the required element of the array.

The Solution: Keeping- in view the above mentioned
issues a solution has to be designed which can tolerate
the change in accuracy of fractional part of the angle
and hence access method remains the same for
different levels of accuracy. For this purpose we take
advantage of the mathematical relationships :

Sin (a + B) = Cos a.Sin B + Sin a.Cos B

Cos (a + B) = Cos a.Cos B ~ Sin « .Sin p

Taking integer part of the angle as o and fractional part
as B the solution to the problem becomes fairly simple.
We can make two different arrays, one for the integer
angles from 0° to 360° and the other for fractional part
say from 0.001° to 0.999°. Now we have 360 + 1000 =
1360 elements of arrays that can deal with the
accuracy of angles from 0.000° to 359.999°, If we
make an array for holding the values for all the
involved angles for the same accuracy, -the array size
would have been 360 * 1000 = 360000 which is
obviously not feasible.

Using the same array for storing and accessing resuits
of both sine and cosine ratios as mentioned in section
2.3 will be complex task in this case. Conversion of
integer part as well as fractional part for the other ratio

‘will be computationally heavy and will reduce the

advantage of processing time. Hence two sets of arrays
are used one for Sine and other for Cosine.

Fig.1 shows the algorithm that creates the said four
arrays. The first loop creates arrays for integer angles
for both Sine and Cosine functions while the second
loop is used for creating the array for fractional part of
the array.

Getting the Results: The results of the trigonometric
ratios will be found ‘using the mathematical relation

mentioned in section 3.2. The index to access the array
for integer degrees will be the same as the angle itself
and the index to access the result for a fractional angle
will be 1000 x Fractional Angle for angles having

accuracy of 1/1000 degrees. Equations for finding the

index for fractional part, value of Sine, and value of
cosine for a real angle having integer part Ang and

fractional part FracAng are given below :

Zaheer and Khalid: Optimizing Speed and Accuracy of Trigonometric Calculations

//Storing integer angle values in array
for Ang = 0 to Ang<=360 do

Begin
SIN[Ang]=sin(Ang*PiBy180);
COS[Ang]=cos(Ang*PiBy180);
End
//Storing Real angle values from 0.001 to
0.999
i=0;
for FracAng=0 to 0.999 do) -
Begin
SinFrac[i]=sin(FracAng*PiBy180);
CosFrac[i]=cos(FracAng*PiBy180);
i=i+1;
FracAng=FracAng+0.001;
End

Fig. 1: Algorithm to Create the!Arrays

FracAnglndex=1000*FracAng;

- -SineValue=COS[Ang]*SinFrac[FracAnglndex]+
SIN[Ang]*CosFrac[FracAngIndex];

CosineValue=COS[Ang]*CosFrac[FracAngIndex]-
SIN[Ang]*SinFrac[FracAngIndex];

" As an example if we need to find value of Sin (30.163)
then the result will be found using the array access as
follows :

FracAngIndex=1000*0.163;
= FracAngIndex=163
SineValue=COS[30]*SinFrac[163]+
SIN[30]*CosFrac[163];
Analysis of Results: The results of the proposed
method have to be analyzed in terms of accuracy,
usage of storage space, and speed of processing. For
this analysis a complete program has been developed
in C++ and results are produced using the proposed
method. The related existing methods are aiso used for
producing the same results in order to compare the
performance of the new method. A detailed analysis
for the above mentioned three criteria of judgement is
given. below :

Accuracy of Results: There are always chances of
numerical errors dealing with real numbers in
_calculations like muitiplication and division in a
computer. These errors occur due to round off and
exceeding of storage bounds. Use of high precision
variables that allow storage of real numbers with
greater accuracy can minimize such errors. All scientific
programming languages provide data types that allow
storage of high precision real numbers. In C++ the
high precision data type is named double while for low
precision real numbers it has the data type named

float.
In order to preserve accuracy it is highly recommended
that double type variable be used for the method

138

proposed in this paper. For testing the accuracy of the
proposed method the results obtained from array
access and by calling the library function of sine and
cosine for a large set of angles are stored in a file and
graphs are plotted to identify any differences. The code
used for this purpose is shown in Fig. 2.

for (Ang = 0; Ang<=360;/_-‘5ng++)
{
for
(FracAng=0;FracAng<=0.999;FracAng+=0.001)
A

rad=(Ang+FracAng)*PiBy180;

fprintf(fp, "%f, ", Ang+FracAng);

FracAngIndex=1000*FracAng;

//Getting Sin(x) using library function

Value=sin(rad);

fprintf(fp, "%f, ", Value);

//Getting Sin(x) using array access

Value=COS[Ang]*SinFrac[FracAngIndex]+
SIN[Ang])*CosFrac[FracAngIndex];

fprintf(fp, "%f, ", Value),

//Getting Cos(x) using library function

Value=cos(rad);

fprintf(fp, "%f, ", Value);

//Getting Cos(x) using array access
Value=COS[Ang]*CosFrac[FracAngIndex]-
SIN[Ang]*SinFrac[FracAngIndex}];

fprintf(fp, "%MAn", Value);

Fig. 2: Code for Testing Accuracy

The code given in Fig. 2 produces a very large set of
data comprising of 360 x 1000 360000 sets of
values. In order to show the outcome we may take
subsets of these values and plot graphs to see if the
results are accurate. Fig. 3 shows the graph of results
obtained from calling the sine and cosine library
function for angles from 0.000 ° to 360.000° with an
interval of 3.333°. Fig. 4 shows the graph of the values
obtained by using the proposed array access method
with the same set of angles as input. The results show
that there is no difference in values obtained from both
methods. So there is no loss of accuracy.

Usage of Storage Space: We compare the usage of
storage space in computer’s memory for the two
options of saving the results. First option is to build a
single array that stores all the results for angles
starting from 0 to 360 with a fractional increment. The
other option is to make separate arrays for integer
angles and fractionat part of the angles. Table - 1
shows that the option of using two arrays adopted in
this paper is far better in usage of sforage space.

Angles

[— Sine with Library Function i
i
[—w«« Coslne wnth Lnbrary Functlon

Flg 3: Results of Sune and Cosine using L|brary
Function Calls

Angles

| — Sine with Array Access » ;
I

R Coslne with ArrayAccess'
b e

; Fig. 4: Results of Sine and Cosine using Array Access

Table 1: Number of Array Elements Needed to Store-

Results
Angle Precision Single Two Arrays
Array
0.1-09 3600 370
0.01 -0.99 36000 460
360000 1360

0.001 - 0.999

Time for Processing: The main objective of this
- paper Is to introduce a method to calculate the
-~ trigonometric ratios in an efficient manner as compared
to available techniques. In order to find the time
" required for processing in both methods values of sine
~ and cosine are computed for all the angles from 0.000°
to 360.000° with an increment of 0.001°. This makes
360000 calculations in all. The time required for this
processing is recorded for both methods of library

- function and array access. This process is repeated for ‘

- different number of repetitions to know the time effect
* for increase in number of calculations. Fig. 5 and

Zaheer and Khalid: Optimizing Speed and_Accuracy of Trigonometric Calculations

Fig. 6 show the algorithms used to obtain the time data
for sine and cosines using available library access
method and proposed array access method
respectively. The data is then plotted in a graph to
compare the outcome. Fig. 7 and Fig. 8 clearly show

that the method introduced in this paper-has an edge -

over the existing method.

//Processing time of sin function
//for N x 360 x 1000 calculations
for N = 1 to 29 step 2 do

Begin ,
T1 = gettime();
fori=0toN
Begin
Ang=0;
while (Ang<360)
Begin
for FracAng=0 to 0.999 do
Begin
Rad= (Ang+FracAng) x PiBy180;
Value=sin(rad); -
FracAng+=0.001;
End
Ang=Ang+1;
End
End

‘T2 = gettime();
Time_Interval=T2 - T1; //unit is 1/100 sec
Write(Time_Interval);

End

//Processing time of cos function
//for N x 360 x 1000 calculations
for N = 1 to 29 step 2 do

Begin
T1 = gettime();
fori=0toN
Begin
Ang=0;
while (Ang<360)
Begin
for FracAng=0 to 0.999 do
Begin i
rad=(Ang+FracAng)x PiBy180;
Value=cos(rad);
FracAng+=0.001;
End
Ang=Ang+1;
End
End
T2 = gettime();
Time_Interval=T2 - T1; //unit is 1/100 sec
Write(Time_Interval);
End -

Fig. 5: Algorithm for Finding Time for Processmg Using
Library Function Call Method

139

Zaheer and Khalid: Optimizing Speed and 1Accuracy of Trigonometric Calculations

//Processing time of sin function
//for N x 360 x 1000 calculations
for N = 1 to 29 step 2 do

Begin
T1 = gettime();
Fori=0toN
Begin
Ang=0;
while (Ang<360)
Begin
for FracAng=0 to 0.999 do
Begin
FracAngIndex=1000 x FracAng;
Value = COS[ANg] x

SinFrac[FracAngIndex] +
SIN[Anglx CosFrac[FracAngIndex];
FracAng+=0.001;
End
Ang=Ang+1;
End ‘
End
T2 = gettime();
Time_Interval=T2 - T1; //unit is 1/100 sec
Write(Time_Interval);
End

//Processing time of cos function
//for N x 360 x 1000 calculations
for N = 1 to 29 step 2 do
Begin
T1 = gettime();
Fori=0to N
Begin
Ang=0;
while (Ang<360) .
Begin
for FracAng=0 to 0.999 do
Begin
FracAngIndex=1000 x FracAng;
Value = COS[ANng] x
CosFrac[FracAngIndex] -
SIN[ANng] x
SinFrac[FracAngIndex];
FracAng+=0.001;
End
Ang=Ang+1;
End
End
T2 = gettime();
Time_Interval=T2 - T1; //unit is 1/100 sec
Write(Time_Interval);
End

Fig. 6: Algorithm for finding time for processing us‘ing

Array Access method

140

Time n 1/100 Seconds

‘D
N

Nurmber of Repilitions

|m Sines with Array Access B Sine with Library Function |

Fig. 7: Time analysis for computation of Sines

200

150

100

Time in 1/100 Seconds
()]
o

21

e

[«23
NN
Number of Repititions

{l Cosine with Array Access B Cosine with Library Function‘}

Fig. 8: Time analysis for computation of Cosines

Conclusion

The proposed method ‘involves four accesses to the
arrays while calculating value for one angle, two
multiplications, and one addition or subtraction. These
calculations are obviously less than the calculation of
Maclaurin’s Series but require processor time more
than simple access of RAM. The method discussed in
this paper is an effort to provide a general-purpose
solution that can be adopted in variety of situations
and avoid excessive use of storage space hence such
compromise is necessary.

The method mentioned in this paper is considerably
affected by the speed and architecture of the processor
used. As high speed processors powered with math-
coprocessors are developed, the time required to
compute the series in the builtyin library functions
reduces. Hence the advantage of time with array
access may be less visible on high-end processors as
compared to processors used in personal computers.
The time analysis provided in section 4.3 is
implemented on an Intel 1.0 GHz processor which is
one of the latest high-end processors hence the
advantage in the processing time is apparently not
very large. .

pferences : v
@rile Morey, 3D Graphics for the World Wide Web :

. Authoring/ Graphics/3d/3d-demo2.html

,'Mubarak Shah, 2000. Fundamentals of Computer
¢ Vislon, Class Notes for Computer Vision Lab,
B University of Central Florida, USA.
pomi Yaguchi, Springer-Verlag, 1991.
 Principles and Applications, H.
.Chiyokura, ISBN 0-387-56507-8.
ward Anton, 1995. Calculus
"~ Geometry, John Wisely & Sons.
ren Heiny, 1994. Power Graphics Using Turbo C++,
“ John Wiley & Sons Inc., ISBN 0-471-30929. |

3D CAD
Toriya, H.

and Analytical

" PROCESS OVERVIEW, http:/ /www. stars. com/ .

141

i

Zaheer and Khalid: Optimizing Speed and Accuracy of Trigonometric Calculations

MSDN, Visual C++ Online Documentation.
Mathew Klare , 3D Studio Max : Pushing 3-D to the

max, http:// www. znet.com /cshopper /content/
9610/csh p0012.html
Muhammad Zaheer Aziz & Prof. Dr. Khalid Rashid

2000. Speeding Up Calculation of Sine and Cosine °

for Integer Degrees, Computer News .

Roger T. Stevens & Christopher D. Watkins, 1993.
Advanced Graphics Programming in C & C++, BPB
Publications. .

Roger T. Stevens, 1993. Graphics Programming in C,
BPB Publications.

Turbo C++ Online Documentation

	ITJ.pdf
	Page 1

