:akistan Journal of Information and Technology 1(2): 153-159, 2002
2 Copyright by the Science Publications, 2002

Scheduling Real-Time Tasks in Distributed Environment
g with Tabu Search Algorithm

A. Mahmood
Department of Computer Science, University of Bahrain, Bahrain

Abstract: Many time-critical applicaticns require predictable performance and tasks in these applications
have to meet their deadlines. Hence, tasks in these applications need to be scheduled in such a manner
that they not only meet their deadlines but also satisfy some performance criteia specific to the application
doamian. Scheduling real-time tasks with minimum jitter in a distributed computing environment is
particularly important in many contro! applications. This problem is known to be NP-hard, even for simple
- cases. Therefore, heuristic approaches seem appropriate to these classes of problems. In this paper, we
k. investigate a tabu search algorithm for nonpreemptive static scheduling of real-time tasks where tasks are
periodic and have arbitrary deadlines, precedence, and exclusion constraints. The proposed algorithm not
only creates a feasible schedule but it also minimizes jitter for periodic tasks. The performance of the
-algorithm has been studied through a simulation and the results are reported in this paper.

Key Words: Distributed Systems, Task Allocation, Tabu Search, Real-Time Systems, Task Scheduling,

B PO i e T S LA

Jitter

[Introduction

F' Real-time systems are characterized by computational
' activities with timing constraints (deadlines) that have
E to be met in order to achieve desired behaviour. Some
i of the tasks are periodic in nature and need to be
¢ cyclically executed at constant activiation rates. Other
L tasks are aperiodic and are activated only upon the
i occurance of a particular event. Hence a periodic task
b consists of a sequence of identical jobs that are
> regularly activated at a constant rate.

. Many tasks performed in systems such as process
- control,

air defense, and space exploration are

inherently distributed and have real-time constraints

(Stankovic et al., 1985). In those cases where the
- environment and the application characteristics are
. known a priori, the worst-case conditions and critical

rates can be evaluated (Natal et al., 2000). The

g computation required by the applications can be
- distributed in a set of periodically activated tasks being

scheduled according to a fixed pattern. The scheduler
is run off-line and uses the parameters of the task set
to generate a table of activation times to be used by
the local dispatchers.

In some applications, feasible scheduling of all the task
instances within the deadline is not sufficient to
generate the correct behavior of the system. Two
instances of the same periodic task may have to be
separated by an amount of time variable between zero
and the two periods minus the computation time (Natal
et al., 2000). In some cases, this variation is a serious
problem and there is a need for different scheduling to

" minimize jitter. For example, the Airplane Information

Management System of the Boeing 777 required the
minimum jitter on the order of 100 us and 1 ms
(Carpenter et al., 1994). The kind of jitter described in

(Carpenter et al., 1994) is the problem we solve in this
paper.

Another case study on the development of the
Olympus Satellite Attitude and Orbital Control System
(Burns et al., 1993) cites the minimum output jitter as
one of the requirements in task scheduling. A
maximum jitter of 5 ms is given as the requirement for
a fixed priority scheduler in yet another aircraft
application (Bate et al., 1996). Even though the output
jitter is often considered as a part of the constraints,
the performance of digitali control system actually
depends on the amount of jitter. In these cases, a
minimum jitter is preferable (Natal et a/., 2000).

‘Most of the previous research on task scheduling has’

been restricted to solve the feasibility problem only
(i.e. schedule tasks within their deadline). Most of the
proposed solutions techniques use heuristic-driven
search algorithms to find the feasible task sequence.
Branch-and-bound algorithm by Xu and Parnas (1990)
schedules tasks with exclusive relationship and
precedence constraints. Mars Scheduler (Fohler 1994)
uses an iterative deepening search algorithm to solve
the distributed scheduling problem. For multiprocessor
systems with resource-constrained tasks, a heuristic
search algorithm, called myopic scheduling algorithm,
was proposed in (Ramamritham et al., 1990). It was
shown by the authors that an integrated heuristic
which is a function of deadline and earliest start time of
a task performs better than simple heuristics, such
as EDF, feast laxity first (i.e. a task with least value
of deadline minus computation time executes first),
and minimum processing time first. The
myopic algorithm was latter improved by (Manimaram ~
and Murthy, 1998) by introducing the concept of
feasibility check window and parallelizing a task
whenever deadline of a task cannot be met. It was

153

Mahmood: Scheduling Real-Time Tasks in Distributed Environment

shown through an intensive Simulation

best of our knowledge, no such heuristic function has
been proposed.

The genetic algorithm community has also proposed
Some genetic algorithms for task scheduling problem.
Kim and Hong (1993) proposed a genetic algorithm for

algorithm for static scheduling_of non-identical tasks
with known execution time and - precedence
relationships to Identical processors. Their goal was to
minimize the finishing time
and Cook (1994) used a genetic dynamic scheduling
algorithm to assign non-identical tasks to identical
processors. Recently, Mahmood (2000) proposed a
hybrid genetic algorithm to schedule hard reai-time
tasks on multiprocessor systems.

Tabu search metaheuristic has also been applied to
task allocation and scheduling problems. Porto and
Ribeiro (1995) applied a tabu search metaheuristic to
the solution of task scheduling problem on a
heterogeneous environment

proposed a tabu search
algorithm scheduling real-time tasks under
precedence and resource constraints,

_Simulating annealing techniques have also been used

by Tindell et a/ (1992) to find optimal processor
binding for reai-timer tasks to be scheduled according
to fixed priority poiicies, Natale and Stankovic (2000)
applied Simulating annealing technique for scheduling
real-time tasks having arbitrary deadlines, precedence
and exclusion constraints. Their solution not only
creates feasible schedules, but also minimizes jitter for
periodic tasks.
In this paper,

minimizes jitter for periodic tasks. To the best of our
knowledge, tabu

‘to which they belong

problem before. Note that, this paper uses, rather than 1
extends, the taby search technique. Thig paper, 3
however, does provide a new application of tabu search §
to an important problem. It also provides a
transformation of this’problem_ into a form that is {
amenable to the application of tabu search. we also ;

demonstrate, through a simulation study, the °
performance and value of tHe algorithm on
experimental task sets for different loads and
attributes.

The rest of the Paper, is organized as follows. Next
section presents system model and problem
formuiation. The problem has been férmulated. as a

into a specific algorithm for task
scheduling. This is followed by simulation results. The
paper is concluded in the last section.

System Model and Problem Formulation: we

consider a set of n periodic processes P,,P2 P,,
staticaily assigned to a set of processors connected
through a shared medium. Each process i,nstance D,

in the scheduling period, defined as the least common
multiple of the processes’ periods, is characterized by a

deadline d,., a release time ¥, an activation period

P, and cpu specification to which it is statistically

assigned,

The scheduling period s lem(P). Each process is
divided into a chain of scheduling units, the tasks. The
tasks can be defined as sequential nonpreemptive
computational units that begin and end with a

time a process instance is executed, the entire set of
tasks for this process must execute.

The tasks inherent the time attributes of the processes
to and have other additional

attributes of their own. Each task instance f,in the
scheduling period is Characterized by a deadline d. a
computational time ¢, a set of resources requested in
exclusive mode {R',l ’R'i2 -"R,l,,}and a set of

precedence ‘ constraints
{ti >0 - Lo tp > 1,) meaning that task

[;must be completed before the execution of tasks
{tj’tk "'tm} '
We define the starting time Si as the time instance

when [, the kth .instance of task /; (where

k=l,2,---m,) is successfully scheduled and task

154

Mahmood: Scheduling Real-Time Tasks in Distributed Environment

bu_.search(instance_list, maxmoves, neigh_size)

initialize the short-term memory’
generate a stirtlng solution s,
s is curent solution and s* is best solution
found so far */
for(i=1; i<=maxtry; i++) {
bestmovevalue=w«
for (all candidate moves in the neighbourhood)
if (the candidate move is admussnble) {
obtain the ne|ghbor solution 5 by applying a candidate move to the current solution s
movevalue c(S)~c(s) /* c(s)is the objective function

to me optimized */
if (movevalue<bestmovevalue){

bestmovevalue movevalue
s'=s

}
}
update the short term memory function 4
if (c(s')<c(s)) s’ =s
s=g

Fig. 1: A General Framework of Tabu Search

u_search(instance_list,maxmoves,neig h_size)

init_schedule(instance_list); //find initail schedule
t init_history(history); //initialize history |
i J_value=compute_jitter(instance_list); ’
best_jvalue=jvalue; // used by aspiration criterion
g nmoves=0; //moves made so far
: for(i=1; i<=maxtry;l++)_{ // maxtry > maxmoves)
'~ ’ taskinstance=selett_taskinstance(insta_nce__list); /* select a task */
4 neighborhoodset=find_neighborhood(instance_list,taskinstance, neigh_size):
evaluate_neighborhood(neighborhoodset,instance _list);
best_move_record=select_best_valid _move(neighborhoodset, history, bestjvalue);
if(best_move_record.exist) {

apply_move(best_move_record,instance_list);

nmoves++;

if (best_move_record.jvalue < bestjvalue)

bestjbalue= best_move_record.jvalue;

update_history(history,best_move_record);

}

if nmoves>maxmoves break;

Fig. 2: The Core of Tabu Stlsarch Task Scheduling Algbrithm

155

Mahmood: Scheduling Real-Time Tasks in-Distributed Environment

takes control of one of the CPUs. The jitter J,, for the
kth instance of task t,. is defined as:
Jiu =|Suas =Sy —B| fork=12,---m, -1

(1)
J sy +lem(P)—-P, —s,

The distributed scheduling problem can now be
formulated as a combinatorial optimization problem on
the set of all task instances. Our objective. is to
minimize the maximum jitter of all the tasks subject to
precedence, exclusion, and deadline constraints and
that no task can be scheduled before its release time,
i.e.

Minimize C = kaax{J,k}
l

im; \ im;

Where J, is the jitter of kth instance of task

!, computed aécording to equation (1). .

Tabu Search: In previous section , we formulated our
scheduling problem as a combinatorial optimization
problem. Tabu search is a well-known iterative
procedure for solving discrete combinatorial
optimization problems. It was first suggested by Glover
(1990) and since then, it has been successfully applied
to obtain optimal and suboptimal solutions to such
problems as scheduling, time tabling, travelling
salesman, and layout optimization,

A general framework of Tabu search is given in Fig. 1.
Tabu search starts from some initial solution and
attempts to determine a better solution in a manner of
a "greatest descent neighborhood" search algorithm.
The basic idea of the method is to explore the search
space of all feasible solutions by a sequence of moves.
A move is an atomic change, which transforms the
current solution into one of its neighboring solutions.
Associated with each move is a move value, which
represents the change in the objective function value
as a result of the move. Move values generally provide
a fundamental basis for evaluating the quality of a
move. At each iteration of algorithm, an admissible
best move is applied to the current solution to obtain a

"new solution to be used in the next iteration. A move is

applied even_if it is a non-improving one, i.e. it does
not lead to a solution better-than the current solution.
To escape from local optima and to prevent cycling, a
subset of moves is classified as tabu (or forbidden) for

- certain number of iterations. The classification depends

on the history of the search, particularly as manifested
in the recency or frequency that certain moves of
solution components, called attributes, have
participated in generating past solutions. A simple
implementation, for example, might classify a move as
tabu if the reverse move has been made recently.
These restrictions are based on the maintenance of a
short-term memory function (the tabu list), which
determines how long a tabu restriction will be
enforced, or alternatively, which moves are admissible

at each iteration. The tabu tenure (i.e. the duration for
which a move will be kept tabu) is an important feature
of tabu search, because it determines how restrictive s
the neighborhood search.

The tabu restrictions are not inviolable under all
circumstances and a tabu move can be overridden
under some conditions. A condition that allows such an
override is called an aspiration criterion. For example,
an aspiration criterion might allow overriding a tabu
move if the move leads to a solution, which is the best
obtained so far.

Task Scheduling with Tabu Search: The basic tabu
search is briefly discussed in the previous section. In
this section, we specialize the basic tabu search into a
specific algorithm for the task scheduling problem. This
implies turning the abstract concepts of tabu search,
such as initial solution, solution space, neighbourhood,
move generaration, tabu criteria and others, into more
concrete and implementable definitions.

The pseudocode for the proposed tabu search
algorithm for task scheduling is given in Fig. 2. The
input parameters to the algorithm are the descriptors
of all the task instances in the scheduling time (input
parameter instance_list), the maximum number of
successful moves the algorithm makes before
terminating (input parameter maxmoves), and the
neighborhood size to be searched. in each iiteration
(input parameter neigh_size). The former are ordered
in a list, each descriptor containing information about
the timing data, the precedence relations, the
processor allocation, and the resource usage of the
corresponding task instance.

The routine tabu_search makes use of other routines
to perform the changes in the solution space. These
are select_taskinstance(), select_change(),
find_neighborhood(), evaluate_neighborhood(),
and select_best_valid_move(), and apply_move.
The compute_jitter routine calculates the jitter value of
a schedule. The routine init_scedhule() finds the
initial schedule to be improved by the algorithm. The
routine init_history() initializes the history and the
update_history() updates the history after a
successful move.

The final output of the algorithm is an execution time
(expressed as stating and a corresponding ending
time) for each task instance in the scheduling period.
These execution time intervals can be stored in a table
to be used by run time dispatchers.

It is important to correctly define the parameters of the
algorithm and to implement it as efficiently as possible
to reduce the overall complexity and computation time.
In the following sections, we ‘describe how the
important routines can be implemented.

Initial Solution: The routine init_schedule() uses
the method proposed in (Natal and Stankovic, 2000) to
obtain the initial solution required by the tabu search
algorithm. The method obtains the initial solution by
assigning the release times to the tasks in the following
way:

Vi, :r, <r; whenevert, -,

156

maintained by the move operator (discussed below).
Note that this method is not sufficient to satisfy the
iprecedence constraﬁnts, as it does not guarantee, by
pitself, that the tasks will be scheduled in the right
order. We must remember that shared resources and
remote precedence constraints characterize our
hedule. The move operator then applies the moves,
which not only satisfy the precedence constraints but
also other constraints.
fMove Generation: For our scheduling algorithm, the
-set of all possible solutions consists of all the possible
permutations of the tasks subject to the constraints. To
generate a new schedule, it is possible to change the
. scheduling policy, or to keep the scheduling policy fixed
and change the task parameters to new values
f: consistent with their constraints. As we mentioned in
¥ an earlier section that each task has a task
b configuration consisting of its temporal characteristics
k. (i.e. release times, deadlines, and computing time) the
resources requested by each task and the precedence
constraints. Therefore, a move to a neighborhood
" solution can be made by changing this configuration.
- Since it is only the release time of a task instance that
. ¢can be changed, a new task configuration can be
- obtained by changing the release times of the tasks.
- The choice of the new release times is not arbitrary,
 but a change is selected if it is compatible with the
original release time, the deadlines and the precedence

constraints. By compatible release time ¥, we mean a

VTR

AR

release time /;of task t,. would not prevent the
feasible scheduling of the task. That is

I 27,

. —> 1,

r.2r,+c; forall ¢, :¢, ;

r.<d, —c,

r.<d, —c, —c, foralltasks ¢, :f, >,

The algorithm generates a move in four steps. First,
select_taskinstance() routine randomly selects a
task from the instance_list, then
find_neighborhood() finds a subset of neighborhood
by changing the release time of the selected task, then
evaluate_neighborhood() finds the jitter value for
each move in the neighborhood set. The routine
select_best_valid_move() selects the best valid
move which is applied to obtain the next solution in the
solution search space. Of course, as the whole
neighborhood may be too large to be examined in one
iteration, the proposed algorithm examines a sub set,
whose size is determined by neigh_size parameter, of
the whole neighborhood. This makes the algorithm
more efficient without compromising the solution
quality as our simulation results confirm it.

“ modified

\

Mahmood: Scheduling Real-Time Tasks in Distributed Environment

The routine find_neighbourhood() works as follows:
+ First, it computes a time interval within which the
release time of the task instance (selected by
select_taskinstance() routine) can be moved.
The beginning release time of the compatibility
interval is given by the maximum among the

actual release time for the task instance f, and
maximum among the earliest possible completion
times (7, +¢,)of the predecessors f;. The

ending release time of the interval is the minimum
among the latest possible release time for the task

(i.e. d,. — ¢,) and the deadlines of the successors
f, minus the sum of the times ¢; + ¢, necessary

to complete the execution of £, and to execute [,

before its deadline.
« It then generates neighborhood set by randomly

choosing new release times to the given instance.
Selecting a move by the method described above
ensures that a valid move will preserve the precedence
constraint, if such a move exits. If a valid move exits,
then it then applied to the current solution by calling
routine apply_move().
Tabu Lists: The chief mechanism for exploiting
memory in tabu search is to classify a subset of moves
in the neighborhood as forbidden (tabu). This
classification depends on the history of the search,
particularly manifested in the recency or frequency that
certain moves or solution components have
participated in generating past solutions. We use the
following tabu criteria to make certain moves tabu.
Recency Tabu: A move in our algorithm is

characterized by (f;,,¥, = .), where r. is the

release time. A move
prohibited (or is . tabu) if its
(t;,r, > r;)has been executed recently. Unlike

(1, > r1)is

reverse move

standard tabu search in which the value of tabu tenure = -

is fixed, we determine the tabu tenure of a move
through a feedback (reactive) mechanism during the
search. The tabu tenure of a move is equal to one at
the beginning (the inverse move is prohibited only at
the next iteration), and it increases only when there is
evidence that diversification is needed, and it
decreases when this evidence disappears. In detail, the
evidence that diversification is needed is signaled by
the repetition of previously visited configurations. All
configurations found during the last I iterations of the
search are stored in memory (use of a queue is a
possible implementation strategy). After a move is
executed, the algorithm checks whether the current
configuration has already been found and it reacts
accordingly (tabu tenure of the move increases if a
configuration is repeated, it decreases if no repetition
occurred during a sufficiently long period).

Same Jitter Value: This is a powerful tabu to diversify
the search when stuck in a local optima. This tabu is

157

-0.55<U <0.85.

Mahmood: Scheduling Real-Time Tasks in Distributed Environment

triggered if the same jitter value has been obtained
during the last ¢ iterations, where ¢ is specified by the
user. When the tabu is switched on, all solutions with a
cost selected during the period the tabu is active are
tabued. The user can also specify the tenure of the
tabu. ’

Aspiration Criterion: Tabu conditions based on the
activation of some moves attributes may be too
restrictive and result in forbidding a whole set of
unvisited moves which might be attractive. The
aspiration criterion allows overriding a tabu move
under certain conditions. The proposed algorithm
overrides.- a tabu restriction if the move leads to a
solution better than the best found so far. This is the
only aspiration criterion used by the proposed
algorithm.

Results and Discussion

Since no benchmarks exist for the real-time scheduling
problem discussed in this paper, we resort to synthetic
test cases that span a large parameter space. We
mainly investigated the performance of the algorithm

" for various utilizations, varied harmonic relationships of

the periodic tasks, and varied period to deadline ratio.
Test data used in our simulation were similar to that
used in (Natal and Stankovic, 2000). Briefly, maximum
number of processes was taken 20 with 1 to 3 tasks in
each process with a maximum of 200 tasks. Minimum
number of resources required by a task was set to 2
and maximum to 3. The probability that a task will use
a resource was set to 0.4. We performed our
simulation on three classes of processes (and tasks)
according to their periods. v

In class 1, periods were randomly drawn from 16, 32,

64, 128, 256 (i.e. harmonic instances). The
experiments in this class were further divided into
three groups: the first was with utilization

0.2 <U £0.5 (deadline to period ratio = 1 to 0.2),
the second with 0.3 <U £0.75, the third with

In class 2, the periods were
selected from the set 10, 20, 50, 100, and 180. The
experiments in class 2 were divided into two groups:
the first with 0.3 <U <0.75 (deadline to period
ratios from 0.25 to 1), the second with
0.55<U £0.9. The periods for class3 were drawn
from the set 15, 30, 50, 180 and 200. The first group
in this had 0.25 < U £ 0.5 (deadiine to period ratios
from 0.25 to 1) and the second group had
0.3<U <0.65. Aafter conducting a series of
preliminary experiments, neighborhood of size 5 was
found to produce best resuilts. Since an increase in the
neighborhood size did not improve the solution quality
(on average), all the results discussed below are for
neighborhood of size 5. Number of maximum moves
(parameter maxmoves) was set between a value from
1000 to 20000 depending on the problem size.

A total of 45 runs on task sets belonging to class 1

were performed. The results are shown in table 1. The
first column shows various values of utilization U, the

|

second column. shows the number of task sets |
successfully scheduled/total number of task sets. The
percentage of successfully scheduled task sets is also
shown in parentheses. Average jitter value (in time
units) for successfully scheduled task sets is shown in_
column 3. The results show that the algorithm °
successfully scheduled 95.55% of task sets with an

average jitter value 2.48. |

Table 1: Results for Class 1

u Scheduled set/total Average
set jitter
02<U<0.5 15/15 (100%) 0.62
03<U<0.75 15/15 (100%) 1.98
0.55<U <0.85 13/15 (87.66%) 4.83
Overall 43/45 (95.55%) 2.48

A total of 30 run were performed for class 2 tasks. The
results are shown in table 2. The proposed algorithm
was able to successfully schedule 29 task sets out of
30 with an average jitter value of 6.53. Results for
class 3 task sets are shown in table 3. The proposed
algorithm found feasible schedules of 15 task sets out
of 20 task sets. The average jitter value was 7.42.

Table 2: Results for Class 2

U Scheduled set/total Average
set jitter
03<U<0.75 15/15 (100%) 1.27
0.55<U<09 14/15 (93.33%) 5.26
Overali 29/30 (96.67%) 6.53
Table 3: Results for Class 3
U * Scheduled set/total Average
set jitter
025<U<0.5 8/10 (80%) 5.20
- 03<U<0.65 7/10 (70%) 9.63
'Cverall 15/20 (75%) 7.42
950 A
850 4
750 1
2 650 4
=
8 550 4
o
< 450
[
£ 350 -
= 250 4
150 4 R
50) L} 1 T A}
100 200 300 400 500 600

of task instances

Fig. 3: Computation Time for Tabu Search Scheduling
Algorithm :

158
!

fhe run time cost of executing the algorithm is strongly
fependent on the complexity and size of the task set.
he average run time for various sizes of task sets is
ghown in Fig. 3 when the program written in C was
fexecuted on Pentium IV processor. Even though the
fexecution times are quite high but for static scheduling
isystems, the schedules are computed once only and
stored in a table latter to be used by the local
bdispatchers. A reasonable approach to using tabu
search algorithm is to limit the use of the algorithm for
gscheduling only the time critical and jitter sensitive
Ftasks and then use the time gaps left by those tasks to
execute the non real-time tasks.

 Conclusion

fTabu search algorithm has been used successfully to
Bsolve many combinatorial optimization problems. In
this paper, we presented a tabu search approach for
Fscheduling real-time tasks with minimum jitter in a
b distributed computing environment. We have
b presented methods to obtain initial solution, move
- generation, tabu and aspiration criteria. We ‘have
- shown the performance of the tabu search scheduling
¢ algorithm through a simulation study. Experimental
- results demonstrate the effectiveness of the proposed
b algorithm to the real-time task scheduling problem.

[References

. Bate, I. A.Burns, et al., 1996. Towards a Fixed Priority
Scheduler for an Aircraft Application. Proc.
3 Euromicro Workshop on Real-Time Systems.

i Burns, A. et al., 1993. The Olympus Attitude and
; Orbital Control System: a Case Study in Hard
Real-time system design and implementation,
Technical Report YCS90, Dept. of Computer
Science, Uni. Of York.

k' carpenter, T. K. Driscoll, et al., 1994. ARINC 659
; Scheduling: problem definition, Proc. 1994 Real-
: Time Systems Symp.

¥ fohler, G., 1994. Flexibility in Statistically Scheduled
5 Hard Real-time Systems, Technische
Naturwissenschaftliche, Fakultaet. Technische Uni.
. Wein.

& Glover, F., 1990. Tabu Search: a Tutorial. Interfaces.
20: 74-94. ’

 Hou, E. S. N. Ansari and H. Ren, 1994. Genetic
Algorithm for Multiprocessing Scheduling. 1EEE
Trans. Parallel and Distributed Systems. 5: 113-
120.

Mahmood: Scheduling Real-Time Tasks in Distributed Environment

Hubscher, R. and F. Glover,
Search with Influential Diversification to
Multiprocessor Scheduling. Computers and
Operations Research. 21: 877-884.

Kidwell, M. D. and D.). Cook, 1994, Genetic Algorithm
for Dynamic Task Scheduling. IEEE 13™ Annual
Int. Phoenix Conf. on Computers and
Communications. 61-67.
ffiaram, G. and C. S. Murthy, 1998. An Efficient
Dynamic Scheduling Algorithm for Multiprocessor

1996. Applying Tabu

Real-time Systems. IEEE Trans. Parallel and
Distributed Systems. 9: 312-319. T
Mahmood, A., 2002. A Tabu Search Algorithm for
Scheduling Real-time Tasks under Precedence and
Resource constraints. Int. J. Science Vision (to

ar).
Wm, A., 2000. A Hybrid Genetic Algorithm for
Task Scheduling in - Multiprocessor Real-time

Systems. [aot...l Studies .in.Infarmatics ang

~Ngsege, M. D. and J. A. Stankovic, 2000. Scheduling
Distributed Real-time Tasks with Minimum lJitter.

IEEE Trans. Computers. 49: 303-316.
Porto, S. C. S. and C. C. Ribeiro, 1995. A Tabu Search

Approach to Task Scheduling on Hetrogeneous
Processes under Precedence Constraints. Int. J. of
High Speed Computing. 17: 21-40.

Ramamritham, K., J. A. Stankovic and P. F. Shiah,
1990. Efficient Scheduling Algorithms for Real-
Time Multiprocessor Systems. IEEE Trans. Parallel
and Distributed Systems. 1: 184-194.

Stankovic J. A., K. Ramamritham and S. Cheng, 1985.
Evaluation of a Flexible Task Scheduling Algorithm

for Distributed Hard Real-time Systems. IEEE
Trans. Computers. 34:1130-1143.
Tindell, K., K. A. Burns, and A. Wellings, 1992

] Allocating Real-time tasks (an NP-hard Problem

I made easy). Real-Time Systems J.

Xu, J. and D. Parnas, 1990. Scheduling Processes with
Release - Times, Deadlines, Precedence and
Exclusion Relations. IEEE Trans. Software

_ Engineering. 16: 360-369.

Y. C. Kim and Y. S. Hong, 1993. Task Allocation using

Genetic Algorithm in Multiprocessor Systems. Proc.

10t IEEE Regiona! Conf. on Computers.
Communicatior.s, Control and Power Eng. NJ. 258-
261.

159

	ITJ.pdf
	Page 1

