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A Periodogram-Based Test Method for Comparing
Stationary Stochastic Signals
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Abstract: A problem in gas industry and commodity prices describes a number of periodogram-based
tests of the hypothesis that two independent time series are realizations of the same stationary signal.
This paper describes the use of a periodogram-based test method called the randomisation test method
for comparing stationary stochastic signals. The paper consider the case of comparing two signals which
can be generalised to compare more than two signals. A number of test statistics are considered and the
maximum distance between periodograms is recommended. It is important to standardise the signals
before calculating the periodograms otherwise the test is considerably weakened.
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Introduction

A number of methods of comparing stationary signals
have been proposed, see for example Basseville (1988,
1989), Coates and Diggle (1986), Souza and Thomson
(1982), Diggle and Fisher (1991) and Stoica (1990)
and the references therein. The problem can be briefly

described as follows. Let {X,: t =1,... ,n}and {},: t
=1,...,n} denote two independent observed sets of
data generated by the stationary processes { X , } and

{Y, } respectively. Then the nuli hypothesis of interest

is that the sets of data were generated by the same
stationary process. In general, it is assumed that

{X,} and {Y,} are stationary general linear

processes with independent identically distributed
innovations. It is often futher assumed that the
innovations are Gaussian.

One ezpproach is to assume a model, such as an
autoregressive model. Stoica (1990) suggested using
the Euclidean distance between the estimated
parameters obtained by fitting autoregressive models
to the two sets of data. Basseville (1989) commented
that the Euclidean distance between the cepstral
coefficients is a better measure than the Euclidean
distance between the estimated parameters. Coates
(1991), commented on the problems associated with
the proposed test statistic in particular that the test is
not symmetric and there is a lack of fit to the

% distribution.

Another approach is to use the periodogram. Coates
and Diggle (1986) described a number of periodogram-
based tests of the hypothesis that two independent
time series were generated by the same stationary
process. A test based on the range of the periodogram
ratios was found to be extremely weak. A test based
on the cumulative sums of transformed periodogram
ratios, like the test suggested by Stoica (1990), is not
symmetric but depends on the arbitrary labelling of the

two series { X, } and { ), }. They recommended a test
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based on the ratio of the log of the periodograms. Their
alternative hypothesis was that the ratio of the log of
the spectra could reasonably be a quadratic model.
Diggle and Fisher (1991) also approached the problem
of comparing stationary signals using periodograms. In

particular they suggested using the cumulative
periodogram, leading to an informative graphical
procedure,

For testing whether an observed set of data were
generated by a white noise process, Jenkins and Watts
(1968) recommended the use of the Kolmogorov-
Smirnov test statistic. If the observed set of data were
generated by a white noise process, then under the
null hypothesis, the observed periodogram ordinates
are independent and identically distributed. However,
for the general problem of comparing stationary
signals, the periodogram ordinates'are not identically
distributed although they are (asymptotically)
independent. Hence the standard sampling distribution
for the Kolmogorov-Smirnov test statistic cannot be
used. The Kolmogorov-Smirnov test statistic is,
however, an obvious measure of the distance between
two cumulative periodograms and an approximate
sampling distribution for the test statistic can be
generated using a randomization test method. It is also
important to standardise the observed set of data
before being used, otherwise the test is considerably
weakened.

Description of the Randomization Test Method:
The randomization test is a method for determining the
significance of experimental results by permuting a set
of .data in order to obtained repeated values of a
particular test statistic (for example the t statistic). A
randomization test is not a statistical test in the usual
sense but it is a way of generating an approximate
sampling distribution and hence of determining
significance. There are two basic methods of permuting
data. One is called systematic data permutation where
all possible data permutations in a <et are used in
generating an approximate sampling distribution and
the other is called random data permutation. Random
data permutation uses only a random sample of all
possible data permutations and in practice random
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data permutation is more useful. It serves the same
function as systematic data permutation but there is a
substantial reduction in the number of permutations
from typically many millions to as few as 100.

The validity of a randomization test using random data
permutation depends on using random assignment to
create the data permutation. That is, the allocation of
observations to each sample is carried out at random
so that each observation has an equal chance of being
in each sample. Random assignment is the only
random element necessary for determining the
significance of experimental results by the
raridomization test method. Assumptions regarding
necrmality, homogeneity of variances and so on are
unnecessary although they may influence the power of
the test. Any statistical test is transformed into a
distribution-free test when the significance is
determined .by the randomization test method. Further
details on the randomization test and the random
assignment can be found in Edgington (1980), Hooton
(1991) and Nelson (1992).

As in the introduction, assume that { X, } and {Y3>

are  stationary general linear processes ‘with
independent, identically distributed (not necessarily
Gaussian innovations), the periodogram ordinates,

I (0;) I (o;)
independent for i # j, as are / (®, ) and I,(0;)

and are  asymptotically

(see Priestley, 1981). Also, each I(0,) is
independent of all [, (®;) and vice versa since the

two series {X,} and {y,} are assumed to be

independent. Also under the null hypothesis that the
sets of data were generated by the same stationary

process, [, (®,) and I,(w;) are identically

distributed for each frequency w,=2r/n ,
J=l,..,mand m=[(n-1)/2].

Let d be some measure of the distance between the
cumulative periodograms, F .(® ) and Flo ).
Then, under Hq, the distribution of d will be invariant
under all 2M possible interchanges of I, (0)j) and

I y( ®,; ). The Kolmogorov-Smirnov test statistic,
}

- D, is an obvious measure of the distance between
the cumulative periodograrhs and is defined by

D, =sup|F,(0,)-F,(o,)
J
where '
Fx(mj)=21x(0)i) 21;(0)1)
i=1

i=]

|

and similarly for F (@, ).
The estimation of the power of the Kolmogorov-
Smirnov test statistic, D when comparing two

stationary signals, is of interest. This can be obtained
by simulation.
Finally, the algorithm for the randomization test

m

' method for comparing two observed stationary signals

"is as foliows:
Steps
* Obtain two independent observed sets of data

{X,: t=1, .. , n } and {y,: t=1,.,

Calculate the periodogram for each observed sets
of data and call the periodogram ordinates for

(xyand (y,3 1,(0,)and I (w,), =1,

.. M} respectively.
* Calculate the Kolmogorov-Smirnov test statistic,

D, for these original samples.

¢ Randomly permute these original
Calculate the Kolmogorov-Smirnov test

samples.
statistics,

Dm,- for these randomly permuted samples. Do
this N-1 times.
* Combine D, = with the N-1 values of D,, to give

D

a sample size of N, comprising D

my ' =my o

, Dm\--l - Count the number of test statistics that -

are equal to or larger than D, ~ ( include D,

itself ). If this number is S, then the significant
level reached by the original sample is equal to
S/N.

* To estimate the power of the Kolmogorov-Smirnov
test statistic for particular stationary processes,
repeat steps 1-4 a large number of times - (for
example 100 times). The power of the
Kolmogorov-Smirnov test statistic at a given
significance level is then the proportion of times a
significant level is obtained.

The randomisation test method can be generalised to

gompare more than two signals using test statistics

elow

U = Zsz{pll":,((oj)“‘Fr(mj.)l

V = sup

qur.g
T=sup ) (F(0,)-F(o,)’
i
where F(O)j)=(ZF,((0j))/k is the mean of

F(o;)-F,(o,)
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the cumulative periodograms of the pooled k observed
stationary signals at the jth frequency (see Kiefer,
1959). .

The test statistic V Is the obvious analogue of the
Kolmogorov-Smirnov test statistic since it calculates
the largest difference between any of the cumulative
periodograms. In comparison, the test statistic U sums
the Kolmogorov-Smirnov test statistic over all pairs of
cumulative periodograms. By contrast, the test statistic
T calculates the largest of the sum of squared
differencs between a single cumulative periodogram
and the average of all of the cumulative periodograms.
Results and Discussion

Simulation: The power of the proposed randomization

test method based on the test statistic, D,, has been

estimated by applying the method to pairs of simulated
. autoregressive (AR(p)) processes. The processes used
were all of the form

X,=ian,_j +Z,
J=!

where in each case {Z,} is a sequence of mutually

independent N(0,0'z) random variables i.e. Gaussian
white noise. The results were compared to those
reported by Coates and Diggle (1986), Diggle and
Fisher (1991). .

Only 100 replicates of each pair of processes were
performed for each simulation since good coverage of a
range of cases is more important than precise
estimation of the power for any particular case. For
each replicate of each simulation, the randomization
test method was applied using random data
permutation. In each case, a sample size of 1 =64 was
used and the number of random data permutations
was N-1=99, ‘
The following pairs of stationary processes were used.

(a). white noise versus AR(1), O, >0 ;
(b). white noise versus AR(2), &, =0, X, >0 ;

(c). white noise versus AR(3), O,=0, O, = - O,
>O; '
(d). AR(1), @ =0.5, versus AR(1) , @, >0.

A Fortran program was constructed for this simulation
study. Pseudorandom numbers used were generated
~ using the NAG (1984) random number generator. The
periodograms ordinates were calculated using the
NAG(1984) subroutine.

Three cases were studied. Firstly, pairs of processes

wiere simulated with values of ()'2 adjusted so that the

processes {X, } and {Y, } .had the same variances.

The results are shown in Table 1 and they are similar
to the results obtained by Diggle and Fisher (see Table
2, 1991). The major drawback of this method is that it
is only possible when the structure of the data is
known, as in the case of a simulation study. In such a

|
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| case, the theoretical variances of the processes can be

calculated and the process variances standardised.

Table 1: Estimated Power of Dm -tests, Series Length

n =64, with Different Noise Variances so
that the Process Variances are the Same
Results for the following sizes

o, or O, 0.10 0.05 0.01
white noise versus AR(1),” Ot >0

0.2 .30 .19 .04
0.4 .64 .50 .18
0.6 .87 .78 .45
0.8 .99 94 .80
white noise versus AR(2), o, =0, , >0

0.2 . .22 A1 .02
0.4 .32 .20 .05
0.6 .46 .30 .13
0.8 .53 43 .22
white noise versus AR(3), ., =0, O; = - O3 >0
0.2 .30 .14 .03
0.4 .67 .56 .26
0.6 93 .87 .52
AR(1), O =0.5, versus AR(1), a, >0

0.1 .64 .51 .26
0.3 .30 .20 07
0.5 .10 .06 .01
0.7 .35 .26 .09
0.9 .86 .81 .63

A practical and easy alternative to sr,andardlsihg the
variances of the processes {X,} and {Y,} is to

calculate the variances for the observed signals and
divide the original signals by their empirical process
standard deviations. The results are shown in Table 2
and are similar to those in Table 1.

When comparing stationary processes, the processes
should be standardised. If the processes are not
standardised and the error variances for both of the
processes are the same, say both are unity, then there
is a substantial decrease in power as the data becomes
highly correlated. The results are shown in Table 3. For
example, the estimated power for white noise versus

AR(1) ,Q, =0.8 for the three sizes shquld be more

than for white noise versus AR(1) ,QL; =0.6. |

Results in Table 2 can be compared to the results in
Table 2 of Coates and Diggle (1986) where they have
used the semiparametric approach which they
recommend. The results from using the randomization
test method show more power for almost all of the
pairs of processes except for (b). In this case, the log
spectral ratio is quadratic in form and the
semiparametric approach would be expected to be
more powerful as it assumes a quadratic form for the
log spectral ratio. In general, the randomization test
method is a better approach than the semiparametric
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Table 2: Estimated Power of D, -tests, Series Length

n =64, Standardised so that the Observed

Series have the Same Variances
Results for the following sizes

o, or o, 0.10 0.05 0.01
white noise versus AR(1), o, >0

0.0 .15 A1 .02
0.2 .32 .24 .05
0.4 .67 .56 .21
0.6 .88 .80 .50
0.8 .98 .98 . .83
white noise versus AR(2), O =0, O, >0
0.2 .24 12 .02
0.4 .36 22 .03
0.6 .46 .35 11
0.8 .56 .42 .25
‘whitevnoise versus AR(3}, ., =0, O, =- A, >0
0.2 31 17 .03
0.4 .69 .59 .25
0.6 .94 .87 .50
AR(1), O =0.5, versus AR(1) , O, >0

0.1 .63 .55 .25
0.3 .38 .24 11
0.5 .15 .10 .03
0.7 .34 .26 .13
0.9 .78 .74 51

approach of Coates and Diggle since it does not depend
on the form of the log spectral ratio to be powerful.
Stoica (1990) suggested an approach based on the
Euclidean distance between the estimated parameters
obtained by fitting autoregressive models to two sets
of data. There are a number of problems associated
with this method, Coates (1991) for details. o
The Euclidean distance between the logarithm of
spectral densities has been suggested as the basis for
comparing stationary signals. One obvious estimate of
the Euclidean distance between the logarithm of the
spectral densities is the Euclidean distance between the
logarithm of the periodograms. Two problems arise,
- firstly, the simple Euclidean distance between the
logarithms of two periodogram gives a very weak test
statistics since most frequencies will contribute very
little ( Coates, 1991). Secondly, the randomization test
method based on this measure fails since the distance

llog I, (®;)- logl,(@; )| will be the same for

every random permutation. Bloomfield (1976)
suggested smoothing the cross periodogram to
estimate the coherency of two stationary processes.
" Using this ideaj, a simple three point moving average
- was used to smooth the permuted periodograms. A
problen'l with smoothing the permuted periodograms is
~ that there are problems with estimating values at the
" ends of the periodograms, but these are often where
the differences between the periodograms . are most

Table 3: Estimated Power of Dm’-tests, Series Length

n =64, Having the Same Noise Variances so
the Process Variances are Different
Results for the following sizes

o, or a, 0.10 0.05 0.01
white noise versus AR(1), Q; >0
0.2 .30 .17 .05
0.4 .60 .48 A7
0.6 74 .61 31
0.8 .66 .58 .25
white noise versus AR(2), a, =0, &, >0
0.2 22 .10 .02
0.4 .30 A1 .03
0.6. 27 .15 .02
0.8 .16 .05 .03
. white noise versus AR(3), a,=0, 0t;=- a3 >0
0.2 .29 .16 .03
0.4 .63 .46 12
0.6 .52 .35 .15
AR(1), o, =0.5, versus AR(1) , ;>0
0.1 .58 .38 17
0.3 .26 .14 .07
0.5 .10 .06 .01
0.7 .20 A1 .04
0.9 .20 .14 .04

important. This approach gave power estimates which
were much weaker than those above.

An alternative to the Kolmogorov-Smirnov test statistic
is the area between the cumulative periodograms,

F.(w) and F,(®). similar results to Table 1 or

Table 2 can be obtained using the area. This is to be
expected since most frequencies will contribute little ..

. ( Coates, 1991).
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The semiparametric approach by Coates and Diggle
has limited applicability, in general, parametric
assumptions even for the log spectral ratio are difficult
to justify. An important advantage of the proposed
non-parametric test is the simplicity of the
assumptions required for its validity. In particular the
validity of the randomization test method depends only
on random assignment, in this case random data
permutation.

The traditional method of testing whether a stationary
series was generated by a white noise process is to use
the Kolmogorov-Smirnov test (Jenkins and Watts,
1968). The standard sampling distribution cannot be
used when comparing general stationary series, but
the randomization test method can be used to create
an approximate sampling distribution. The computation
involved is not too great and the results obtained
based on this method are equally competitive and
sometimes much better than other methods. However,
it is important to ensure that the stationary series has
been standardised.
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