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Abstract: 3D reconstruction problem from images can be classified into three strata each of which is
equivalent to the estimation of a specific geometry group. The simplest being projective, then affine, next
metric and finally Euclidean structure. The advantage of stratification is that the images do not need to be
from calibrated cameras in order to obtain reconstruction. In this paper resuits for both camera calibration
and reconstruction are presented to verify that it is possible to obtain a 3D model directly from features in

the images for man-made world.
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Introduction

Obtaining three-dimensional models of scengs from
images is a fairly new research field in computer
vision. It has a wide range of applications in such
diverse fields as robotics, architecture, archeology,
art history, and forensic sciences. " Nowadays
however more and more interest comes from the
multimedia and computer graphics communities. The
use of 3D models and environments on the Internet
is  becoming common practice. virtual reality
environments® and  three-dimensional product
catalogues have become feasible and commercially
attractive knowing the internal and external camera
parameters (Trucco and Verri, 1998) associated with
a sequence of two or more images of a scene, it is
possible to reconstruct geometry by back-projecting
matched points in the images to 3D points in the
‘'world coordinate system. '
Traditionally, the camera calibration was obtained

off-line and used images of special calibration -

objects (Tsai, 1989 and Tsai, 1987). A decade ago,
Faugeras et al. (1992) and Maybank and Faugeras,
1992) introduced the idea of self-calibration, where
the camera calibration can be obtained from the
image sequences themselves, without requiring
knowledge of the scene. The method developed by
Hartley (1994) computes the parameters of interest
in steps using non-iterative and iterative estimation
techniques. :

Many other methods have been proposed that
constrain the motion or the scene to simplify the
problem (Dorn, 1993 and Polleyfeys et al., 1996).

Recent general methods (Heyden and Astrom, .

1996); Triggs, 1997 and Pollefeys- et al., 1998)
utilize the relationship between certain projective
geometry entities, the absolute quadric, the absolute
conic, and their projections on the image plane.
Pollefeys et al. (1998) allow changing focal length of
the camera assuming fixed aspect ratio and zero
skew. ‘

Most of the autocalibration techniques require
nonlinear solution methods. An aiternative strategy

is to first recover affine structure, then solve for
camera intrinsic parameters using relations
generated by affine calibration. The advantage of
this two-stage approach is that the equations on the
internal parameters are linear. This stratified (Luong
and Vieville, 1994) approach s suitable for
constructing man-made world with regular scene
geometry such as parallelism and orthogonality of
lines and known relative lengths of line segments to
provide calibration constraints.
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Fig. 1: Overview of the System

In this paper we investigate the stratified approach
to reconstruct objects with a single moving
uncalibrated camera. The overview of the
implementation is given in Fig. 1.
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Hierarchy of Scene Reconstruction: Suppose a set

. / . .
of image correspondences X; €> X, are given. It is
also assumed that correspondences come from a set of
X, with some real existing

cameras with unknown matrices Fl and l_’2 . The
reconstruction task is to find the camera matrices
P and P, as well as the 3D points X, such that
x=BX, X =BRX forallti (1)
However without further knowledge we can reconstruct

the scene and cameras only up to projectivity. That is,
we obtain P, and P; and X; from the measured image

points x; which differ from camera matrices £} and
}—52 and scene points /—\’—, by an unknown brojective
transformation:
B =RH' for
AX,=HX . for i=l.n |

Where H is a 4x4 matrix with rank 4 describing the 3D-
to-3D projective transformation.

k=1, 2
{2)

- In order to upgrade projective structure Xi to

Euclidean structure X, we have to recover H with
following decomposition:

_ [sR7Ta" 0 1 0
H—H"H"HI’—[O l][ 0 l][yl ‘}

The first part He depends on the choice of coordinate
system and scale factor, the second part Ha
corresponds to affine upgrade, and is directly related to
the knowledge of intrinsic parameters of the camera,
and the third transformation is projective upgrade Hp
which transform points lying on a particular plane

[V r I]X, =0 to points at infinity.

This basic observation sets the stage for the so-calied
stratified approach to Euclidean reconstruction and
self-calibration. Once the projective reconstruction is
computed from image correspondences, further
knowledge about scene structure or camera can be
used to stratify the projective reconstruction to affine
or Euclidean reconstruction. The term Euclidean
Transformation is used in this paper to mean a
similarity transformation, namely the composition of
rotation, a translation and a uniform scaling.
Projective Reconstruction: It has been shown that a
projective reconstruction requires only point (Berdsley
et al., 1994; Faugeras, 1992 and Hartley et al., 1992)
or line (Hartley, 1994) matches between two (three)
views from unclaibrated cameras.

For two images, this step requires the determination of
epipolar .geometry (Faugeras, 1992). The epipolar
geometry is entirely represented by fundamental
matrix Fs; of rank 2. The fundamental matrix enables
the determination of the projective matrices of two
cameras, up to an unknown, but common, projective
transformation {Hardey, 1992). Linear as well as
nonlinear methods have been proposed to estimate

(3)
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fundamental matrix (Longuet-Higgins, 1981; Hartley,
1995; Zhang, 1998; Xu and Zhang, 1996; Torr and
Murray, 1997) and Luong and Faugeras, 1996). To
estimate fundamental matrix, Interest points in images
can be found by a corner detector such as given in
(Harris and Stephens, 1988).

Let the first camera coincides with the origin of the
world coordinate system. The projective camera matrix
for the first camera is then defined as
P, =[13.\~3 03] (4)
The second projective camera matrix is chosen such
that the epipolar geometry corresponds to the
retrieved fundamental matrix (Zhang, 1998). Usually it
is defined as

P2=[M ﬂez] (5)

Where e; is the epipole in the second image and the
variable B represents the global scale of the
reconstruction. As the scale is unknown, it is arbitrarily
chosen and set to 1. Matrix M is defined as

M '_"_!—g[ez],\‘-F
€

Where [e;], is the antisymmietric matrix of es.
The matrix M is not necessarily unigue, because if M is

r o
solution, then M +e,v’ s also a solution for any
vector v (Zhang, 1998).

~Given two camera matrices, 3D projective coordinates

of scene points can be computed from image
correspondences by triangulation (Hartley and Strum,
1995). . :

Affine Reconstruction: To upgrade the projective
structure to affine structure we need to find the
transformation matrix H, ~This step involves finding

- V3

plane at infinity IT, =[Vl l] in the coordinate
frame of projective reconstruction. In the true
reconstruction, plane at infinity has coordinates (000
1)". H, thus maps plane at infinity to its canonical
position. The transformation H, is now applied to all
points and the two cameras to upgrade projective
reconstruction to affine reconstruction. The plane at
infinity in projective reconstruction cannot be identified
unless some extra information is given. In practice this
can be done (Horaud and Csurka, 1998) using (i)
special camera motions (ii) exploiting special scene
structure such as parallel lines, or (iii) using fixed
entities under rigid motion.

The most obvious method is the knowledge that 3D
lines are in reality parallel. The intersection of two
paraliel lines in space gives a point on plane at infinity
and image of this point is vanishing point. Fig. 2
illustrates 3 vanishing points in an image of a building.
Suppose: that three sets of parallel lines can be
identified in the scene. Each set intersects in a point on
the plane at infinity. Provided each set has a different
direction, the three points will be! distinct. Since three
points determine a plane, this information is sufficient
to identify the piane at infinity.
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Fig. 2: Three Vanishing Points in an Image

Line segments in the images corresponding to parallel
lines in three orthogonal directions can be computed
using canny edge detector (Canny, 1986) and in the
subsequent processing: edge linking; segmentation of
the edgel chain at high curvature points; and finally,
straight line fitting by orthogonal regression to the
resulting chain segments. Vanishing points are then
estimated using a maximum likelihood estimator
described in (David, 2001).

Projecting the three vanishing points into spage with
the two projection camera matrices of (4) and (5), the
points at the infinity are estimated. Triangulation
(Hartley and Strum, 1995) is employed to find the best
estimate of each point in space. From the three points
at infinity, the plane at infinity is calculated as follows:

Vim, =0 for i=123. (6)

Where V, are the points at infinity and I1_ is the non-
zero solution of the above linear homogeneous system,
The situation is not completely lost, in case above
structure constraints are not available.. Pollefeys et al.

(1996) use modulus constraint. This approach requires
a solution to a set of fourth order polynomial equations

and multiple views (four) are necessary. Hartley (1993)

uses chiral inequalities to give a range of possible
values for. II, where the optimum is achieved using

linear programming approach.
Euclidean R‘econstructlon:

identification of the image of absolute conic @ and it
can be computed by combining constraints arising from
scene, camera, and motion.

Scene Constraints: ‘Commonly
constraints  in man-made

encountered
environments are

orthogonality constraints between sets of lines in 3D. A--——-

pair of vanishing points v; and v; in the image plane
corresponding to a set of orthogonal lines in 3D have
to satisfy the following constraint:

T _ .
V; a)vj =0 (8)
Constraints on Camera: Computation of w can be"
simplified when some of the intrinsic parameters are
camera are known. The most commonly used

assumptions are zero skew and known aspect ratio. For
zero skew we have

W), =@, =0 (9)
And if pixels are square then
Wy =Wy (10)

Motion Constraints: The image of absolute conic only
depends on the calibration parameters of the camera
not on the position and orientation of the camera. If
both images are taken with the same camera then we
have w=w'i.e., the image of absolute conic is same
in both images.

Between two views of a scene there is a planar
homography induced by plane at infinity known as the
infinite homography represented by a 3x3

homogeneous matrix H _ (Liebowitz and Zisserman,

1999). It maps image of absolute conic between two
views. This implies that

=H wH]

Where o'

(11)

is the image of the absolute conic in the

second view.

The key to Euclidean

reconstruction is the identification of absolute conic Q. ,
which is a planar conic lying on plane at infinity (Hartley

and Andrew, 2000).

It has been shown .that known

image of dual absolute conic in the left ands right image
is equivalent to knowing the internal parameters of the

camera.
Suppose that in the affine reconstruction, the image of
the absolute conic as seen by the camera with matrix

P= [M | m] is a conic @ . It has been shown

in (Hartley and Andrew, 2000) that the affine
reconstruction may be transformed to a metric
reconstruction by applying a 3D transformation of the
form H, given in (3). A in H, is obtained by Cholesky
Factorization (Golub and Van Loan, 1989) from the
equation

- oy -1
44" =(M" oM ) | 7)
provided that that the right hand side of (7) is positive

definite. ‘
This approach of metric reconstruction relies on the
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For ' =w , (11) gives a set of linear equations in the
entries of @ . This set of linear equations pilaces four
constraints onw , and it has 5 degrees of freedom, so
it is not completely determined. However by combing
constraints arising from scene and camera @ can be
determined uniquely.

Results and Discussion

Fig. 3 (a and b) shows two images of the calibration
grid captured from two vantage points by Panasonic’s
V-CP450/WV-CP454 color CCTV camera. Fig. 3. (c)
shows some of the reconstructed points in the scene.
Fig. 4 shows 3D models of the calibration grid, up to a
scale from three different vintage points after texture
mapping by VRML (Virtual Reality Modeling Language).
The reconstruction appears to be visually correct.
Indeed the angle between the two planes computed
from the reconstruction was 91.3°. The actua! angle is
90°. To enhance the realism texture was mapped from
the first image. However this has created a bias
towards the selected image and imaging artifacts like
sensor noise, unwanted specular reflections or
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shading of the first image have directly transformed Tabie 1: Comparison with Zhang's Method

- onto the reconstructed model. Above Method Zhang's Method
Table 1 compares results of camera parameters Uo 197.0437 203.2790
obtainred by the method outlined above and to the Vo 150.9275 157.7441
results obtained by the method proposed by Zhang fy 683.2961 676.15192
(Luong and Vieville, 1994). fy 683.2961 674.75288

S 0 0

Fig. 3: Images Taken by a Moving Camera (a and b) Fig. 4: Texture Mapped Reconstructed Calibration Grid
and Reconstructed Points in The Scene (c) Seen from Different Viewpoints
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Conclusion
This paper represents camera calibration and 3D
reconstruction from  images based on stratified

approach. This approach is suitable for man-made
objects with rich geometry. We are currently working
on developing algorithms - to automate the
reconstruction process.

It must also be noted that for certain configurations,
however, calibration parameters cannot be determined
uniquely. Sequences of camera motions for which such
ambiguities arise are termed “ critical motion
sequences” and have been systematically classified by
Strum (Horaud and Csurka, 1998) in case of constant
internal parameters. Additional scene or motion
constraints may help to resolve the ambiguity, but
clearly the best way to avoid degeneracies is to use
that are far from critical.
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