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Type I Error Rate and Power of Three Normality Tests
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Abstract: In this study, Shapiro-Wilks, Lilliefors and Kolmogorov-Smirnov tests were
compared for Type I error and for power of the tests. The simulation was run 100, 000
times for different situations and for different types of departures from normality. For
all different sample sizes and distributions, Shapiro-Wilks gave the most powerful results,
followed by the Lilliefors test. Kolmogorov-Smirnov test results were the weakest among
all three tests. All three test were most powerful when ran on data with exponential
distribution. 
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Introduction
In most statistical analyses, such as F, Z, T-tests, data is assumed to be normally distributed.

The main three tests that assess assumption of normality are Shapiro-Wilks, Lilliefors and
Kolmogorov-Smirnov. Data can be viewed with graphical methods to roughly assess normality.
However, graphical methods do not test if the differences between normal distribution and the
sample distribution are significant. Tests used for assessing normality are Chi-square, Anderson
Darling, Ryan Joiner, Kolmogorov-Smirnov, Shapiro-Wilks and Lilliefors. The last three are the most
frequently used tests. In most situations, data deviates from normality. Previous studies did not
attempt to determine which testing method gives higher power for different cases of sample
sizes and distributions and they had low simulation runs (Oja, 1983; Ohta and Arizono, 1989; Lin
and Mudholkar, 1980). The major objective of this study was to evaluate Shapiro-Wilks (Shapiro
and Wilk, 1965); Lilliefors (Lilliefors, 1967) and Kolmogorov-Smirnov (Kolmogorov, 1933 and Smirnov,
1939) methods for Type I error rates and for power of the tests.

Shapiro-wilk W test
This test for normality, developed by Shapiro and Wilk (1965) is the most powerful and

omnibus test in most situations (D'Agostino and Stevens, 1986). In recent years, the Shapiro-Wilks
SW test has become the preferred test  of normality because of its good power properties as
compared to a wide range of alternative tests (Shapiro et al., 1968).

The test statistic for this test is; 
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where x(i) is the i-th largest order statistic, 0 is the sample mean, and n is the number of
observations. Royston (1982) gives approximations and tabled values which may be used to
compute the coefficients ai, I = 1, K, n, and obtain the significance level of the SW statistic.

Kolmogorov-smirnov test
Kolmogorov-Smirnov test was first proposed by Kolmogorov (1933) and then developed by

Smirnov (1939). The test statistic is defined as ; where F  (X) is function of0

the random variable X (expected) and S  (X) is the observed frequency of the variable X fromn

sample. If resulting D statistic is significant, then the hypotheses that sample comes from a
normally distributed population is rejected. 

Lilliefors test
Lilliefors test is different than Kolmogorov-smirnov test because the parameters are

estimated; while the statistic is the same. The table values of the two tests are different, which
results in different decisions. 

Materials and Methods
A computer simulation program was used to study Monte Carlo techniques. Fortran was used

to write the program for Intel Pentium III processor. Type I error rates and statistical power of
Shapiro-Wilk, Lilliefors, and Kolmogorov-Smirnov tests were measured for different situations.
Samples with various sample sizes were taken from the Normal (0, 1), t (30), P  (30), Gamma (2,3),2

Wiebul (1.5), Exp (0.50), Beta (2,5) and P  (3) distributions. Random numbers were generated using2

generators from IMSL (functions RNNOA, RNSTT, RNCHI, RNWIB, RNEXP and RNBET) (Anonymous,
1994). Sample sizes were chosen as n = 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 75,i 

100, 150, 200 for each distribution. This allowed assessment of the Type I error rates and power
of statistical tests under small, moderate and large sample size conditions. In each case 100,000
pairs of data sets were generated. Each pair was then compared by each of the two tests. The
populations were standardized because they have different means and variances. When samples
were taken from normal (0,1) populations, the number of rejected H  hypotheses was declared0

as the probability for Type I error. When samples were taken from populations with non-normal
distributions, the number of rejected H  hypotheses was declared as the test’s power. So, to0

compute empirical Type I error rate and test power, the program ran each condition 100,000
times and kept tract of proportion of significant statistics.

Results and Discussion
Empirical results of 100 000 simulation runs are given in Table 1. When the distribution was

normal, all three tests had similar Type I error rates. When the distribution was t (30), number
of rejected null hypotheses (power of the tests) were similar to the number of rejected null
hypotheses (Type I error rate) for normally distributed data (0, 1) for all three tests. The only
exception of this was the data where sample size was 100. It may be suggested that t-student
distributed data with 30 degrees of freedom or more can be treated as normally distributed data.
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When the tests were run on data with 30 degrees of freedom and chi square distribution, they
all presented low power. Even the tests ran on data with sample sizes as large as 200 had low
power when the data was distributed with chi-square. Powers of tests were 63.3% for Shapiro-
Wilk, 43.6% for Lilliefors and 14.4% for Kolmogorov-Smirnov. When the simulated data was
distributed with Gamma (2, 3), Shapiro-Wilk test was most powerful for 50 or larger sample sizes
while Lilliefors test was most powerful when sample size was 100 or larger (Table 1). Kolmogorov-
Smirnov test could only reach small power levels (55.1%) even when large sample sizes (n = 200)
were used. When the data was distributed with Weibul (1.5, 1), Shapiro-Wilk test was most
powerful for 45 and larger sample sizes, and Lilliefors test was most powerful for 100 and larger
sample sizes. Kolmogorov-Smirnov test was the weakest one; it could not reach sufficient power
levels (80%) even for the largest sample size.

For Gamma (2, 3) or Weibull (1.5, 1) distributions, Lilliefors and Kolmogorov-Smirnov tests were
similar in power. Exponential (0.50) distribution had a positive effect on power levels of all three
tests, especially Kolmogorov-Smirnov test. Shapiro-Wilk test reached sufficient power levels with
20 and larger sample sizes while Lilliefors test required 35 or larger, and Kolmogorov-Smirnov test
required 75 or larger sample sizes. Lin and Mudholkar (1980) reported that Shapiro-Wilk test was
more powerful than Kolmogrov-Smirnov for exponential distribution. All tests had low power levels

Table 1: Type I error rates and power of tests for different distributions and sample sizes

Normal t (30) P  (30) Gamma (2,3)2

Type I error rate Test power Test power Test power
Distributions ----------------------- ------------------------- --------------------------- ---------------------------------
tests SW LF KS SW LF KS SW LF KS SW LF KS

7 5.13 5.21 4.98 5.39 5.24 5.06 6.33 6.12 5.38 11.15 9.69 6.30
8 5.09 5.26 5.06 5.27 5.38 4.96 6.33 6.00 5.47 13.05 10.90 6.73
9 4.75 5.00 5.24 5.38 5.43 5.21 6.89 6.50 5.24 14.99 11.55 7.13
10 5.10 5.21 5.06 5.39 5.00 5.10 7.02 6.27 5.17 17.32 12.38 7.23
11 4.96 4.93 4.88 5.42 5.29 5.00 7.99 6.81 5.85 19.63 13.47 7.63
12 4.96 4.88 5.22 5.88 5.61 5.09 8.40 7.15 5.61 21.19 14.57 7.41
13 4.83 4.96 4.92 5.83 5.47 4.94 8.23 6.86 5.51 23.19 15.55 8.02
14 4.90 4.96 4.92 5.54 5.36 5.24 8.79 7.09 5.64 24.52 16.97 8.11
15 4.67 5.05 5.06 5.30 5.42 5.00 8.80 7.13 5.70 27.02 17.61 8.16
20 4.71 4.72 4.96 5.79 5.18 5.07 11.22 8.24 5.85 36.88 22.23 9.77
25 5.00 4.71 4.98 5.83 5.33 5.12 13.79 9.38 6.24 47.16 27.64 10.66
30 4.82 5.00 5.03 5.88 5.42 5.36 15.15 9.96 6.50 56.11 32.52 12.47
35 4.93 4.84 4.94 6.01 5.54 5.12 17.18 11.03 6.53 63.90 36.96 13.39
40 4.92 4.78 4.92 6.05 5.75 5.22 18.92 12.12 6.97 71.94 42.56 15.62
45 5.00 4.77 4.77 6.03 5.43 5.22 20.26 12.79 7.33 77.44 45.98 16.16
50 5.05 4.91 5.01 5.79 5.47 5.25 22.60 13.55 7.36 83.03 50.84 17.18
75 5.13 4.98 4.91 5.33 5.72 5.17 31.66 19.03 8.60 95.89 69.91 24.02
100 4.92 5.09 5.22 4.65 5.88 4.72 39.00 24.41 9.31 99.11 82.55 29.71
150 5.05 5.05 4.57 3.91 7.60 4.96 52.42 10.20 11.66 99.98 86.97 42.81
200 5.41 5.16 4.92 3.52 6.04 4.79 63.32 43.60 14.40 100.0 98.87 55.12
Mean 4.97 4.97 4.98 5.41 5.58 5.08 18.72 11.71 7.02 50.17 35.99 15.68
Std. Error 0.038 0.036 0.035 0.151 0.119 0.035 3.60 1.98 0.531 7.45 6.30 2.93
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Table 1: Continue

Wiebul (1.5,1) Exp (0.50) Beta (2,5) P  (3)2

Test power Test power Test power Test power
Distributions ----------------------- ------------------------- --------------------------- ---------------------------------
tests SW LF KS SW LF KS SW LF KS SW LF KS

7 12.02 9.92 6.79 27,96 20,36 9,07 7,49 6,90 6,46 19,37 14,56 7,87
8 13.82 10.70 7.18 33,17 23,99 10,47 7,40 6,97 6,51 22,92 17,27 8,47
9 14.92 11.16 7.38 38,91 27,25 11,12 8,15 7,03 6,37 27,51 19,27 8,79
10 17.39 12.45 7.67 43,68 30,00 11,86 8,80 7,34 6,77 31,27 21,49 9,22
11 19.56 13.53 7.71 49,41 32,50 12,11 9,36 7,99 6,98 16,14 11,42 6,30
12 21.21 14.42 7.95 53,87 35,63 13,54 10,15 8,02 6,76 17,96 12,73 6,54
13 23.27 15.06 8.16 57,99 38,38 14,04 10,10 8,16 7,12 20,23 13,41 6,64
14 25.25 16.34 8.54 62,87 41,60 14,85 11,43 8,57 7,22 35,09 23,14 9,79
15 27.40 17.46 8.84 66,76 44,15 15,35 11,68 8,82 7,08 38,20 25,29 10,12
20 40.00 22.77 10.53 83,75 57,56 20,13 17,09 10,95 7,87 41,87 27,28 10,83
25 51.20 27.68 11.30 92,64 68,40 24,20 22,09 13,00 8,38 45,71 29,45 11,40
30 60.58 31.96 12.28 97,13 78,55 28,36 28,17 15,93 9,20 49,37 31,39 12,42
35 69.84 37.67 14.25 98,83 84,77 32,35 34,37 18,07 9,69 66,25 40,83 14,91
40 78.22 43.32 15.54 99,64 90,19 35,81 41,09 20,14 10,30 78,38 49,85 17,38
45 84.56 47.63 16.55 99,87 93,70 39,81 48,32 22,61 10,82 87,04 58,60 20,33
50 89.39 52.02 17.73 99,97 96,14 44,27 55,89 25,82 11,96 92,44 65,79 22,75
75 98.50 71.94 25.29 100,0 99,73 99,90 80,67 38,31 14,64 96,11 72,91 25,26
100 99.92 85.32 30.40 100,0 99,99 99,97 93,00 50,65 16,72 98,15 77,85 28,25
150 100.0 89.50 43.92 100,0 100,0 99,98 99,39 34,22 24,19 98,97 82,63 30,84
200 100.0 99.42 55.73 100,0 100,0 99,99 99,98 84,61 30,74 99,97 95,34 44,28
Mean 52.35 36.5 16.19 75.32 63.15 36.86 35.23 20.20 10.79 54.15 39.52 15.62
Std. Error 7.70 16.48 2.96 5.99 6.85 7.59 7.42 4.35 1.44 7.12 5.97 2.26

when the distribution was Beta (2, 5). Shapiro-Wilk test reached sufficient power levels with 75
or larger sample sizes, while Lilliefors test required at least a sample size of 200 to reach such
a level of power. Kolmogorov-Smirnov test was weak in all situations for the Beta (2, 5)
distribution. Tests ran on data with chi-square distribution and 3 degrees of freedom
accomplished slightly higher power levels than tests ran on data with Beta distribution. Shapiro-
Wilk test required 45 and larger sample sizes and Lilliefors test required a sample size of 200 to
reach a sufficiently large power level. Kolmogorov-Smirnov test had small power levels in all
sample sizes.

Implications
Shapiro-Wilk was the most powerful test regardless of distribution and sample size and it

should be used when testing for normality. Kolmogorov-Smirnov had the smallest rejection rates,
so this method should be used with strong caution when assessing normality. All tests were more
powerful when used on data with exponential distribution.
The results of 100,000 simulation runs showed that;

1 When the distribution is normal (0, 1), any of these tests can be used to compare Type I
error rates, 
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2 Regardless of the distribution and sample size, Shapiro-Wilk test gave higher power levels
than the other two tests,

3 In all situations, Kolmogorov-Smirnov test achieved smallest power levels,
4 Power levels for t (30) distribution and the type I error rates for normal (0, 1) distribution

were similar, indicating that tests done on t (30) distributed populations can be used to have
an idea on Type I error rates of normal populations,

5 Smallest power levels were achieved in samples with Beta (2, 5) distributions,
6 Shapiro-Wilk and Liliefors tests performed similar in samples with Gamma (2, 3) and Weibull

(1.5, 1) distributions,
7 All tests were more powerful when used on data with exponential distribution (0.50).
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