(G, j)=c(i,) 2 f(m,n)cos

Pakistan Journal of Information and Technology 2(1): 61-64, 2003

© Copyright by the Science Publications, 2003

Compressing Video Using Matrix Folding

!Abdelfatah A. Yahya, !Ayman M. Abdalla and ?Khaled Eisa Al-Qawasmi
IFaculty of Science, Al-Zaytoonah University of Jordan, Amman, Jordan 11733
2Faculty of Information Technology, Al-Neelain University, Khartoom, Sudan

Abstract: The main purpose of commonly used MPEG format, among many other video formats, is to
reduce the size of video. We present a new algorithm designed to further reduce the size of MPEG files
and it can be applied to several other types of video or non-video files. This algorithm applies matrix
folding to the files to reduce their size by half and it is easily reversible without any degradation of
picture quality. The algorithm is fast enough to be used in real time with some video systems such as
NTSC. We present experimental results that demonstrate the efficiency of our algorithm.

Key Words: Video Compression, Matrix Folding. CR Categories:

H.3 - Information Storage

and Retrievaleducation, 1.4 - Image Processing and Computer Vision

Introduction

Video files require large storage space and big
transmission bandwidth. The Moving Picture Experts
Group (MPEG) format (Wiseman, 2002) is commonly
used in video compression due to its efficiency in
saving storage space and transmission time. Other
common formats include ASF, MOV, and AVI. The
MPEG movie-format is based on the JPEG (Joint
Photographic Expert Group) standard (Wallace, 1991),
which is used for single images. JPEG can achieve a
powerful compression ratio such as 100:1. However,
the ratio should remain between 10:1 and 20:1 to
avoid noticeable degradation. Furthermore, JPEG is
not suited for line art, cartoons, or one colored blocks.

At the beginning of JPEG encoding, the image is
divided into blocks of 8x8 pixels and converted from
RGB (Red, Green, Blue) format into YUV (luminance
and chrominance) format. The YUV format represents
the image using 24 bits per pixel: 8 bits support a
monochrome picture, and 8 bits contain color
information (Data compression reference center, 1997-
2000) . These YUV values are coded by DCT using the
equation:

N-1N-1

2N 2N

n=0 m=0

The DCT coefficients are uniformly quantized, to
achieve further compression, by reducing precision
down to the desired image quality. Finally, each block
is converted into a one-dimensional array that
maximizes the probability of occurrence for successive
identical values, and Huffman encoding is applied to
the array to reduce redundancy.

The main idea of MPEG compression lies in removing
the spatial redundancy from video frames and the
temporal redundancy between them (Lombardo et al.,
2001). Different MPEG extensions, such as MPEG-1,
MPEG-2, MPEG-3 and MPEG-4, were developed to
target specific applications (Data compression
reference center, 1997-2000). We concentrated our
experiments on MPEG-2 since its basic concepts are
the same as other MPEG formats. In addition, MPEG-2
was designed to be a generic video coding system
supporting a diverse range of application, including

2] 2 j
x(2m+ i cosﬂ(n+l)j .

61

transmission over ISDN networks (Furth et al., 1995
and Tudor, 1995).
To simplify error bhandling and editing, MPEG
implements video streams in a hierarchy of layers,
where the video-stream layer is a sequence of frames,
and every frame is coded in a manner similar to JPEG
coding explained above.
MPEG consists of a sequence of three frames: I-
frames, P-frames, and B-frames (Hoffman and
Fernando, 1996). I-frames are coded using only
information present in the picture itself, in order to
provide potential random access points in the
compressed video sequence. The coding is based on
the discrete cosine transform according to the JPEG
coding technique (Lombardo et al., 2001), and it is
intra coded to allow reconstruction without reference to
other frames (MPEG, 2002). P-frames are coded using
a similar coding algorithm to I-frames, but with the
addition of motion compensation with respect to the
previous I- or P-frame. Because of this forward
prediction, I-frames cannot be reconstructed without
reference to other frames (Lombardo et al., 2001 and
MPEG, 2002). B-frames are coded with motion
compensation with respect to the previous I- or P-
frame, the next I- or P- frame, or an interpolation
lzngtwien them (Wiseman, 2002 and Lombardo et al.,
01) .
In this paper, we present a new no-degradation
algorithm designed to reduce the size of MPEG files,
among several other video and non-video formats. We
also present experimental results that demonstrate the
efficiency of our algorithm.
The Matrix Folding Algorithm: Various media types
such as audio, pictures, animation and video need a
huge amount of storage space and require long
transmission time. In this section, we present a folding
algorithm that reduces the size of video files, thus
saving storage space and transmission time.
Consider MPEG format as an example. Each video in
MPEG format is a one-dimensional array (vector) of
Huffman code, which is a compressed version of a
given video. We apply our folding algorithm to this
compressed-format vector. The vector values that
implement the pixel brightness for MPEG-2 range from
0 to 255, where 0 represents “no color” and 255
represents “full color.”
The matrix folding operation merges each two
elements in the MPEG vector into one element using
the equation:

Abdelfatah et al.,: Compressing Video Using Matrix Folding

m; = 256 e + €n-i+1),

Where:

m; is the merged element and

e, €z, .., €; are the brightness values in the

Huffman vector.
For each element in the first half of the movie vector,
the algorithm multiplies the element ¢; by 256 and then
adds the result to element e, -+ 1. This multiplication
operation may be replaced with an 8-bit shift to the left
and the addition operation may be replaced with a bit-
wise-OR operation. The results aré stored in the new
vector, m, whose length is half the length of the
original vector. To obtain the original vector, e, from
vector m, use the unfolding equations:

e = m,/ 256,
ein-i+1)= 1Ty MOD 256,

where the above two equations produce the integer
quotient and remainder, respectively, of dividing an
element from vector m by 256. These two operations
may be replaced with equivalent bitwise operations. It
can be mathematically shown that these two equations
produce the original values of vector e, thus showing
that this method produces no loss of information.

Since folding and unfolding perform a constant number
of arithmetic operations for each entry in the input
vector, the time required for folding and unfolding
should remain constant for each entry. Therefore,
each folding or unfolding operation will be linear in
time, i.e., O(n), with respect to the number of entries,
n, in the input vector.

The savings in size result from using the extra space
available in each entry in vector v. Since MPEG and
many other video-formats use 16 bits to represent
each entry, we use eight bits to store the color

information and the extra eight bits are used for fold-
ing. This method was successful in several video
formats, as demonstrated by our experiments in the
next section. Furthermore, this compression method
produces no degradation in image quality since there is
no loss of information from the original (MPEG or other
format) file.

Implementation: In this section, we present experi-
mental results obtained by Implementing the folding
algorithm to video files of different types and various
sizes. We executed our program using MATLAB 6.1
under Windows XP on a Pentium-III PC with a 600-MHz
CPU and a 256-Mbyte RAM. We used an MPEG con-
verter to read MPEG files, frame-by-frame, into a
matrix that can be read by MATLAB, where the folding
algorithm was applied and the result was stored in a
binary file. Other video formats were handled simi-
larly. When it is needed to view an original video, the
binary file is unfolded and the resulting matrix is auto-
maticaily produced in MPEG (or other video format).
As Table 1 illustrates, folding reduced the size of differ-
ent video files by half the original size. The growth in
folding and unfolding times, illustrated in Figure 1,
were linear with respect to the size of the original
video. The unfolding time per frame was approxi-
mately constant, as seen in Fig. 2 and depended on the
size of the frame. Generally, it required approximately
2 microseconds per byte to unfold each video file. The
time required for folding and unfolding our test videos
is shown in Table 1. Since the unfolding time is usually
faster than 30 frames per second, it is possible to per-
form unfolding in real time for some video systems
such as NTSC. The sizes of the video files after folding
were exactly the same as their original sizes, with no
loss of data or change in quality.

—e— Unfolding Time ;

| |—e—Folding Time |

time (second)

movie size (Kbyte)

Fig. 1: Time (in seconds) Needed to Fold / Unfold Files of Different Sizes

62

Abdelfatah et al.,: Compressing Video Using Matrix Folding
Table 1: Sample Results Obtained by Applying our Folding Algorithm

Sample File File Size Folding Size Folding Time Unfolding Time

Type (byte) (byte) (second) (second)
1 mmm 8,000 4,000 0.01 0.02
2 AVI 13,312 6,656 0.03 0.03
3 mpg 24,188 12,094 0.931 0.06
4 mpg 52,764 26,382 0.11 0.111
5 mpg 67,508 33,754 0.15 0.13
6 mpg 96,363 48,182 0.2 0.191
7 AVI 101,630 50,815 0.221 0.21
8 mpg 129,951 64,976 0.29 0.25
9 mpg 213,381 106,691 0.441 0.431
10 AVI 224,768 112,384 0.471 0.45
11 mpeg 228,933 114,467 0.48 0.47
12 mpeg 244,400 122,200 0.581 0.491
13 AVi 340,776 170,388 0.721 0.801
14 wmv 391,000 181,000 0.742 0.771
15 mpg 536,841 268,421 1,131 1.062
16 AVI 549,154 274,577 1.192 1.122
17 mpeg 668,536 334,268 1.412 1.332
18 ASF 813,823 406,912 1.743 1.612
19 AVI 845,986 422,993 1.803 1.723
20 ASF 1,752,382 «876,191 3.705 3.485
21 AVl 1,775,570 887,785 3.935 3.866
22 AVI 2,010,380 1,005,190 4,407 4.106
23 ASF 2,182,720 1,091,360 4.606 4.336
24 ASF 3,263,544 1,631,772 6.89 6.48
25 AVI 3,482,568 1,741,284 7.521 7.12
26 AVI 4,108,480 2,054,240 8.872 8.372
27 ASF 4,710,278 2,355,139 9.924 10.385
28 ASF 6,189,826 3,094,913 13.569 12.568
29 AVI 6,487,998 3,243,499 14.812 14.37
30 ASF 7,634,354 3,817,177 16.273 15.392
31 ASF 8,942,752 4,471,376 19.228 19.258
32 ASF 10,982,812 5,491,406 24.655 23.654
33 ASF 11,113,891 5,556,946 24.996 23.284
34 AVI 12,694,186 6,347,093 27.96 27.059
35 ASF 15,718,521 7,859,261 35.632 32.857
36 ASF 16,395,698 8,197,849 42.642 34.65
37 AVl 16,554,220 8,277,110 40.879 35.051
38 ASF 19,052,858 9,526,429 49.371 64.863

4

time
—
[
]
i
1
|
t
1
{
i
i
{
1

ESEEEESE
SRR S S S)

file size (Kbyte)

Fig. 2: Time (microseconds) Per Byte Needed to Unfold Files of Different Sizes
63

Abdelfatah et al.,: Compressing Video Using Matrix Folding

Conclusion

We presented a new algorithm that reduces the size of
files of different types. Our experiments show a reduc-
tion of 50%, where the results were obtained in a time
suited for real-time retrieval on some systems.

References

Data Compression Reference Center, 1997-2000. URL:
www.rasip.fer.hr\r rc mpr i .html
Accessed 14-May-2002. v

Furth, B., S. W. Smoliar and H. Zhang, 1995. Video
and image processing in multimedia Sys. Kluwer
Academic Publishers, London.

Hoffman, D. and G. Fernando, 1996. RTP Payload For-
mat for MPEG1/MPEG2 Video, Sun Microsystems,
Inc. V. Goyal, Precept Software, Inc.

64

Lombardo, A., G. Morabito; S. Palazzo and G. Schem-
bra, 2001. A Markov-Based Algorithm for the
Generation of MPEG Sequences Matching Intra- and
Inter-GoP Correlation. European Transactions on
Telecommunications, Vol. 12, No.2.

MPEG Video Compression Technique,
http://tan.informatik.tu-
chemnitz.de/~jan/MPEG/HTML/MPEG_tech.htmi.
Accessed 14-May-2002. °*

Tudor, P. N., 1995. MPEG-2 Video Compression, IEEE
J

2002. URL:

Wallace, G. K., 1991. The JPEG Still Picture Compres-
sion Standard. In IEEE Transactions on Consumer
Electronics.

Wiseman, J., 2002 An introduction to MPEG video com-
pression,) URL:
http://members.aol.com/symbandgril/. Accessed 14-
May-2002.

	ITJ.pdf
	Page 1

