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Abstract: The object of this work is to be able to predict the changes, which occur in the microstructure
of metal and alloys during thermomechanical process like rolling. At present reliable model exists for its
determination. Optimization of such processes normally demands a combination of several experiments
and expensive trials., The final microstructure is dependent on various parameters such as alloy
composition of metal, working temperature, focal compression rate etc. Determination of grain size of an
image of microstructure is difficult to predict with traditional micro-mechanical models. Neural networks
however, are ideally suited to such non-linear, muiti-parameter problems. In the present work, an attempt
has been made to investigate and develop suitable neural network architecture, implementing multi-layer
error-backpropagation algorithm, which is appropriate for this metallurgical application. The project lies at
the boundary of the practical industrial problems and academic information analysis theory.
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Introduction

The ability to model the thermo-mechanical processing
of materials is an increasingly important requirement in
many areas of engineering. This is particularly true in
high tech industry where expensive materials are used
having high processing cost. Thus the models are
demanded that can reliably predict the microstructure
of rolled materials. The problem in the modeling of
materials rolling can be broadly stated as follows:
Given a certain material, which undergoes a specified
rolling process, what are the final properties of this
material? Typically final properties in which we are
interested are the micro-structural properties such as
the mean grain size. Relevant rolling process control
variables are local compression ratio and temperature.
A trial and error approach to solve this problem has
often been taken in material industry, with many
different rolling conditions attempted to achieve a
given final product. The obvious drawbacks of this
approach are large time and financial costs. Another
method is to develop a parameterized, physically
motivated model, and to solve for the parameters
using empirical data.

However the limitation with this approach is that in
terms of physical theory the microstructure evolution
depends upon several intermediate microscopic
variables, which have to be measured in order to apply
the model. Some of these variables, such as dislocation
density, are difficult and time-consuming to measure,
making it impractical to apply such an approach to
large-scale industrial process.

An approach to the prediction of rolled microstructures
is therefore to develop an empirical model in which we
define a parameterized, non-linear relationship
between the micro structural variables of interest and
those easily measured process variables (Coryn et al.,
1998; Coryn et al, 1997). Such a model could be
implemented, for example, as a neural network with
the hidden nodes essentially playing a role analogous
to the intermediate microscopic variables. For the
given problem we employ the Back Error Propagation
Neural Network model with momentum term (Albert
Nigrin, 1993; James, 1994). This model can be seen as
generalization of feed-forward neural networks with
very powerful interpolation capabilities.  This
architecture is very general and likely to be capable of
modeling a wide class of static systems and processes.
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Results are presented which demonstrate the excellent
generalization capabilities of this model.
Thermo-Mechanical Process:The thermo-mechanical
process in which we are interested is rolling of
Atuminum-Nickle alloy, a low weight and high strength
material that is a replacement of conventional
materials in almost all the relevant fields.

Rolling: Generally speaking all the engineering metals
and alloys are casted into ingots and further processed
by hot rolling into blooms, slabs and billets. These are
known as semi finished products because they are
subsequently roiled into products such as plate, sheet,
tube, rod, bar and structural shapes. A rolling mill
consists of one or several stands. The rolling mill used
in this work, contains the roll bearings and sustains the
roll separating force imposed on the bearings. The rolls
are driven by an electric motor via a mechanical
gearbox. The rolling mill stands with two rolls (two-
high milis) that roll the material in one directionally
(pull over). A certain amount of tension is maintained
between the rolls in order to control the process and to
prevent the material from coiling up between the
stands. .

The process can be carried out hot, warm or cold,
depending on the application and the material
involved. Many industrial investigators prefer to divide
rolling into cold and hot rolling processes. However,
from a fundamental point of view, it is more
appropriate to classify rolling processes on the bases of
the complexity of metal flow during the process and
the geometry of the rolled product (Metais Hand Book;
Furu et al., 1996).

The specific rolling process used in this work is
“Uniform Reduction in Thickness with no Change in
Width”. The deformations in grains in longitudinal
direction after the rolling process are shown in the Fig.
2(a to e), for comparison. The grain size is reduced in
horizontal direction. After appropriate reduction rate in
mechanical working and heat treatment a uniform and
fine grain size can be obtained. A fine grain size is
desirable to achieve the required properties for
applications in relevant fields. In this study, however
only rolling process was carried out and no heat
treatment was involved. This work was only limited to
grain size in rolling direction (longitudinal direction) up
to certain reduction. The cast grains were not broken
to smaller size at this reduction.
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Neural Network for Microstructure Analysis: A
neural network model is developed for microstructure
analysis, which is an implementation of feedforward
network. The development procedure and working
capabilities of the model are also described here.

The architecture described is a particular type of feed-
forward neural network known a multi-layer perceptron
(Fig-1). As the name suggests, this architecture is a
development of the perceptron, which was a very
simple predecessor of neural networks consisting of a
ngée) layer of processing nodes (MacKay, D.).C.,
A computer software program for the proposed neural

network model is simulated. The software is the
implementation of the equations below,

z = tanh(y) (1)
where

y= Z,- w,x; (2)

Fig. 1: Architecture of the Proposed Neural Network

Sum of the weighted outputs of neurons in previous
Iaper is the input of the neurons in the next layer.
Which is propagated through the network and finally
output layer provides the estimated results.

User depending on his requirement provides the
number of neurons in each layer. The user depending
on complexity of the problem suggests the maximum
number of the neurons.

Implementation of Training Algorithm: Training of
the designed model is carried out using the error-back-
propagation algorithm. The goal of proposed model is
to minimize iteratively

E=-;—Z(0k -T,)’ )

k
With respect to the network we'ﬁ;hts. In above equation
Oy is the estimated output of k™™ neuron where as T; is
the desired target value.

The network is trained iteratively, and the weights are
perturbed towards their optimal values after each pass
of the data or a subset of it. The cycle between weight
updates is a single iteration, which I label t. Thus the
general equation for weight updates between two
layers, indexed by jand j is

9] )
Aw, (1)=-n 4
; 60),,,_1
Where, a),.’j is the weight connecting node i in

previous layer to node j in the next, and 75 /s a
constant. The rate of convergence towards the
minimum of E can be improved by addition of a
momentum term. This term is simply the previous
weight update, and forces the present weight
update to continue in the general direction of a

negative gradient, rather than respond only
to individual updates of w, which  may
leave the function trapped in a local
minimum. In this sense the term adds inertia to
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the gradient descent. Although the use of a momentum
term is not the most efficient means of converging on
the global minimum in the shortest possible training
time, it nonetheless improves training times over pure
gradient descent, but is quite robust and helps to avoid
local minima in the error minimization surface
(Rumclhart et al., 1986). A faster approach is to search
for minima along the conjugate gradients. But this
method is even more prone to becoming stuck in local
minima (Bishop, 1995). '
When the momentum term is included, the update
equations for the hidden-outputs and input-hidden
weights become

20,0 =, )0~ o+ =) ®)
and
Aw, ;(t)=-nH (O, =T, ) f'(x,) +cAw, (¢ - 1) (6)

Where a)j,,( and a),.,,. are the hidden-output and

input-hidden weights respectively. The constants 5 and
a determine the relative contribution of the update
momentum terms as well as the overall magnitude of

the weight updates. The functions f(x,) and g(y;) be
are the non-linear transfer functions of the output layer
and hidden layer, so that the network outputs, O ,
are given by

O, = f(x,) ]
where,

X, = Za)j’,ch (8)
and !

Hl,' =g(y,) (9)
where

y,=2.0,1, (10)

Equations (5) ar{d (6) have not assumed any specific
functional form for the transfer functions f(x,) and

The derivation is carried out with a sigmoid

gyv,):
transfer function, which has the form
1.
F(x)= — (11)

+e
Its use in neural networks was actually inspired by its
similarity to the neuron transfer function. Its
implementation can also be justified on the grounds
that it gives a convenient mapping of an unbounded
input to a bounded output. In this function A4 dictates
how sharply the function rises to its peak value.
Although, sigmoid function is used for both f and g, but

constants are stili different (A, # Ag). Another feature

of the sigmoid function, which encourages its use, is
that it has simple derivatives.
Hence the weight changes for iteration t becomes

Aa;i,k(t)z—qll,Hl_(Ok—Tk)Ok(I—O)+aA(uM(t—I) (12)
an

Ao, () =-nA, A0 H, (I~ H, )[Z(Ok ~T)0,(I-0, )w,_k}
s
+aAw, (t~-1)
(13)
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Casted Material (500X)

Rolling Compression 30% (400X)

Rolling Compresin 60% (OOX)

d. Rolling Compression 70% (400X)
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e. Rolling Compression 80% (400X)
Fig. 2: Micro-graphs of Different Samples

110
E 90 >
& 70- o
5 ,,V/
© 50 { g ¥
30 T T . ‘
0 20 40 60 80 100
Compression %
(a)
90 -
80 -
* 704
£ 60 -
‘2 50
240‘ ’~0—- Pred.
g 30 4 I—=—  Exp.
O 20+
10 4
0 - ‘ S
30 - 80 130
Grain Size um
(b)

Fig. 3: (a) Presents the Comparison of Experimental
and Predicted Values. (b) Presents Inverse
Prediction for the parameters from Grain Size

Which are the final weights update equations
implemented in  simulation. The gradient descent
method used above locates the steepest negative
gradient and searches along it in steps for a minimum.
Predictions for Grain Sizes: The Rolling process
model was trained using a set of 24 data pairs with
reduction ratio from 10% to 80% at different
temperatures from 380 to 490°C. Once trained the
model was used to produce predictions of grain sizes
for a range of the input variables.
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A plot is drawn for comparison of the experimental
results with predicted ones is shown in the Fig.3(a).
The temperature is kept constant for true comparison.
An excellent agreement in both, the experimental
results and predicted ones is obvious from the plot.
The average error between predicted and experimental
values is 3%, which is much less then the noise in
experimental measurement of grain size.

Prediction for Reduction Ratio (inverse problem):
The ultimate objective of the modeling for rolling is the
inverse problem: Given a set of desired final properties
for a material, what is the temperature and rolling
reduction, which will realize these properties? In this
case there may be one-to-many mapping between the
desired properties and necessary rolling process.

This problem is tackled in such a way that user will
have to give his desired properties at the input of the
network. User will have to fix some of his parameters,
depending on the apparatus available to him. The
modeling will predict the remaining parameters. For
example, as in our experimental data, if user wants a
prediction about reduction percentage for a specific
grain size, he will have to choose a specific
temperature for the rolling. The grain size and
temperature will be given at the input of the model,
which will predict the reduction percentage as output.
The model, which was used to predict the grain size,
was applied for inverse problem also. Fig. 3(b)
presents the comparison of experimental and predicted
values. Temperature is kept constant i.e., 450 °C.
Again the predictions are excellent and well with in
error tolerance.

Conclusion

The predictions of models are very close to the
experimental values for the microstructure analysis.
Having such model, one needs not to perform the
analysis experimentally. Results demonstrate the
usefulness of this model for predicting interpolated
values. Model is very feasible for the industry where
frequent microstructure analyses are carried out.
Another interesting and much useful application of the
same model is carried out in predicting the thermo-
mechanical process, to achieve the desired properties
of material.

Future Enhancement: The lightweight and high
strength materials are emerging as a replacement of
the conventional heavy materials in all the industries
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especially in automobiles, buildings, aerospace etc.
Aluminum alloys are at the top of the list, for these
replacements.

Models for such alloys are therefore needed which can
predict other more complicated relevant features such
as hardness, toughness, shear strength, wear and tear,
etc. There should be a generalized model for the
whole range of such alloys, which could be used (with
little adjustments), to determine their properties for
the processes, which are applied frequently in material
industry. The model should also be able to propose an
alloy and specific process to be employed on it to get
the desired properties.
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