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Abstract: Since almost the begimming of time, it seems, man has had a need to keep information private and, in
many situations, needed to decipher information previcusly made private by others. In our age of high
technology these needs have grown exponentially and become more complex. Today, computer technology
is on the verge of providing the ability for individuals and groups to communicate and interact with each other
m a totally anonymous manner. Two persons may exchange messages, conduct business and negotiate
electronic contracts without ever knowing the True Name, or legal identity, of the other. Interactions over
networks will be untraceable, via extensive re-routing of encrypted packets and tamper-proof boxes which
implement cryptographic protocols with nearly perfect assurance against any tampering. Reputations will be
of central importance, far more inportant in dealings than even the credit ratings of today. These developments
will alter completely the nature of government regulations: the ability to tax and control economic interactions,
the ability to keep information secret and will even alter the nature of trust and reputation. All this will depend
on how secure data can be moved from point-to-point from LAN to Global network data exchange. Tt is
recognized that encryption (otherwise known as scrambling, enciphering or privacy transformation) represents
the only means of protecting such data during transmission and, a useful means of protecting the content of
data stored on various media, provided encryption of adequate strength can be devised and validated and is

inherently integrable into network system architecture.
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A brief history of cryptography: Cryptography is
concemed with methods for ensuring the secrecy and
authenticity of messages. A cryptographic algorithm, also
called a cipher, 13 a mathematical function used for
encryption’”. In most cases, two related functions are
employed, one for encryption and the other for
decryption. Encryption is the process of transforming
mformation so that it 1s unmntelligible to anyone but the
intended recipient. Decryption is the process of
transforming encrypted information so that it is intelligible
agam to the intended recipient. An eavesdropper who
mtercepts the transmitted message receives only
“garbage” (the ciphertext), which makes no sense to him
since he does not know how to decrypt it. The large
volume of personal and sensitive information currently
held in computerized and digital data banks and
transmitted over global communication networks runs into
billions of dollars making encryption increasingly
important. With most modern cryptography, the ability to
keep encrypted information secret 1s based not on the
cryptographic algorithm, which is widely known, but on
a number called a key that must be used with the

algorithm to produce an encrypted result or to decrypt
previously encrypted information.

The essence of cryptography 1s traditionally captured
1n the following problem: Two parties (the tradition 1s to
call them Bob and Alice) wish to communicate over a
public commumcation channel m the presence of
malevolent eavesdropper (the tradition Eve). Bob and
Alice could be military jets, e-business or just friend
trying to have a private conversation. They can't stop Eve
listening to their radio signals (or tapping their phone line,
or whatever), so what can they do to keep their
communication secret? One solution 1s for Alice and Bob
to exchange a digital key, so they both know it, but it's
otherwise secret. Alice uses this key to encrypt messages
she sends and Bob reconstructs the original messages by
decrypting with the same key. This situation 1s depicted
in Fig. 1, in which we refer to the unencrypted message T
as plaintext and to the encrypted message C as ciphertext.
Decryption with the correct key 1s simple. Decryption of
the messages by Eve without the correct key 1s very
difficult and in some cases impossible for all practical
purposes, but she can always attempt to reconstruct the
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original messages through brute-force or cryptanalysis
technique.

Cryptography offers a set of sophisticated security
tools for a variety of problems, from protecting data
secrecy, through authenticating information and parties,
to more complex multi-party security implementation. Yet,
the most common attacks on cryptographic security
mechanisms are ‘system attacks’ where the cryptographic
keys are diwectly exposed, rather than cryptoanalytical
attacks (e.g., by analyzing the ciphertexts, i.e., the
encrypted text) as depicted in Fig. 1. Such ‘system
attacks” are done by intruders (hackers, or through
software trapdoors using viruses or Trojan horses), or by
corrupted msiders. Unfortunately, such attacks are very
common and frequently quite easy to perform, especially
since many existing environments and operating systems
are insecure (in particular Windows). In network data
commurmcation, the original texts (plaintexts), 1s usually
encrypted into ciphertexts, which is then mailed and is
decrypted by the end-user before 1t can be read.

Several techniques have been used throughout the
years to protect data against enemies who would misuse
the information®”. Thousands of years ago, the main use
of using encryption was to protect data during war. David
Kahn, in his impressive work™. The Codebreakers: The
Comprehensive History of Secret Communication from
Ancient Times to the Internet, has traced the history of
cryptography as far back as ancient Egypt, progressing
through India, Mesopotamia, Babylon, World War 1,
World War II and mto modern times, where encryption
has taken on new meaning. The extensive use of telegraph
and radio waves m modern times has increased the need
to encrypt information because sophisticated techniques
are available to intercept the information that flows in
today’s global network environment. — Military
commumication without the use of encryption 1s
worthless. The biggest achievements in cryptography can
be attributed to the work done by Alan Turing during

World War TT. Using the help of Alan Turing in Britain,
the allies were able to break the Enigma code used by
Germany during the war™. Since World War 11,
cryptographic research and activity was the domam of
various governmental National Security Agencies. For
years, the use of codes and ciphers was reserved to the
governmental and military operations i the west.
Civilians had to be content with using envelopes and
couriers to protect data on transit or stored.

However, with the advent of computer revolution and
the explosion of the information age and especially the
Internet, the need for encryption in civilian use was
recognized. The manner in which data is disseminated
through electronic mail, the Internet and the financial
value attached to the information; fueled enough research
for civilians to use encryption. In the late 1960s, IBM
chairman Thomas Watsor, Jr. set up a cryptographic
research group. This group, led by Horst Festel,
developed a private key encryption method called Lucifer,
which was used by Lloyd’s of London to protect a cash-
dispensing system”. Dr. Walter Tuchman and Dr. Carl
Meyer, who tested the cipher and fixed the flaws they
found in the method, headed the team formed for this
purpose. The success of Lucifer prompted IBM to make
it available for commercial use!™. By 1974, the cipher was
ready and available on a silicon chip. However, IBM was
not the only company to make ciphers available
commercially. Other compames made other codes
available, however, there were still some problems
associated with all these ciphers technologies: (I) they
could not communicate with each other in real time and
(i1) there was no way to determine their strength.

Threats to computer and digital systems: Every form of
commerce ever invented has been subject to fraud, from
rigged scales in a farmers' market to counterfeit currency
and mcluding phony invoices. Electronic commerce
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Fig. 1: Shows a schematic classical cryptographic data communication
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schemes will also face fraud, through forgery,
misrepresentation, demal of service and cheating. In fact,
computerization makes the risks even greater, by allowing
attacks that are impossible against non-automated
systems!”. Criminal attacks are often opportunistic; a thief
can make a living skimming a penny from every Visa
cardholder. You can't walk the streets wearing a mask of
someone else's face, but in the digital world it 13 easy to
impersonate others.

Privacy violations are another threat. Some attacks on
privacy are targeted: a member of the press tries to read a
public figure's e-mail, or a company tries to intercept a
competitor's communications™. Others are broad data-
harvesting attacks, searching a sea of data for mteresting
information: a list of rich widows, AZT users, or people
who view a particular Web page. Lawyers sometimes need
a system attacked; in order to harvest information to
enable them prove their client's mnocence. They often use
considerable financial resources to buy equipment and
hire experts to collect details on the system through the
discovery process. And they don't have to defeat the
security of a system completely, just enough to convince
a jury that the security is flawed.

And of course, vandals and thieves routinely break
into networked computer systems. Electronic vandalism
1s an mereasingly serious problem. Even the most secure
systems within National Security Agencies are not
spared. Computer vandals have already graffitied the
CTA's web page, mail-bombed Internet providers and
canceled thousands of newsgroup messages'™. The next
biggest threat comes from cyberterrorism. The threat of
cyberterrorism 18 causing much alarm these days. We
have been told to expect aftacks since 9/11; that
cyberterrorists would try to cripple our power system,
disable air traffic control and emergency services, open
dams, or disrupt banking and commumnications network.
But so far, nothing's happened. But let’s not pat our
backs and congratulate ourselves yet, it 1s just the early
days of cyberwar. Just imagine for a minute the leadership
of al Qaeda sitting in a cave somewhere, plotting the next
move in their jihad against the civilized world. One of the
leaders jumps up and exclaims: "I have an idea! We'll
disable their e-mail...." The closest example we have of
this kind of thing comes from Australia in 2000. Vitek
Boden broke into the computer network of a sewage
treatment plant along Australia's Sunshine Coast. Over
the course of two months, he leaked hundreds of
thousands of gallons of putrid sludge mto nearby rivers
and parks. Among the results were black creek water,
dead marine life and a stench so unbearable that residents
complained. This is the only known case of someone
hacking a digital control system with the mtent of causing
environmental harm.
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When security safeguards aren't adequate,
trespassers run little risk of getting caught. Attackers
don't follow rules; they cheat. They can attack a system
using techmques the designers never thought of. Some
attackers are motivated by publicity; they usually have
significant tesources via their research institution or
corporation and large amounts of time, but few financial
resources. Art thieves have burgled homes by cutting
through the walls with a chain saw. Home security
systems, no matter how expensive and sophisticated,
won't stand a chance against tlus attack. Computer
thieves come through the walls too. They steal technical
data, bribe insiders, modify software and collude. They
take advantage of technologies newer than the system
and even invent new mathematical algorithms to attack
the system with™. The odds favor the attacker. Bad guys
have more to gain by examining a system than good guys.
Defenders have to protect themselves against every
possible type of vulnerability, but an attacker only has to
find one security flaw to compromise the whole system.
Only strong cryptography can protect against these
attacks.

What cryptography can and can't do: No one can
guarantee 100% security. But we can work toward 100%
risk acceptance. Fraud exists in current commerce
systems: cash can be counterfeited, checks altered, credit
card numbers stolen. Yet these systems are still
successful because the benefits and conveniences
outweigh the losses. Privacy systems - wall safes, door
locks and curtains - are not perfect, but they're often good
enough. A good cryptographic system strikes a balance
between what is possible and what is acceptable.

Strong cryptography can withstand targeted attacks
up to a point - the point at which it becomes easier to get
the information some other way. A computer encryption
program, no matter how good, will not prevent an attacker
from going through someone's garbage!. But it can
prevent data-harvesting attacks absolutely; no attacker
can go through enough trash to find every AZT user in
the country. And it can protect communications against
non-invasive attacks: it's one thing to tap a phone line
from the safety of the telephone central office, but quite
another to break into someone's house to install a bug.

The good news about cryptography is that we
already have the algorithms and protocols we need to
secure our systems™'". The bad news is that was the easy
part, implementing the protocols successfully requires
considerable expertise. The areas of security that interact
with public-key management, human/computer mterface
security and access controls-often defy analysis.
Furthermore, the disciplines of public-key infrastructure,
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software security, computer security, network security
and tamper-resistant hardware design are often very
poorly understood/implemented.

Companies often get the easy part wrong and
implement msecure algorithms and protocols. But even
s0, practical cryptography 1s rarely broken through the
mathematics; other parts of systems are much easier to
break. The best protocol ever invented can fall to an easy
attack if no one pays attention to the more complex and
subtle implementation issues''?. Netscape's security fell to
a bug in the random-number generator. Flaws can be
anywhere: the threat model, the system design, the
software or hardware implementation and the system
management. Security 1s a chain and a single weak link
can break the entire system. Fatal bugs may be far
removed from the security portion of the software; a
design decision that has nothing to do with security can
nonetheless create a security flaw.

Once you find a security flaw, you can fix it. But
finding the flaws in a product can be incredibly difficult.
Security 1s different from any other design requirement,
because functionality does not equal quality. If a word
processor prints successfully, you know that the print
function works. Security 1s different; just because a safe
recognizes the correct combination does not mean that its
contents are secure from a safecracker. No amount of
general beta testing will reveal a security flaw and there's
no test possible that can prove the absence of flaws.

Threat models: A good design starts with a threat model:
what the system is designed to protect, from whom and
for how long!™¥. The threat model must take the entire
system into account - not just the data to be protected,
but also the people who will use the system and how they
will use it. What motivates the attackers? Must attacks be
prevented, or can they just be detected? If the worst
happens and one of the fundamental security
assumptions of a system 18 broker, what kind of disaster
recovery 1s possible? The answers to these questions
can't be standardized; they're different for every system.
Too often, designers don't take the time to build accurate
threat models or analyze the real risks. Threat models
allow both product designers and consumers to determine
what security measures they need. Does 1t make sense to
encrypt your hard drive if you don't put your files n a
safe? How can someone inside the company defraud the
commerce system? Are the audit logs good enough to
convince a court of law? Moreover, you can't design a
secure system unless you understand what it has to be
secure against.

System design: Design work 13 the mainstay of the
science of cryptography and it is very specialized.
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Cryptography blends several areas of mathematics:
number theory, complexity theory, information theory,
probability theory, abstract algebra and formal analysis,
among others'"*). Few can do the science properly and a
little knowledge is a dangerous thing: inexperienced
cryptographers almost always design flawed systems.
Good cryptographers know that nothing substitutes for
extensive peer review and years of analysis. Quality
systems use published and well-understood algorithms
and protocols; using unpublished or unproven elements
1n a design 1s risky at best. Cryptographic system design
1s also an art. A designer must strike a balance between
security and accessibility, anonymity and accountability,
privacy and availability. Science alone cannot prove
security; only experience and the mtuiion bom of
experience, can help the cryptographer design secure
systems and find flaws in existing designs.

Implementation: There 1s an enormous difference between
a mathematical algorithm and its concrete implementation
in hardware or software. Cryptographic system designs
are fragile. Just because a protocol is logically secure
doesn't mean 1t will stay secure when a designer starts
defiming message structures and passing bits around.
Close isn't close enough; these systems must be
implemented exactly, perfectly, or they will fail. A poorly
designed user interface can meake a hard-drive encryption
program completely insecure. A false reliance on tamper-
resistant hardware can render an electronic commerce
system all but useless. Since these mistakes aren't
apparent n testing, they end up in fimshed products.
Many flaws in implementation cannot be studied in the
scientific literature because they are not technically
interesting!"”l. That's why they crop up in preduct after
product. Under pressure from budgets and deadlines,
implementers use bad random-number generators, don't
check properly for error conditions and leave secret
information in swap files. The only way to learn how to
prevent these flaws 1s to make and break systems, again
and again.

Cryptographic systems: Cryptographic systems are
generically  classified along tlree independent
dimensions:

The type of operations used for transforming
plaintext to ciphertext. All encryption algorithms are
based on three general principles: substitution, in
which each element in the plaintext (bit, letters, group
of letters etc.) is mapped into another element,
permutation in which the elements are permuted
around and transposition in which elements m the



Inform. Technol. J., 3 (1): 106-132, 2004

plaintext are rearranged. Most systems, involve
multiple stages of substitutions and transpositions.
The number of keys used. If both sender and receiver
use the same key, the system is referred to as
symmetric, single-key, secret-key, private-key or
conventional encryption. If the sender and receiver
each uses different key, the system is referred to
asymmetric, two-key, or public-key encryption.

The way in which plaintext is processed. A block
cipher processes an input block of elements at a time,
producing an output block for each input block. A
stream cipher processes the input elements
continuously, producing output one element at a
time, as it goes along.

Simple private-key cryptography—substitution technique:
Most successful secret-key encryption techniques use a
simple set of functions and procedures to convert the
plamtext ito cipher text. One such function employs
substitution techmque, which 1s very commonly used in
cryptographic algorithms. The earliest known use of
substitution cipher and the simplest, was by Julius
Caesar™. The Caesar cipher involves replacing each letter
of the alphabet with the letter standing three places
further down in the alphabet. For example:

plamtext: COMMANDER JIM COMMENCE
ATTACK ON ALPHA

ciphertext: CRPPDQGHU JLP FRPPHQFH
DWWDFN RQ DOSKD

Note that alphabet 1s wrapped around, so that the
letter following 7 is A. We can write transformation by
listing all possibilities, as shown in Table 1.

Table 1: The key of the Caesar algorithm

abcde f Gh I j k1 mnopgqR st uv wx yz
DEFGHIJT KL MNOPQRSTU VWXYZABC

If we assign a numerical value to each letter, then the
algorithm can be expressed as follows: For each plaintext
letter p, substitute the ciphertext letter C: C = E(p) = (p+3)
mod 26.

A shift may be of any amout, so that the general
Caesar algorithm 15, C = E(p) = (p+k) mod 26, where k (or
key) takes on a value mn the range 0 to 25. The decryption
algorithm is simply, p =D© = (C-k) mod 26, (for software
(SW) implementation see Appnd. Al). If it is known that
a given ciphertext 1s a Caeser cipher, then cryptoanalysis
1s easily performed: simply try all the 25 possible keys.
Three important characteristics of this problem enabled us
to use a brute-force cryptanalysis: (T) the encryption and
decryption algorithms are knowr;, (11) there are only 25
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keys to try; and the language of the plaintext is known
and easily recognizable.

Monoalphabetic ciphers: If, instead, the cypher line in
Table 1, can be any permutation of the 26 alphabetic
characters, then there are 26! possible keys. Tt would
eleminate the brute-force method for crytoanalysis. There
is, however, another line of attack. If the cryptoanalyst
knows the nature of the plaintext (e.g. noncompressed
English text), then the analyst can exploit the regularities
of the language. As can be seen, the knowledge of the
language and the context of the message give a hacker a
lot of information about how to decipher the code, hence,
the need for more secure crypto systems with unlimited
strength.

Security of cryptosystems — the secure mechanics of
cryptosystems: The explosion in the use of computers,
the Tnternet and public-key cryptography has made it
possible for individuals to protect their data using a
variety of encryption techniques. In this section we will
discuss strategies used by cryptographic
algorithms and its implementation in real time. These will
include the analyses of commonly used
cryptographic  techmques substitution;
permutation, XOR and other cryptographic functions are
also discussed. No matter which technique you choose,
you must keep in mind that a desperate cryptanalyst can
always decipher the message. Hence, you should always
take all the necessary precautions to protect your data.
Those precautions range from proper of
cryptographic keys to physically protecting your assets
and yourself'?.

various

s0me

such as

choice

Exclusive OR (XOR) encryption function and other
alternative algorithms: The exclusive OR is an example of
an encryption function, which is very popular method for
performing simple block encryption!. The XOR-function
15 used to mdicate that if there are two conditions (say
condition A and condition B), then either condition A 1s
true or condition B is true, but not both. The complete set
of possibilities for two values being XORed and their
result is as follows:

XOR(0,0) = 0, XOR(0,1) = 1; XOR(1,0) = 1; XOR(1,1) = 0

The best thing about the XOR-function 1s that it can
be used to reverse itself and can therefore be used for
encryption purposes. Suppose that we take the values:
A=10101000 and B=00111001. Therefore, C= XOR
(A B)=10010001. Now if we take B and XOR it with C,
we will obtam A: XOR(B,C)=XOR(00111001,
10010001)=10101000=A (for SW implementation see
Append. A2).
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Fig. 2: An implementation of Feistel block cipher encryption algorithm

Substitution techniques usually use some smmple
strategy such as a lookup table or the XOR-function. The
concept of block cipher encryption originally developed
by Feistel™, is very commonly used for this purpose; it
mvolves the use of a block or a group of bytes for
encryption process instead of a single byte or character.
Each block can be operated on by any combination of
several processes. Typical block size of 64 bits 1s used.
Security 1s obtained by having a one-to-one mapping
between blocks of characters of plaintext and blocks of
cipher text of the same size - but the relationship between
them 1s not easy to figure out. A block cipher operates on
a plamtext block of n-bits to produce a ciphertext block of
n-bits. There are 2° possible different plaintext blocks and,
for the encryption to be reversible (i.e. for decryption to
be possible), each must produce a umque ciphertext
bleck. Such a transformation 1s called reversible, or
nonsingular. Figure 2 illustrates the logic of a general
substitution block cipher for n= 4. A 4-bit input produces
one of 16 possible input states (from 0000t011111), whuch
15 mapped by the substitution cipher mto a unique cne of
16 possible output states, each of which is represented by
4 ciphertext bits.

An altemative and more popular method of
implementing a substitution function is to use a construct
referred to as a symmetric (substitution) box, or an S-box.
S-box design is one of the most intense areas of research
1 the field of symmetric block ciphers cryptography. The
S-box function takes some bit or set of bits as mput and
provides some other bit or set of bits as output. Tt makes
use of a replacement table to perform the conversion™!.
These reference tables can map more than one nput to
the same output. In essence, we would like any change to
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the input vector to an S-box to result in random-looking
changes to the output. The relationship should be
nonlinear and difficult to approximate with linear
functions. As a result of this truth, a hacker cannot take
the output from an S-box and figure out which of the
many inputs may have been used to generate the output.
One of the obvious characteristics of S-box is its size. An
nx m S-box has n input bits and m output bits. DES has
6x4 S-boxes, blowlish and CAST have 8x32 S-boxes.
Larger the S-boxes, the more difficult differential and linear
cryptanalysis will be. On the other hand, the larger the
dimension n, the (exponentially) larger the lookup table.
Thus, for practical reasons, a limit of n equal to about 8 to
10 is usually imposed. An n x m S-box typically consists
of 2" rows and of m-bits each. The n-bits of mput select
one of the rows of the 5-box and the m-bits in that row are
the output. This type of substitution i1s not necessarily
secure enough; the German Enigma is a complex
substitution algorithm that was broken before the advent
of digital computers.

A further secure implementation of the ciphertext can
be achieved via use of permutation technique™!
Permutation technique involves rearrangement of the
characters of a plamtext message to convert the message
into an anagram that looks like a message with random
characters. For example, most messages consist of 7-bit
ASCT characters. By scrambling the bits to create a
random set of bits, you can get the desired encryption.
Permutation techniques are usually used in conjunction
with other techniques such as substitution and
encryption functions like XOR. Other functions such as
binary addition, multiplication and modular arithmetic
functions are also common.
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Alternatively, the permutation process can include
expansion  technique. The expansion-permutation
approach takes a block of data and expands it into a set of
overlapping groups; each group may be small compared
to the ariginal block™!. Suppose that we have a block of
24-bits; we can perform expansion-permutation to convert
it into a block of 36 bits as follows: (I) Break the 24 bits
mto six groups of four bits each; and (11) To each group,
add the bit that precedes it and the bit that follows it. Now
we have six groups with six bits each for a total of 36 bits.

The techmques m the preceding paragraphs are just
some of the commonly used methods 1 cryptographic
algorithms. You can mix and match them to obtain
alternative encryption algorithms, which become more
complex and secure by using different encryption
techniques one after the other. Popular encryption
algorithms make use of 8 or 16 different rounds of
encryption techniques. Feistel and co-workers while
working at IBM i the early 60s first suggested this
systematic approach™®. Feistel proposed that we could
approximate the simple substitution cipher by utilizing the
concept of a product cipher, which is obtained by
combining two or more basic ciphers in sequence in such
a way that the final result or product 1s cryptographically
stronger than any of the component ciphers. In particular,
Feistel proposed the use of a cipher that alternates
substitutions and permutations. In fact, this 1s a practical
application of a proposal by Claude Shannon to develop
a product cipher that altemates confusion and diffusion
functions™.

The terms confusion and diffusion were mtroduced
by Claude Shamon to capture the two basic building
blocks for any cryptographic system. Shannon’s concern
was to thwart cryptanalysis based on statistical analysis.
On the other hand, confusion seeks to make the
relationship between the statistics of the ciphertext and
the value of the encryption key as complex as possible,
again to thwart cryptanalyst attempts to discover the key.
The reasoning 1s as follows: Assume the attacker has
some knowledge of the statistical characteristics of the
plaintext. For example, in a human-readable message in
some language, the frequency distribution of the various
letters may be known. Or there may be words or phrases
likely to appear i the message (again with the English
alphabet: is, th, the etc.). If these statistics are in any way
reflected in the ciphertext, the cryptanalyst may be able to
deduce the encryption key, or part of the key, or at least
a set of keys likely to contain the exact key.

The confusion process is usually implemented via a
design function F, which is the heart of the Feistel block
cipher™. This function relies on the use of S-boxes. This
is also the case for most other symmetric block ciphers!'™.
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The function F provides the element of confusion in a
Feistel cipher. Thus, it must be difficult to “unscramble”
the substitution performed by F. One obvious criterion 1s
that F be nonlinear. The more nonlinear F, the more
difficult any type cryptanalysis will be. In rough terms, the
more difficult it is to approximate F by a set of linear
equations, the more nonlinear F 1s. Several other criteria
should be considered 1 designing F. We would like the
algorithm to have good avalanche properties. Tt means
that a change in one bit of the input should produce a
change in many bits of the output. Another version of
this 1s strict avalanche criterion (SAC), which states that
any output bit j of an S-box should change with
probability ¥ when any single input bit I is inverted or all
Lj

In diffusion approach, the statistical structure of the
plaintext is dissipated into long-range statistics of the
ciphertext. This is achieved by having each plaintext digit
affect the value of many ciphertext digits, which 1s
equivalent to saying that; each ciphertext digit is affected

by many plaintext digits”“". An example of diffusion is to

encrypt a message, M = m,, m,, m., ..., of characters with
an averaging operation:
k

yn{j m (mod 26) M
i=1

Adding k successive letters to get a ciphertext letter
y,. One can show that the statistical structure of the
plaintext has been dissipated. Thus, even if the attacker
can get some handle on the statistics of the ciphertext, the
way m which the key was used to produce that ciphertext
is so complex as to make it difficult to deduce the key. So,
successful are diffusion and confusion in capturing the
essence of the desired attributes of a block cipher that
they have become the cornerstone of modemn
cryptographic systems design and implementation.

The Blowfish Algorithm -Blowfish combines a non-
invertible f-function, key-dependent S-boxes and a Feistel
network to make a cipher that has not yet been broken!®!.
It 1s relatively simple to implement. The most mteresting
portion of Blowfish is its non-invertible f-function. This
function uses modular arithmetic to generate indexes into
the S-boxes. Modular arithmetic 1s usually used to create
non-invertible f-functions. Non-invertability is best
explained by example by Table 2: Take the function:
f(x) =% mod9:

Table 2: An implementation of Blowfish algorithm

X 1 2 3 4 5 6 7 8 9
x 1 4 9 16 25 36 49 &4 81
x*mod9 1 4 0 7 7 0 4 1 0

Given an output, there 13 no function that can
generate the specific input to f (x). For example, if you
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knew that your function has a value of 4 at some x, there
is no way to know if that x is 2, 7, or any other x whose f
(x) = 4. Blowfish does its arithmetic over mod 2%, (2% is
around 4 billion). Ths is called arithmetic in a finite field
and makes many common mathematical assumptions
untrue (1+1 does not equal two if you are in a finite field
of size two). During the process of key setup, the key 1s
combined with the S-boxes. The details of thus key-setup
are relatively uninteresting, but the fact that it combines
the key with the S-boxes strengthens the algorithm
greatly. Key setup in Blowfish is designed to be relatively
slow. This 1s actually a benefit, as someocne doing a brute-
force eryptanalysis search of keys will have to go through
the slow key setup process for each key tried. However,
someone doing encryption and decryption must only go
through the key setup process once. Hence, encryption
and decryption are relatively fast.

Another important element of Blowfish is the Feistel
network. Using the Feistel network gives the cipher two
very desirable properties: decryption using the same f
function (even if it is non-invertible) and the ability to
iterate the function multiple times. These multiple
iterations are called rounds. The more rounds, the more
secure the algorithm 1s. The recommended mumber of
rounds depends on the specific algorithm; for Blowtish,
it is 16. A Feistel network can be described by the
following algorithm!”: Divide a block of length n into two
parts, L (left) and R, (right) of length n/2 such that:
L, =R, and R, = T, XOR f (R, K)) and proceed to

deployment of secure cryptographic systems for both
private-key and public-key cryptosystems.

Conventional (private-key) cryptography: modern
techniques: The kind of cryptography used in earlier days
and in the code and cipher techniques such as the Caesar
Cipher, Hill Cipher, Vernam Cipher, Data Encryption
Standard (DES) etc. are called private-key or secret-key
cryptography'*'*!. The term private-key is used because
this techmique implies that both the sender and the
recewver of the message have a key that must be kept
private. Private-key cryptography makes use of the same
key on both the sending and the receiving end and is
therefore also referred to as symmetric cryptography
(Fig. 3). In secrete-key cryptography it 1s assumed that
Bob and Alice both use some piece of information in their
encrypting and decrypting algorithms (i.e., the secret-key)
that is not known to Eve.

As an example, consider the following protocol based
on exponentiation (Fig. 3): For our scenario we suppose
that A and B (also known as Alice and Bob) are two users
of a private-key cryptosystem. We will distinguish their
plaintext and ciphertext procedures with subscripts: T,,
C,, Tp. Cp. Now Bob and Alice select a large prime number
p and next they choose a secret-key, K, € {1,2,
that is relatively prime to, p-1. Now Bob encrypts the
plaintext message, T4, using the function:

— — Ks
implement the appropriate cryptographic algorithm. Co = £(Ts) = (Tp)"modp O
Now that we have a sound background and a pretty ) L )
good knowledge of the possible techniques required for Alice decrypts Bob’s ciphertext message using:
implementation of secure cryptographic systems, we will . :
proceed with the discussion and methodology useful for Ty =£7(Cp) = (Cp) mod p @
Communication channel
Alice Bob
Cdr Jim Cdr Jim
Begin Begin
attack on attack on
o400 i
}g:iiac%e Message
A destination
v Bits of
C ] Bits o
m > intercepted
message
Eve's key
Eve search simulation

Fig. 3: Shows a simple schematic classical cryptographic algorithm

113



Inform. Technol. J., 3 (1): 106-132, 2004

where K, modulo p-1 {ie., IK)mod (p-1)=1}. If K,
15 known I can be easily computed using Euclid’s
algorithm (Appendix B), which can be used to verify that:
f='(f (Tp)) = Tp. The secret key K, can also be computed
from Cg (which Eve knows) by solving Eq. (1) for p. Thus,
however, requires the calculation of discrete logarithms
modulo p; at present, the best logarithms for performing
this operation take time that 1s exponential in p. Thus, by
choosing p large, Bob and Alice make it computationally
infeasible for Eve to determine T, without knowing K..
This effectively addresses the secrecy issue. As for
authenticity of messages, the fact that Eve does not know
K, also makes it impossible for her to hack the system and
misrepresent herself. For example, she will not be able to
use, Eq. (1) to encrypt a rogue message such as: “Alice,
please wire Eve $6077 for the purchase of the laptop.
Thanks Bob”. Likewise, any ciphertext Cy, altered by Eve
(without knowing K,) will most likely be detected by Alice.
The alteration will simply lead to garbled plaintext when
Alice uses Eq. (2) to decipher Cs.

There are several popular private-key algorithms
including the primitive Caesar cipher discussed earlier. In
this section we will discus two more private-key
encryption algorithms the Data Encryption Standard
(DES) which is one of the most widely used modern
conventional cryptosystem; and the one-time pad which
is the most secure private-key cryptosystem. Although
numerous conventional encryption algorithms have been
developed since the introduction of DES, it remains the
most important such algorithm.

Data encryption standard (DES): The Data Encryption
Standard (DES) has been the most popular encryption
algorithm of the past twenty-five years. Originally
developed at IBM Corporation, it was chosen by the
National Bureau of Standards (NBS) as the government-
standard encryption algorithm in 1976%%1  After
becoming a U.S. government standard, DES was adopted
by other standards bodies worldwide, including ANST and
ISO. The terms of the standard stipulated that it would be
reviewed and recertified every five years. NBS recertified
DES for the first time in 1987. NIST (NBS after the name
change) recertified DES in 1993. DES was quickly adopted
for non-digital media, such as voice-grade public
telephone lines. Within a couple of years, for example,
International Flavors and Fragrances were using DES to
protect its valuable formulas transmitted over the
phone™. Meanwhile, the banking industry, which is the
largest user of encryption outside government, adopted
DES as a wholesale banking standard and, was used in
many other different applications around the world.

DES is the most important algorithm ever made.
Because it had an US National Security Agency (NSA)
pedigree, it was widely believed to be secure. However,
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concerns about its short key length have mostly dogged
the algorithm smnce the beginning. In the late 1990s, it
became widely believed that the NSA was able to break
DES by trying every possible key, something called
"brute force" (cryptanalysis) machine capable of breaking
DES. This ability was graphically demonstrated by the
Electronic Frontier Foundation in Tuly 1998, when John
G1lmore built a machime for $250,000 that could brute-force
a DES key in a few days. In 1997 they initiated a program
to replace DES: with the Advanced Encryption Standard
(AES)™.

Years before this, more secure applications had
already converted to an encryption algorithm called triple-
DES (also referred to as 3DES). Triple-DES is the repeated
application of three DES encryptions, using two or three
different keys®. This algorithm leverages all the security
of DES while effectively lengthening the key and 1s in
wide use today to protect all kinds of personal, business
and financial secrets. It is also the most studied
encryption  algorithm  ever invented and many
cryptographers "went to school" on DES. Almost all of
the newer encryption algorithms in use today can trace
their roots back to DES and research papers analyzing
different aspects of DES are still being published today.

Design and implementation of DES: DES was originally
designed to be implemented only in hardware and is
therefore extremely slow in software applications. The
algorithm, although complicated, 1s pretty straightforward.
Tt uses only simple logical operations on small groups of
bits and could be implemented fairly efficiently in the mid-
1970s hardware of the time!"!. DES is not very efficient in
software, especially the 32-bit architectures that are
common today. Its overall structure was something called
a Feistel network, also used in another IBM  design
called Lucifer, which 1is often considered to be a
precursor to DES®*!, DES is a block cipher, meaming that
1t encrypts and decrypts data m blocks: 64-bit blocks. DES
is an iterated cipher, meaning that it contains 16 iterations
(called rounds) of a simpler cipher. The algorithm's
primary strength came from S-box design, a non-linear
table-lookup operation.

The specific utilization and the implementation of the
DES will be based on many factors particularly to the
computer system and its associated components. The
cryptographic algorithm specified in this standard
transforms a 64-bit binary value into a umque 64-bit
binary value based on a 56-bit variable. Tf the complete 64-
bit input is used (i.e., none of the input bits should be
predetermined from block to block) and if the 56-bit
variable is randomly chosen, no techmique other than
trying all possible keys using known input and output for
the DES will guarantee finding the chosen key. As there
are over 70x10" (seventy quadrillion) possible keys of 56
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bits, the feasibility of deriving a particular key in this way
15 extremely unlikely in typical threat enviromments.
Moreover, if the key is changed frequently, the risk of this
event is greatly diminished. However, users should be
aware that it 1s theoretically possible to derive the key in
fewer trials (with a correspondingly lower probability of
success depending on the number of keys tried) and;
should be cautioned to change the key as often as
practical. Users must also provide the cryptographic key
a high level of protection in order to minimize the potential
risks of its unauthorized computation or acquisition!®.
The feasibility of computing the correct key may change
with advances in cryptographic technology. However,
when correctly implemented and properly used, this
standard will provide a high level of cryptographic
protection to computer data.

Here, we will present an mmplementation of a
simplified version of DES or 3-DES using 8-bit block of
text. The S-DES encryption algorithm takes an 8-bit block
of plaimntext (example: 10111101) and a 10-bit key as mput
and produces an 8-bit block of ciphertext as output.
The S-DES decryption algorithm takes an 8-bit block of
ciphertext and the same 10-bit key used to produce that
ciphertext as input and produces the original 8-bit block
of plaintext. (SW implementation A3)

The encryption algorithm involves five functions: An
initial permutation (IP); a complex function labeled as f,,
which 1nvolves both permutation and substitution
operations and depends on a key input, a simple
permutation function that switches (SW) the two halves
of the data; the function f, again and finally a permutation
function that is the inverse of the initial permutation
(IP7"). The use of multiple stages of permutation and
substitution results in a more complex algorithm, which
increases the difficulty of cryptanalysis.

The function f, takes as input not only the data
passing through the encryption algorithm, but also an 8-
bit key. The algorithm could have been designed to worlk
with a 16-bit key, consisting of two 8-bit subkeys, one
used for each occurrence of f,. Alternatively, a single 8-bit
key could have been used, with the same key used twice
in the algorithm. A compromise is to use a 10-bit key from
which two 8-bit subkeys are generated as depicted in the
Fig. 4. In this case, the key is first subjected to
permutation (P10). Then a shift operation is performed.
The output of shift operation then passes through a
permutation function that produces an 8-bit output (P8)
for the first subkey (K,). The output of the shift operation
also feeds mto another shift and another instance of P8 to
produce the second subkey (K,).

S-DES key generation: S-DES depends on the use of a
10-bit key shared between sender and receiver. From this
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key, two 8-bit subkeys are produced for use in particular
stages of the encryption and decryption algorithm. The
stages to produce the keys are illustrated below:

First, permute the key in the following fashion. Let the
10-bit key be designed as (k. k., ks, k. ko, kg kel kL ke,
ko). Then the permutation P10 is defined as:

P10 (ki ko, o ks koL ks b K Ko Jp) = (L KL kL ks,
k4= klU=k1=k9= k8=k6)'

For example, the key (1010000010) 13 permuted to
(1000001100). Next, perform a circular left shift (I.S-1), or
rotation, separately on the first five bits and the second
five bits. In our example, the result 1s (00001 11000). Next
we apply P8, which picks out and permutes 8 of the 10 bits
according to the following rule, P8: (63 748510 8), The
result 13 subkeyl (K,). In our example, this yields
(10100100).

We then go back to the pair of 5-bit strings produced
by the two LS-1 functions and perform a circular left shift
of 2 bit positions on each string. In our example, the value
(00001 11000) becomes (0010000011). Finally, P8 is applied
again to produce K, In our example, the result is
(01000011).

4-bit

Ciphertext |=—

Fig. 4A: Graphical of DES

representation
implementation algorithm

a
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S-DES encryption: Involves the sequential application of
five functions. We examine each of these as follows:

Initial and final permutations: The input to the algonithm
is an 8-bit block of plaintext, which we first permute, using
the IP function, IP: 26314857, This retains all & bits of the
plaintext but mixes them up. At the end of the algorithm,
the inverse permutaticn is used, IP~": 41357286, Indeed,
the second permutation is reverse of the first.

The function f,: The most complex component of S-DES
1s the function f, which consists of a combination of
permutation and substitution functions. The finctions
can be expressed as follows. Let I and R be the leftmost
4 bits and rightmost 4 bits of the 8-bit input to f, and let F
be a mappmg (not necessarily one-to-one) from 4-bit
strings to 4-bit strings. Then we let, f, (I,LR) = (L&
F(R,SK).R), where SK is a subkey and @ is the bit-by-bit
exclusive-OR operation function.

For example, suppose the output of the IP stage 1s
(10111101) and F(1101, SK) = (1110) for some key, SK.
Thenf, (10111101)=(01011101) because (101 D@ (1110)=
(0101). We now describe the mapping F. The mput 1s a 4-
bit number (n, n, n, n,). The first operation is an
expansion/permutation operation, E/P: 41232341, For what
follows, it is clearer to depict the results in this fashion:

The 8-bit subkey K= (k;, ks kis, ks kis kigs ki, ki) 18
added to this value using exclusive-OR:

n+k_ [n +k_ n_+k | n_+k
4 111 12 2 18l 3 14

n +k15 n +k13 n +k17 n +k18
Let us rename these bits:
po,o po,1 po,z po,3
P P P p

1,0 1.1 1,2 1,3

The first four bits (first row of the precedence
matrix) are fed mto the S-box, SO, to preduce a 2-bit output
and the remaining 4 bits (second row) are fed into, 81, to
produce another 2-bit output. These two are defined as
follows:

103 2 0123
3210 2013
Joz13 > f3010
3132 2103
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The S-boxes operate as follows: The first and fourth input
bits are treated as 2-bit numbers and specify a row of the
S-box, while the second and the third input bits specify a
column of the S-box. The entry in that row and column, in
base 2, is the 2-bit output. For example, if (pyp,4) = (00)
and (py,py) = (10), then the cutput is from row 0, column
2 of 50, which 1s 3, or (11) mn binary. Similarly, (p, jp, ;) and
{(pLpL2) are used to index into a row and column of S1 to
produce an additional 2 bits. Next, the 4 bits produced by
S0 and SI undergo a further permutation, P4: 2431. The
output of P4 1s the output of the fumction, F.

Switch function: The function f, only alters the leftmost
4 bits of the input. The switch function (SW) interchanges
the left and right 4 bits so that the second nstance of f,
operates on a different 4 bits. In the second mstance, the
E/P, 80, 31 and P4 functions are the same. The key input
is K,. Table 3 shows the implementation of S-DES
algorithm (for SW implementation see Append. A3).

As a practical matter, anyone today who wants high
security with ultimate strength cryptography uses a more
powerful version of DES called Triple-DES. To start
encrypting with Triple-DES, two 56-bit keys are selected.
Data 1s encrypted via DES three times, the first time by the
first key, the second time by the second key and the third
time by the first key once more. This process creates an
encrypted data stream that 13 unbreakable with today's
code-breaking techmiques and available computing power,
while being compatible with DES.

One-time pad: A one-time pad 15 a very simple yet
completely unbreakable symmetric cipher. It was mvented
in 1917 by Major Joseph Mauborgne and AT and T’s
Gilbert Vernam™™. As with all symmetric ciphers, the
sender must transmit the key to the recipient via some
secure and tamper proof channel, otherwise the recipient
won't be able to decrypt the ciphertext. The key for a one-
time pad cipher is a string of random bits, usually
generated by a cryptographically strong pseudo-random
number generator (CSPRNG)™. Tt is better to generate the
key using the natural randomness of quantum mechanical
events (such as those detected by a Geiger counter as
used in Experimental Physics), since quantum events are
believed scientifically to be the only sowce of truly
random information m the umverse. One-time pads
that use CSPRINGs are open to attacks, which attempt to
compute part or the entire key.

With a one-time pad, there are as many bits in the key
as in the plaintext. This is the primary drawback of a one-
time pad, but it is also the source of its perfect security. It
is essential that no portion of the key may ever be reused
for another encryption (hence the name "one-time pad");
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Table 3: Implementation of 8-DES cryptographic algorithm

Action Input Output
S-DES Key Generation

10-bit key : 1100101001

P10 1100101001 0111011000
LS-1 0111011000 1110010001
P8 1110010001 11000010 (K))
LS-2 1110010001 1001100110
P8 1001100110 00011101 (K,)
$-DES Encryption

8-bit plaintext : 10100110

IP 10100110 01110001
E/P 0001 10000010
Exclusive-OR 10000010, K, 0100 0000
S0 0100 11

S1 0000 00

P4 1100 1001
Exclusive-OR 0111, 1001 1110

SW 11100001 00011110
E/P 1110 01111101
Exclusive-OR 01111101, K, 01100000
S0 0110 10

S1 0000 00

P4 1000 0001
Exclusive-OR 0001, 0001 0000

P! 00001110 00011001
8-bit ciphertext : 00011001

S-DES Decryption

8-bit ciphertext : 00011001

IP 00011001 00001110
E/P 1110 01111101
Exclusive-OR 01111101, K 01100000
S0 0110 10

S1 0000 00

P4 1000 0001
Exclusive-OR. 0000, 0001 0001

SW 00011110 11100001
E/P 0001 10000010
Exclusive-OR 10000010, K, 01000000
S0 0100 11

S1 0000 00

P4 1100 1001
Exclusive-OR 1110, 1001 0111

P! 01110001 10100110

8-bit plaintext : 10100110

otherwise cryptanalysis can break the cipher. The cipher
itself is exceedingly simple. To encrypt plaintext, P, with
a key, K, producing ciphertext, C, simply compute the
bitwise exclusive-or of the key and the plamtext: C = K"P.
To decrypt ciphertext, C, the recipient computes: P = K~C.
Tt is that simple and it's perfectly secure, as long as the
key 13 random and is not compromised (for SW
implementation see Append. A2). A simple example of
one-time pad encryption/decryption algorithm goes like
this:

Encryption: CLAUDIUSDIDIT + SYQJOWIQGBOEF =
VKRESFEIKKSNZ (L:12+ Y:25 -=K:37)

Decryption: VKRESFEIKKSNZ - SYQIOWIQGBOEF =
CLAUDIUSDIDIT

Why are One-Time pads perfectly secure?: If the key is
truly random, an XOR-based one-time pad 1s perfectly
secure against ciphertext-only cryptanalysis. This means
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an attacker can't compute the plaintext from the ciphertext
without the knowledge of the key, even via a brute force
search of the space of all keys! Trying all possible keys
doesn't help you at all, because all possible plaintexts are
equally likely decryptions of the ciphertext. This result is
true regardless of how few bits the key has or how much
you know about the structure of the plaintext. To see this,
suppose you mtercept a very small, 8-bit, ciphertext. You
know it is either the ASCII character 'S' or the ASCII
character 'A' encrypted with a one-time pad You also
know that if 1t's 'S, the enemy will attack by sea and 1f 1t's
'A', the enemy will attack by air. That's a lot to know. All
you are missing 1s the key, a silly little 8-bit one-time pad.
Youassign your crack staff of cryptanalysts to try all 256,
8-bit one-time pads. This 1s a brute-force search of the
keyspace. The results of the brute force search of the
keyspace is that your staff finds one 8-bit key that
decrypts the ciphertext to 'S' and one that decrypts it to
'A'. and you still don't know which one 1s the actual
plaintext. This argument is easily generalized to keys (and
plaintexts) of any arbitrary length.

Private-key distribution: In symmetric cryptography, for
both secrecy and authentication, the sender must transmit
the key to the recipient via some secure and tamper proof
channel, otherwise the recipient won't be able to decrypt
the ciphertext (Fig. 3). Hence, the major security 1ssue in
secret-key cryptography involves keeping the key K,
secure and these requirements lead to the major
shortcoming of symmetric-key cryptography. The process
of exchanging the cryptographic key 1s referred to as key
distribution and can be very difficult"®: It is not difficult
to see the mmpracticality of this approach among a large
collection of people. The key 15 the secret to breaking the
cipher text; if there exists a really secure method of
communicating the key, why isn’t that method used to
communicate the message mn the first place? For many
years, the key distribution method used by the
governmental and corporate agencies was to place the
keys in a locked briefcase, which was handcuffed to a
courter. The courier would board an airplane (or take any
specified mode of transport) and would be met at the
destination by an official from the end-user agency. The
cuffs would be removed at the agency office and the keys
were then available to decipher the messages. The courler
did not have a way to remove the cuffs or open the
briefcase. If the bad guys caught the courier, the end-user
would know about it and would not use those particular
keys to encrypt messages. The difficulties encountered in
private-key cryptography lead to further research leading
to the development of public-key cryptography, a system
that uses two sets of keys;, one for encryption and the
other for decryption.
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Fig. 5: An implementation of RSA algorithm

Public key cryptography: All classical encryption
methods, as mentioned earlier, suffer from the “key
distribution problem”. The problem is that before a private
commurication can begin, another private transaction is
necessary to distribute corresponding encryption and
decryption keys to the sender and receiver, respectively.
Typically, a private courier 1s used to carry a key from the
sender to the receiver. Such a practice is not feasible if an
electronic mail system is to be rapid and inexpensive. A
public-key cryptosystems needs no private couriers; the
keys can be distributed over the insecure communication.

Public-key cryptography
asymmetric cryptography and is
mathematical breakthrough that occurred in the early
19705, Unlike symmetric key methods that use a single
key for encryption and decryption, asymmetric methods
make use of two keys: a secret-key and a public-key. Ina
nutshell, that means that you actually have two keys: a
private-key that only you should have access to and a
public-key that you give away to anyone you mtend to
commuricate with. When someone wants to send you an
encrypted file, they use your public-key to encrypt the
file. Having done that, the encrypted file can then only be
decrypted by you using your private-key (i.e., the public-
key 1s used to encrypt the message and the secret-key 1s
used to decrypt the message). The receiver has the secret-
key that should be protected. A mathematical process can
be used to generate the two keys that are mathematically
related. The goal of public-key cryptography was to
eliminate the biggest problem of private-key cryptography
of key distribution.

Public-key cryptography facilitates the followmng
tasks: (I) Encryption and decryption allow two

also referred to as

the result of a
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communicating parties to disguise information they send
to each other, see Fig. 5. The sender encrypts, or
scrambles, mformation before sending it. The receiver
decrypts, or unscrambles, the information after receiving
it. While in transit, the encrypted (ciphertext) information
is unintelligible to an intruder; (ii) Tamper detection allows
the recipient of information to verify that it has not been
modified m transit. Any attempt to modify data or
substitute a false message for a legitimate one will be
detected; (iii) Authentication allows the recipient of
information to determine its origin - that 1s, to confirm the
sender's 1dentity and; (1v) Nomrepudiation prevents the
sender of information from claiming at a later date that the
information was never sent by him. Several techniques
have been 1identified m the domain of public-key
cryptography over the years.

Ralph merkle’s puzzle technique: Ralph Merkle when he
published his work in Communications of the ACM, a
premier computer science journal, had indicated that his
protocol was processed on “secure commurication over
insecure channels”™. The basis of his communication
approach involves the use of puzzles. To understand this
method, assume that Bob and Alice want to communicate
with each other over a channel that is known to be
insecure. Bob first creates a large number of encryption
keys - say a million keys. Bob then places the keys in
puzzles - one key per puzzle. Each puzzle takes a couple of
minutes to solve. Bob sends the puzzles to Alice, who
chooses any one of the puzzles and its associated key.
Using this key, Alice encrypts a message and sends it to
Bob. Bob now figures out the key Alice chose based on
his list of keys. Future communications between Bob and
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Alice occur using this key. An eavesdropper, say Eve, will
be aware of the puzzles gommg back and forth but will take
an extremely long time to figure out the exact key.

Diffie-Hellman multiuser cryptographic techniques:
Diffie-Hellman Multiuser Cryptographic Techniques was
the first real functional public-key algorithm invented. It
first appeared in a paper called “Multiuser Cryptographic
Techniques” which was published in 1975 by Whitfield
Diffie and Martin Hellman™. Their cryptographic
techniques used the concept commenly used now in
public-key cryptography. The basic idea of this strategy
was that it should be possible to encrypt a message using
one key and decrypt the message using another key.
Several suggestions were made to Diffie and Hellman
about how this could be achieved, including the
following: (T) Multiplying prime numbers, which can be
done easily; but 1t 13 difficult to factor the corresponding
result and (1) Using a discrete exponentiation of numbers;
the corresponding task of discrete logarithms is difficult
(Mathematics Appendix B).

Diffie and Hellman chose the second approach to
conduct further research. The Diffie-Hellman exponential
key exchange approach was published in their paper
“New Directions in Cryptography” in TEEE Transactions
on Information Theory™. The Diffie-Hellman was further
given credence through a suggestion by John Gill,
another Stanford colleague: Take the exponents of two
numbers and calculate the results modulo some prime
number. The method works as follows: (I} Both the active
participants must first agree on two numbers, p and q.
Numbers p and g can be publicly known; (ii) Each
participant must now choose a number, perform a
mathematical operation that involves p, ¢ and the chosen
number and then transmit the result to the other
participant. Suppose that the first participant chooses M1
and the other participant chooses M2. The results of their
separate mathematical operations are N1 and N2 and (u1)
Using a second mathematical formula, both participants
can now compute another number, K, such that K can be
computed as a function of the numbers M1 and N2 or the
numbers M2 and N1 - but not the numbers N1 and N2.
Future commumecations occur using the session key K.
The eavesdropper can have access to p, g, N1 and N2 but
neither M1 nor M2. As a result, the eavesdropper cannot
calculate K. Thus, K can be used as a session-key for a
private-key encryption algorithm such as DES. This
method is used for commumcation between two people
and makes use of three keys: two secret-keys (one for
each person) and a session key determined by the two
people during the course of the conversation. In other
words, the conversation starts with the two people using
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their own keys; they exchange information to determine a
session key which is then used for all future messages. It
1s 1mportant to note that Diffie-Hellman algorithm 1s an
excellent tool for key distribution, but cannot be used
effectively to encrypt and decrypt messages on the fly
independent of the person one communicates with (cf.
email commumication).

The RSA cryptographic system: The biggest problem
with the Diffie-Hellman method is that the two participants
must commumcate actively. This may not be possible in
email communication between two people who are not
necessarily actively conversing. In 1976, three professors
in the computer science lab at MIT-Ronald Rivest, Adi
Shamir and Len Adelman-started working on the
proposition made in the Diffie-Hellman paper, “New
Directions in Cryptography,” to find a practical multi-user
cryptography system. After several months of research,
they were about to conclude that such a public-key
exchange system was not possible. Then, in 1977, they
realized a basic fact: Tt is very easy to multiply two prime
numbers to get a large composite number, but it is difficult
to take that composite number and find its prime number
components. The outcome of this research i1s the
technique simply referred to by the initials of its three
inventors: RSAPY. This method is better than the Diffie-
Hellman key exchange technique because it does not rely
on active participation between the person performing the
encryption and the person performing the decryption.
RSA makes use of any publicly available key to encrypt
the mformation, but the decryption can be done only by
the person who holds the matching secret-key (Fig. 5).
The RSA technique is one of the most powerful
encryption methods known to-date. It 1s also used as the
public-key system in PGP (Pretty Good Privacy)™. RSA
can also be used as a digital signature system as will be
seen later.

How does public-key cryptographic functions: In a
“public-key cryptosystems” each user places in a public-
key server an encryption procedure E. That is, the public-
key server is a directory giving the encryption procedure
of each user. The user keeps secret the details of his
corresponding decryption procedure D. These procedures
have the following properties:

(a) Decrypting the encrypted form of plaintext message
C=E(T)yields T, 1e.:
DO =DET) =T @

(b) Both E and D are easy to compute.
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(¢) By publicly revealing E the user does not reveal an
easy way to compute D). This means that in practice
only he can decrypt messages encrypted with E, or
compute D efficiently.

(d) Tf a message T is first deciphered and enciphered, T
is the result, i.e.:

E(D(TH=T )]

An encryption (or decryption) procedure typically
consist of a general method and an encryption key. The
general method, under control of the key, encrypts a
plaintext message T to obtain the form of the message or
ciphertext C. Every one can use the same general method;
the security of a given message will rest on the security of
the key. Revealing an encryption algorithm then means
revealing the key.

When the user reveals E, he reveals a very inefficient
method of computing D(C): testing all possible messages
T until one such that, E(T) = C, 1s found. If property © 1is
satisfied the number of such messages to test will be so
large that this approach is impractical.

A function E satisfying (a) — (c) 13 a “trap-door one-
way function™; if it also satisfies (d) it 18 a “trap-door one-
way permutation”. Diffie-Hellman™ introduced the
concept of trap-door ome-way functions but did not
present any examples. These functions are called “one-
way” because they are easy to compute mn one direction
but (apparently) very difficult to compute in the other
direction. They are called “trap-doors™ functions since the
mverse functions are mn fact easy to compute once certain
private “trap-door” information is known. A trap-door
one-way function that also satisfies (d) must be a
permutation: every message is the ciphertext for some
other message and every ciphertext 1s itself a permissible
message. (The mapping 1s “one-to-one” and “onto™).
Property (d) is needed to implement digital “signatures”
scheme. The most widespread current use of RSA
algorithm 1s 1 the Secure Sockets Layer (SSL) protocol for
data protection on the Internet.

The mathematics of RSA: To understand how RSA
works, (Mathematical Methods, Append. B). The steps to
effectively use RSA are as follows:

1. Choose random “large” prime integers p and g (e.g.,
1024-bit) and lett n = p.gq (ordinary mteger
multiplication).

2. Let, g(n)=m =(p-1)(g-1)

3. Choose a small number e such that e is greater than
1, e 18 less than n and e and m are relatively prime,
which means they have no prime factors i1 commeon.

However, e does not have to be prime, but it must be
odd. But, m, can't be prime because it's an even
number.

4.  Compute d such that (de-1) 1s evenly divisible by, m.
Mathematicians write this as, ged (d,(p-1).(g-1))=1 or
de = 1li{mod (p-1).(g-1) and they call, d, the
multiplicative inverse of e. This 1s easy to do, simply
find an integer k, which causes, d = {km+1}/e, to be
an integer and then use that value of d.

5. The encryption function 1s, C = (T®) mod n, where C
is the ciphertext (a positive integer), T is the plaintext
(a positive integer). The message being encrypted, T
must be less than the modulus, pg.

6. The decryption function is, C = (C*) mod n, where C

is the ciphertext (a positive integer), T is the plaintext

(a positive integer).

The public-key (published) is the pair (n, ).

8. The private-key (kept secret) is the (n, d) (reveal it to
no one).

9. Discard securely p and g

~1

The product, n, 15 the modulus, ¢ 1s the public
exponent and, d is the secret exponent. You can publish
your public-key freely, because there are no known easy
methods of calculating d, p, or q given only (n, e) (yvour
public-key). If p and q are each 1024 bits long, the sun will
burn out before the most powerful computers presently in
existence to factor youwr modulus mto p and q.
Authentication on the other hand, is not as easy to
guarantee in public-key cryptography. Since everybody
knows everybody else’s public-key, Eve can easily send
message to Alice claiming to be Bob.

The aforementioned method should not be confused
with the “exponentiation” technique presented by Diffie
and Hellam™ to sclve the key distribution problem. Their
technique permits two users to determine a key in
common to be used 1 a normal cryptographic system. It
is not based on a trap-door one-way permutation. Pohlig
and Hellman®™ have, however, have studied a similar
scheme related to RSA, where exponentiation 13 done
modulo a prime number.

In mathematical approach as was performed for
secret-key protocol, the public-key protocol can be
implemented as follows: Again Bob and Alice are users of
public-key cryptosystem. We now distinguish their
encryption and decryption procedures with subscripts:
E.. D.. E;, Dy Bob now encrypts his message Tp using
Alice’s public-key through:

£(Te) = By(Tp) = (Tz) modn “

to produce C;. Alice decrypts Cp using her secret-key
through:
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f,7(Cp) = DA(Cy) = (Cp) mod n &)

An important property of equation (4) and (5) is that
they are inverses of one another, ie., £, (f(T))) =
=, (7T =T or DAELTY = E(D,(T)) = T. Note that
encryption does not increase the size of a message; and
both the message and the ciphertext are mtegers in the
range 0 to n-1. Observe that no private transaction
between Alice and Bob 1s needed to establish private
commumecation. The only “setup” required is that each
user who wishes to receive private commumecations must
place their encryption algorithm in the public-key server.
Each user sends his encryption key to the other public-
key server. Afterwards all messages are encrypted with
encryption key of the recipient, as in the public-key
system. Also note that the transactions can take place
over an insecure communication channel without
consulting the public-key server™. An intruder (Eve)
listening in on the chamnel cannot decipher, modify or
insert any messages, since it is not possible to derive the

decryption keys from the encryption keys.

How to dencryption and decryption efficiently: Computing
T* mod n requires at most, 2+ log, (e) multiplications and 2-

log, (e),
(decryption can be performed similarly using d instead e):

divisions using the following procedure

Stepl: Letee,,.....e\e, be the binary representation of e.

Step 2:  Set the variable Cto 1.

Step 3. Repeatsteps 3aand3bforI =k, k-1,....., O

Step 3a: Set C to the reminder of C* when divided by n.

Step 3b: If e, then set C to the reminder of C-T when
divided by n.

Step 4:  Halt. Now C is the encrypted form of T.

This procedure is called “exponentiation by repeated
squaring and multiplication.” This procedure is half as
good as the best; more efficient procedures are known.
Knuth® studies this problem in detail. The fact that the
enciphering and deciphering are identical leads to simple
implementation. The whole operation can be implemented
on a few special-purpose mtegrated circuit chups. A lugh-
speed computer can encrypt a 200-digit message T m a
few seconds; special-purpose hardware would be much
faster. The encryption time per block increases no faster
than the cube of number of digits in n.

A practical example of RSA implementation: Suppose
that you choose p = 61 and q = 53. Therefore, n = pg =
61*53 = 3233, Now you have to choose e such that it 1s
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relatively prime to (p-1)*(g-1) = 60*52 = 3120. Suppose
that you pick e = 17. The decryption key 1s now calculated
using the extended Euclid algorithm and the prime
numbers as follows: d =17-1 (mod 3120) = 2753.

Now a user who wants to encrypt and send some
information to us can use (1, ) = (3233, 17) to encrypt the
data. Suppose that someone wants to send us the
plaintext message (number): T = 123.

To do so, they’d perform the following calculation:
123" mod 3233 = 885.

We would receive the number 885 and decrypt it as
follows: 885" mod 3233 =123.

To encrypt large number (message), T
1234765684598895471 6, first break it i1to small blocks.
Three-digit blocks work nicely in this case. The
message will be encrypted in seven blocks, T,, in
which: T, =123,T,=476, T, =568, T, = 459, T = 889,
T, = 547, T,= 16, which 18 encrypted mto cipher
blocks C,. For example message, T, = 123, encrypts to,

C, = 885 and follow the same procedure undertaken
above for the rest of block of messages (Appendix B4
for detailed implementation procedure).

One may be surprised that RSA just deals with large
integers. So how does it represent data? For plaintext
encryption scheme, we can code two letters per block,
substituting a two-digits number for each letter: blank =
00,A=01,B=02,...
presented above for encryption/decryption. For this
example, lets have: p =47 and q = 59, n = pgq = 47*59 =
2773, =17 and d = 157. Thus the message:

, 7.=26" Thenuse a similar scheme

ITS ALL GREEK TO ME
1s encoded:
092019000112 12000718 0505 11002015 0013 0500

Since, e = 10001, in binary digit, the first block (T = 920)
encrypted as:

T = (1Y -T¥)H) -T = 948(mod 2773)
The whole message 1s encrypted as:
0948 2342 1084 1444 2663 2390 0778 0774 0215 1655

For decryption, we perform: 948" = 920 (mod 2773),

etc. Altermatively, suppose the value of n is at least
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Table 3: TIndicates number of operations needed factor n in Schroeppel’s
method

Digits Number of operations Time

50 1.5%104° 3.9h

75 9.0x1012 104 days

100 2.3x104 74 years

200 1.2%10% 3.8x10° years

300 1.5%10%° 4.9x10% years

500 1.3x10% 4.2x10% years

1024-bits long. This is the same as 128-bytes (1 byte = 8
bits). In principle then, one can just run 128-bytes of
ASCH text together and regard the whole as a single RSA
plaintext (a single large integer) to be encrypted or signed.
In practice, the protocols will demand additional data
besides just the raw message, such as a time stamp, but
there 1s room for a lot of data in a single RSA encryption.

Factoring n: Factoring n would enable an enemy
cryptanalysis (Eve) to “break” our method. The factors of
n enable her to compute dp(n) = G(p)P(q)=(p-1)(g-1) and
thus d. Fortunately, factoring a number seems to be much
more difficult than determining whether it is prime or
composite. A large number of factoring algorithms exist.
Knuth™, gives an excellent presentation of many of
them. Pollard™ presents an algorithm, which factors a
number n in time O(n'™). The fastest factoring algorithm
known to the authors is due to Richard Schroeppel™; it
can factor n in approximately:

=n1/ln In(n)/In{n) _ (h (n))1fin(n)/ln(ln(

In(n)-In{ln{n}))

steps. Table 3 gives the number of operations needed to
factor n with Schroeppel’s method and the time required
if each operation uses microsecond, for various lengths of
numbers n (in decimal digits).

It 1s recommended that n be about 200 digits long.
Longer or shorter lengths can be used depending on the
relative importance of encryption speed and security in
the application at hand. An 80-digit n provides moderate
security against an attack using current technology;
using 200 digits provides a margin of safety agamst future
developments. This flexibility to choose a key-length (and
thus a level of security) to suit a particular application is
a feature not found 1n many cryptographic schemes.

Digital signature and authentication: If electronic mail
systems are to replace the existing paper mail systems for
business transactions, “signing” an electronic message
must be possible. One way to address the authentication
problem encountered in public-key cryptography is to
attach digital signature to the end of each message that
can be used to verify the sender of the message!'”. The
significance of a digital signature 1s comparable to the
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significance of a handwritten signature. In some
situations, a digital signature may be as legally binding as
a handwritten signature. Once you have signed some
data, it 18 difficult to deny doing so later - assuming that
the private-key has not been compromised or out of the
owner's control. This quality of digital signatures
provides a high degree of nonrepudiation - 1.e., digital
signatures make 1t difficult for the signer to deny having
signed the data. This quality is stronger than mere
authentication (where the recipient can verify that the
message came from the sender), the recipient can
convince a “judge” that the signer sent the message. To
do so, he must convince the judge he did not forge the
signed message himself! Tn authentication problem the
recipient does not worry about this possibility, since he
only wants to satisfy himself that the message came from
the sender.

Figure 6 shows two items transferred to the recipient
of some signed data: the original data and the digital
signature, which 1s basically a one-way hash (of the
original data) that has been encrypted with the signer's
private-key™*'*4. To validate the integrity of the data, the
receiving software first uses the signer's public-key to
decrypt the hash. It then uses the same hashing algorithm
that generated the original hash to generate a new one-
way hash of the same data. (Information about the
hashing algorithm used 1s sent with the digital signature,
as described blow.) Fmally, the receiving software
compares the new hash against the original hash. If the
two hashes match, the recipient can be certain that the
public-key used to decrypt the digital signature
corresponds to the private-key used to create the digital
signature. If they don't match, the data may have been
tampered with since it was signed, or the signature may
have been created with a private-key that doesn't
correspond to the public-key presented by the signer.
Confirming the identity of the signer, however, also
requires some way of confirming that the public-key really
belongs to a particular person or other entity and this 1s
achieved via the use of fingerprinting.

In short, an electronic signature must be a message-
dependent, as well as signer-dependent. Otherwise the
recipient could modify the message before showing the
message-signature pair to the judge. Or he could attach
the signature to any message whatsoever, since it is not
possible to detect electronic “cutting and pasting”. To
implement signatures the public-key cryptosystem must
be implemented with trap-door one-way permutations 1.e.,
have the property (d), since the decryption algorithm wrill
be applied to unenciphered messages. For a discussion of
the way this works let’s look at the commumecation
between Bob and Alice.
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Fig. 6: An implementation of digital signature algorithm

How does digital signature works: How can user Bob
send Alice “signed” message Tp in a public-key
cryptosystems? He first uses his own secret-key or p to
encrypt his “digital signature”, S; according to DSy
given in Eq. (5). (Deciphering the unenciphered message
“makes semse” by property (d) of public-key
cryptosystem: each message 15 the ciphertext for some
other message). He then appends his encrypted digital
signature to his message, Tp, to produce the signed
message, Ty Dg(S;), where the dot denotes concatenation.
Next Bob applies Eq. (4) to his signed message, using
Alice’s public-key E, (for privacy) to obtain the ciphertext:
Cp =B, (TyDo(8;)) and transmits it to Alice.

When Alice receives Cy she first applies Eq. (5) using
her secret-key to produce, D,(Cy) = Ty Dg(Sg). Thus, the
message Ty will appear, along with a portion of gibberish
at the end of the message. To authenticate Tp, Alice uses
Bob’s public-key, E;, (available on the public-key server)
to perform, Eg(Dy(Sz)) = Sg. If Bob's digital signature
appears, she knows the message is authentic.

She now possesses a message-signature pair (Tg, Sg)
with properties similar to those of signed paper document.
Bob camnot deny having sent Alice tlus message, since
no one else could have created SB = DB(T",;) (where T%,
is Bob’s “plaintext signature” message). Alice can
convince a “judge” that B.(Sg = T% 4 so she has proof
that Bob signed the document.

Clearly Alice cannot modify Ty to different version
T,’, since then she would have to create the
corresponding signature, S;” = Dy(T:"), as well. Therefore,
Alice has received a message “signed” by Bob, which she
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can “prove” that he sent, but which she cannot modify.
(Nor can she forge his signature for any other message.)

The only remaiming issue mvolves selecting the
digital signature S;. If Bob uses the same digital signature
in every message, Eve will be able to detect this by
looking for common string among Bob’s transmissions.
Even though by doing this Eve will only discover Dg(S;),
this all she needs in order to sign a rogue message and
misrepresent herself as Bob to Alice.

Therefore, 1t 1s important for Bob to use a different S;
10 every message. One strategy 1s to make S; depend on
the message T, Hash functions are commonly used to
implement this strategy. In this setting a public hash
function h 1s required to transform a variable-length
message mto a fixed-length message fingerprint F, 1.e.,

h: T,=F (6)
Bob’s ciphertext message to Alice 1s encrypted using:
Cp = Eu(Te'Ds(F)) (7

After applymg D, to this ciphertext, Alice can
authenticate it by first computing Fx(Dy(F)) = F and then
comparing this result to the result she obtains by
applying the hash function h to T,

We have already mentioned that there are many
instances in  which the main security issue is
authentication and not secrecy. For example, a financial
institution may be content with sending and receiving
ther transactions unencrypted, as long as they can
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guarantee that these transactions are not altered.
Specifically, if Bob sends messages, T D(F) to Alice,
then even though Eve can read T, she will not be able to
alter 1t unless she is able to determine F.

In order for a public hash function h to be effective,
1t must posses at least the following two properties. First,
since h 18 known to all, for any y it must be
computationally intractable to find Ty, such that, h (Tg)=y.
In other words, Eve should have great difficulty in trying
to invert h in order to obtamn Ty, Second, it should be
computationally mtractable to find messages that
collide™”. To see why, assume we have a hash function h
that does not satisfy this property. Now suppose Eve
constructs two messages Ty and Ty such that, (T =
h(Tg’) and Bob is perfectly happy to sign Ty but not Ty,
If Eve can convince Bob to sign Tz, then Eve will also be
able to achieve her fraudulent goal of signing T." with
Bob’s digital signature.

Many digital hashing schemes are based on the
following idea. Let h” be a hash function that maps s-bit
keys to k-bit values, for some fixed s > k. From h’ we
construct a public hash function that produces a k-bit
messages fingerprint by first breaking the message Ty mto
blocks, Tg, each containing, Tgy, Tepeeeoos s
containing, s-k bits. Next let:

each

FI(TB1) = h’(Frl 'TB1)

where the dot denotes concatenation and F; is a k-bit
mutialization value, often chosen as all zeros. The message
fingerprint 1s then given by F,.

Message digest: A message digest is a compact digital
signature for an arbitrarily long stream of binary data. An
1deal message digest algorithm would never generate the
same signature for two different sets of input, but
achieving such theoretical perfection would require a
message digest as long as the input file. Practical message
digest algorithms compromise in favor of a digital
signature of modest size created with an algorithm
designed to make preparation of input text with a given
signature computationally infeasible. Message digest
algorithms have much n common with techmques used in
encryption, but to a different end; verification that data
have not been altered since the signature was published.

Many older programs requiring digital signatures
employ 16 or 32 bit cyclical redundancy codes (CRC)
originally developed to verify correct transmission in data
communication protocols, but these short codes, while
adecuate to detect the kind of transmission errors for
which they were intended, are insufficiently secure for
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applications such as electronic commerce and verification
of security related software distributions.

The most commonly used present-day message
digest algorithm 1s the 128-bit MD5 algorithm, developed
by Ron Rivest of the MIT Laboratory for Computer
Science™. Message digest algorithms such as MDS5 are
not deemed "encryption technology” and are not subject
to the export controls some governments impose on other
data security products. The MD35 algorithm was originally
developed as part of a suite of tools intended to monitor
large collections of files (for example, the contents of a
Web site) to detect corruption of files and inadvertent (or
perhaps malicious) changes.

Other possible application of DS: Electromic checking: -
An electronic checking system could be based on
signature system such as the above. Tt is easy to imagine
an encryption device in your home termimnal allowing you
to sign checks that get sent by electromc mail to the
pavee. Tt would only be necessary to include a unique
check number in each check so that even if the payee
copies the check the bank will only honor the first version
1t sees.

Speech encryption: Another possibility arises if
encryption devices can be made fast enough: it will be
possible to have a telephone conversation in which every
word spoken 18 signed by the encryption device before
{ransmission.

We have assumed above that each user can always
access the public-key server reliably. In a “computer
network™ this might be difficult; an intruder “Eve” might
forge messages purporting to be from the public-key
server. The user would like to be sure that he actually
obtains the encryption procedure of desire correspondent
and not, say, the encryption procedure of the intruder.
This danger disappears if the public-key server “signs”
each message it sends to a user. The user can check the
signature with the public-key server’s encryption
algonithm Egp. The problem of “looking up” Eg itself in the
public-key server 13 avoided by giving each user a
decryption of By when he first shows up (in person) to
join the public-key cryptosystem and deposit his public
encryption procedure. He then stores this description
rather than ever looking it up again. The need for a courler
between every pair of users has thus been replaced by the
requirement for a single secure meeting between each user
and the public-key server manager when user joins the
system. Another solution is to give each user, when he
signs up, a book (like a telephone directory) containing all
the encryption keys of users in the system.
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In general, the strength of encryption is related to the
difficulty of discovermg the key, which m turn depends
on both the cipher used and the length of the key. For
example, the difficulty of discovering the key for the RSA
cipher most commonly used for public-key encryption
depends on the difficulty of factoring large numbers, a
well-known mathematical problem. Encryption strength is
often described in terms of the size of the keys used to
perform the encryption: in general, longer keys provide
stronger encryption. Different ciphers may require
different key lengths to achieve the same level of
encryption strength. Key length 1s measured i bits. Thus,
a 128-bit key for use with a symmetric-key encryption
cipher would provide stronger encryption than a 128-bit
key for use with the RSA public-key encryption cipher.
This difference explains why the RSA public-key
encryption cipher must use a 512-bit key (or longer) to be
considered cryptographically strong, whereas symmetric
key ciphers can achieve approximately the same level of
strength with a 64-bit key. Even tlus level of strength may
be vulnerable to attacks in the near future.

We have also proposed a method for implementing a
public-key cryptosystem whose security rests in part on
the difficulty of factoring large numbers. If the security of
method is appropriately implemented, it permits secure
commuimcations to be established without the use of
courier to carry keys and it also permits one to “sign”
digital documents.

No matter which technique you choose, you must
keep in mind that a desperate cryptanalyst can always
decipher the message. Hence, you should always take all
the necessary precautions to protect your data. Those
precautions range from proper choice of cryptographic
keys to physically protecting your assets and yourself.

Because the ability to surreptitiously intercept and
decrypt encrypted information has historically been a
significant military asset, the 1.S. Government restricts
export of cryptographic software, mcluding most software
that permits use of symmetric encryption keys longer than
40 bits. However, novel techmques for confidentiality are
interesting in part because of the current debate about
cryptographic policy as to whether law enforcement
should be given authorized surreptitious access to the
plaintext of encrypted messages. The usual techmque
proposed for such access is “key recovery”, where law
enforcement has a “back door™ that emables them to
recover the decryption key. (Obviously, the responsibility
for obeying the laws in the jurisdiction m which you
reside is entirely vour own, but many common Web and
Mail utilities use MDS5 and I am unaware of any
restrictions on their distribution and use.)

Appendix A — Working Source Codes
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Appendix Al: Caesar java: implements the Caesar cipher

/{ This carries out a simple rotation of lower-case letters and does

/f nothing to all other characters, making the decryption process even
/f easier, because caps and punctuation marks survive unchanged.

/f Usage: java Caesar (-d | -e) key (java Caesar —¢|-d 3 < message.text)
f Above, option "-d" is for decryption, while "-¢" is for encryption

import java.io.*;

public class Caesar {
private Reader in; // standard input stream for message
private int key; // (en|de)cryption key

/f Claesar: constrictor, opens standard input, passes key
public Caesar(int k) {

{ open file

in = new InputStreamReader(Sy stem. in);

{f (en|de)crypt: just feed in opposite parameters
public void encrypt() { translate(key); }
public void decrypt() { translate(-key); }

/f translate: input message, translate
private void translate(int k) {
char c;
while ((byte)(c = gefNextChar()) !=-1) {
if (Character.isLowerCase(c)) {
¢ =rotate(c, k);
}
Systemn.out.print(c);
}
}

ff getNextChar: fetches next char.
public char gefNextChar() {
char ch="", //=""to keep compiler happy
try {
ch = (char)in.read();
} catch (IOException e) {
System.out.println{"Exception reading character";
}

return ch;

}

{f rotate: translate using rotation, version with table lookup
public char rotate(char ¢, int key) { // ¢ must be lowercase
Siring s = "abcdefghijklmnopgrstuvwiyz';
inti=0;
while (1< 26) {
// extra +26 below because key might be negative
if ¢ = s.charAt(i)) return s.charAt((i + key + 26)%026);
i+
}

refum c;

}

/f main: check command, (en|de)crypt, feed in key value
public static void main(String[] args) {
if (args.length !'=2) {
System.out.println("Usage: java Caesar (-d | -e) key™),
System.exit(1);
}
Caesar cipher = new Caesar(Integer.parselnt(args[1]));
if (args[0].equals("-e™)) cipher.encrypt();
else if (args[0].equals(”-d")) cipher. decrypt();
else {
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System.out.printin("Usage: java Caesar (-d | -¢) key"); Appendix A3: - SDES java implements Simplified DES
System.exit(1);
3 ; /f simplitied DES
i
} /{ Kefa Rabah, June. 2003
Run Test public class SDES
{
Civ= java Caesar -e 3 < message. bt Jencryption / subkeys
commander jim commence attack on alpha ffmessage i

public int K1, K2;

Civ= java Caesar -e 3 < message.text | java Caesar -d 3 //decryption

crppdaghu jlp frpphgfh dwwdfn rq doskd ff permutations
4
. . . public static final int P10[]={3, 5, 2, 7,4,10, 1, 9, 8, 6};

Appendix A2: XOR cpp implements Exclusive OR (XOR) public static final int P10max = 10:

to Perform Block Encryption Code
public static final int P8[]=1{6,3, 7,4, 8, 5,10, 9};

/f Author: Kefa Rabah public static final int P8max = 10;

/I A 8imple implementation of XOR function (XOR.cpp) . . .

/f Usage: XOR key input_file output_file pub11c stat!c final 1“" Pa]={2.4,3 1}

/ Purpose: This program takes a “plaintext” file and performs XOR public static final int P4max =4;

// between each character of the file and the supplied key . . .

// and places the encry pted result in the "cipher" file. public static final int IP[] ={ 2, 6,3,1,4, 8, 5, 7};

public static final int [Pmax = 8;
#include <stdio.h>

#include <iostream.h> public static final int TPI[]={4, 1, 3, 5,7, 2, B, 6};
Hinclude ~fstream.b> public static final int IPImax — 8;
#include <math.h> . . .
#include <ctype.h> public static final int EP[] = {4, 1,2,3,2, 3,4, 1};
#include <stdlib.h> public static final int EPmax = 4;
#include <conio> . . .
public static final int SO[J[] = {
main(int arge, char *ar {1,032},
(int arg ev[D) (32100
FILE *ifp, *ofp; 10,2,1,3},
char *cp; {3,1,32}
int c; I
if (arge 1=4){ public static final int S1[J[] = {
printf{"n%es e \nindes\n%s\nin, {0,1,23},
"Usage: ", argv[0], " key infile outfile", {2,013},
"The plaintext letters in infile will be encripted.”, {3,01,0}
"The results will be written in outfile."); _{ 2, 1,0,3}
exit(1); IH
} .
if{cp = argv[1]){ {/ permute bits
if ((ifp = fopen(argv[2], "rb™))!=NULL){ oo o _
if ((ofp = fopen(argv[3], "wb")I=NULL){ ;{)ubhc static int permute( int x, int p[], int pmax)
if (ifp =NULL || ofp = NULL) inty =0;
( o
printf"n%sSorry. Files cannot be openedin.”); for( mﬁ‘ - 0; i< p.length; ++i) {
retun -1; y =1 .
) I e plI) .1
while ((c = getc(ifp)) = EOF)
{ retum y;
if (cp) cp = argvl1]; ;
¢ "= *(cptt); .
pute(c, ofp); :Z F function
f}'close(ofb)' public static int F( int R, int K)
’ {
fcl}ose(ifp)- int t = permute( R, EP, EPmax) " K;
} ' intt0 =t >> 4) & OxF;
! inttl =t & OucF;
getch();
retum G t0 = SO[ ((t0 & 0x8) > 2) | (t0 & 1) ][ (10 >> 1) & O3 ;
) ’ t1=81[({tl &xB)>> | L & D[l >> D& X3 ];
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t = permute( (t0 << 2) | t1, P4, PAmax);

retumn t;

}

# fK function
i
public static int fiK( int m, int K)
{
int .= ({m == 4) & 0xF;
int R =m & OxF;

retum (L “F(RK)) << 4) | R;
}

J/ switch function
4
public static int SW( int x)

return ((x & 0xF) << 4) | ((x>> 4) & 0xT);
}

/ encrypt one byte

i

public byte encrypt( int m)

{

m = permute( m, IP, [Pmax);
m={tK({m, K1);
m=S8W(m);
m={K(m, K2);
m = permute( m, TPT, TPTmax);

retum (byte) m;
}

// decrypt one byte

i

public byte decrypt( int m)

{

m = permute( m, TP, TPmax);
m={K(m, K2);
m=S8W(m);
m={tK({m, K1);
m = permute( m, IPL, [PImax);

retum (byte) m;
}

J// print n bits in binary

i

public static void printb( int x, int n)
{

int mask =1 << (n-1);

while( mask = 0) {

System. out.print( ((x & mask) —0)2'0':'1");

mask =>=1;
}
}

J// constructor - initializes K1 and K2
i
public SDES( int K)
{
K = permute{ K, P10, P10max);

/1 5-bit parts of K

i

int t1 = (K => 5) & 0x1F;
intt2 =K & 0x1F;
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i

£l = ((t] & OxF) << 1) ((t] & 0x10) => 4);
(2= (12 & OxF) << 1) | ((t2 & Ox10) >> 4);

K1 = permute( (t1 << 5) | t2, P8, P8max);
fLS-2

i

t = ((t] & 0x7) << 2) | (t] & 0x18) == 3);
£2=((t2 & 0x7) << 2) | ((t2 & 0x18) == 3}

K2 = permute( (t1 << 5) | t2, P8, P8max);
)

}

/f SDES Encrypt

/1 For Decryption process, comment “Class Encrypt” and uncomment

e

Class Dencrypt”.

/f K. Rabah, July. 2003

ffpublic class Decrypt

p
{

{
if{ args.length !'=2) {

ublic class Encrypt

public static void main( String args[]) throws Exception

System.err.printlng "Usage: Encrypt key plaintext™);

System.exit(1);
}

/f first command-line argurnent is 10-bit key in binary

i
int K = Integer.parselnt( args[0], 2);

/f create an instance of the SDES Algorithm
i
SDES A =new SDES( K);

{f second command-line argument is 8-bit plaintext in binary

i
int. m = Tnteger.parselnt( args[1], 2);

/1 encrypt or decry pt
i

m = A.encrypt( my, //uncomment for encryption

/'m = A.dencrypt( m); /fcomment for encryption

/f display in binary

i
SDES. printb( m, 8);
Systern. out.println();

}

}

/*

SAMPLE RUN:

ja

va Encrypt 0000011111 11111111

11100001

java Decrypt 0000011111 11100001
11111111

*f
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Appendix A4: prime.c — Implements Prime Number
Generator - Sieve Algorithm

The following code segment shows a simple
implementation of the sieve algorithm that can be used to
check whether or not a particular number r is a prime
number:

/ Author: Kefa Rabah

/I A 8imple implementation of Prime Number Generator.
/*

Simpe Classical way for determinig prime numbers using
Aristocenes arrays solution (original length 100000).

i

#include <stdio.h>
#include <conio.h>
#define LENGTH 1000
void main()

long vec[LENGTH],i,j;

clrser();

for (i=0; i<L.LENGTH; i++)
vec[i]=;

for (i=2; i<L.LENGTH; i++)
for (j=*2; j<LENGTH, j+=1)

vec[j]=0;
for (i=0; i<LENGTH; i++)

it (vec[i])
prind{"ad " vec[i]);

getch();

Appendix B: Mathematical Methods for RSA
Appendix B1: Chinese Remainder Theorem

This theorem provides a way to combine two modular
equations that use different moduli.

Theorem: x=y(medp) = x=y(mod q) with p and q coprime, such that:
x=y(mod pg)

Proof:
x=y{mod p) = x=v-+kp x-y=kp
That is, p divides (x - ¥) as p and q are coprime, which we can write as:
x-y =Apg = x=y(mod pg)
where A is an integer.

=

Appendix B2: Fermat/Euler Theorem

This theorem is a surprising identity that relates the
exponent to the modulus.

Thecrem: x'=1(mod p) if p is prime and x = O(mod p)
Proof: Consider the set Q, of numbers 1, 2,
As p is prime, these numbers are coprime to p. But 0 is not
coprime to p

= () includes all the numbers in (mod p) coprime to p
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Now consider the set 1], obtained by multiplying each
element of Q by x(mod p). Both x and each element of
are coprime to p, implies each element of U is coprime to
p.

Also, each element of U is distinct, which we prove
by contradiction. We start by assuming two elements are
not distinet:

xQ; = xQ; (modp) withi »j = Q=Q,(modp)asx = 0

but elements of Q are distinct, so this is a contradiction
= elements of U are distinct

S0, U uses all the numbers in (mod p) that are coprime to p, just like
(Q which implies that U is a permutation of Q. Hence, we can write as:

Upi =QrQy....."Qpi{mod p)
xUpxUy...oxUpy =Qr Qye.....-Qpy(med p)
and if we cancel Qy Qy..... - Qy, we get:
xF! = I{mod p)

Appendix B3: RSA Correctness

Here we prove that the combined process of
encrypting and decrypting a message correctly results in
the original message.

Theorem: C=M:(modn) M’ = Cd{mod n) M’ =M{mod n)
where (d, e, n) is a valid RSA key, with n =pq and 0 < M < min (pg)
Proof: First we combine the two exponents:

M’ =M“%(mod n)

L

where d and e are generated so that: de = k(p-1)(g-1) +1,
such that Eq. (1) yields:

M’ = MEP TR mod n)
=M-MEa- (mod ) @
Now consider:

X = MKl (mod p)

= Mpl))k(q—l) (mod p)

The Fermat/Euler theorem tells us that: M*" = 1(mod
p), hence:

X= 14" madp) = X=1(modp)

By a similar route: X = 1{mod n)

As p and q are distinct primes, we can combine these
theorem: X = 1{mod pq),
giving rise to:

with the Chinese remainder
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M = 1 (mod n)

3
Finally, we substitute Eq. (3) back into the Eq. (2)

M* =M*1{mod n)
=M (mod n)

Appendix B4: Mathematic Implementation of RSA
Algorithm

P =61 <-first prime number (destroy this after computing E and D)

Q =53 <-second prime number (destroy this after computing E and D)
PQ=3233 <-modulus (give this to others)

E =17 <- public exponent (give this to others)

D =2753 <- private exponent (keep this secret!)

Your public key is: (E.PQ).
Your private key is: (D,PQ)..

The encryption function is:

=(T"E) mod PQ
=(T"17) mod 3233

encrypt(T)

The decryption function is:

decrypt{C) =(C"D) mod PQ

=(Cr2753) mod 3233
To encrypt the plaintext value 123, do this:

encrypt(123) =(123"17) mod 3233
=33758791744665371559659295881 7679803 mod 3233
=855

To decrypt the ciphertext value 855, do this:

decrypt(855) =(855"2753) mod 3233
=123

One way to compute the value of 85572753 mod 3233 is
like thus:

2753 =101011000001 base 2, therefore
2753 =1+276+2°7+ 20+ 2711
=1+64 +128+ 512+ 2048

Comnsider this table of powers of 855:

8551 = 855 (mod 3233)

8552 = 367 (mod 3233)

8554 = 3672 (mod 3233) = 2136 (mod 3233)
8558 = 2136”2 (mod 3233) = 733 (mod 3233)
85516 = 733”2 (mod 3233) = 611 (mod 3233)
85532 = 6112 (mod 3233) = 1526 (mod 3233)
85564 = 1526”2 (mod 3233) = 916 (mod 3233)
8557128 = 916"2 (meod 3233) = 1709 (mod 3233)
855256 = 17092 (mod 3233) = 1282 (mod 3233)
55512 = 1282°2 (mod 3233) = 1160 (mod 3233)
8551024 = 1160"2 (mod 3233) = 672 (mod 3233)
552048 = 6722 (mod 3233) = 2197 (mod 3233)

Given the above, we know thus:
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8552753 (mod 3233)

= 8551 + 64 + 128+ 512 + 2048) (mod 3233)

= 8551 * 855°G4 * 855128 * 855512 * 855°2048 (mod 3233)
=855 % 016 * 1700 * 1160 * 2197 (mod 3233)

=794 # 1700 * 1160 * 2197 (mod 3233)

=2310 * 1160 * 2197 (mod 3233)

=184 * 2197 (mod 3233)

=123 (mod 3233)

=123

Appendix B5: An Implementation of RSA Algorithm using
Tava

/f A Java implementation of RSA is just a transcription of the algorithm.
// RSAPublicKey: RSA public key
import java.math.®; // for Biglnteger

public class RSAPublicKey {
public BigInteger n; // public modulus
public Biglnteger e = new Biglnteger("3"); // encryption exponent
public String userName; /attach name to each public/private key pair

public R8APublicKey (String name) {
userName = name;

}

// setN: to give n a value in case only have public key
public void setN(Biglnteger newN) {
n=newN;

}

/f getN: provide n
public BigInteger getN() {
retum n;

}

// RRAEncrypt: just raise m to power e (3) mod n
public Biglnteger RSAEncrypt(Biglnteger m) {
return m.modPow(e, n);

}

/ RSAVerify: same as encryption, since RSA is symmetric
public Biglnteger R3AVerify (Biglnteger ) {
return s.modPow(e, n);
}
}

// R8APrivateKeyFast: RS A private key, using fast CRT algorithm

import java.math.®; // for Biglnteger
import java.util. *; // for Random

public class RS APrivateKeyFast extends RSAPublicKey{
private final Biglnteger TWO = new BigInteger("2");
private final Biglnteger THREE = new Biglnteger("3");

private Biglnteger p; // first prime
private Biglnteger q; // second prime
private Biglnteger d; // decryption exponent

private Biglnteger pl, pM1, q1, gM1, phiN; // for key generation
private Biglnteger dp, dq, c¢2; // for fast decryption
public RS APrivateKeyFast(int size, Random md, String name) {
super{name ), generateKey Pair(size, md);

}
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public void generateKeyPair(int size, Random md) { // size =n in bits
/f want sizes of primes close, but not too close. Here 10-20 bits apart.
int sizel = size/2;
int size2 = sizel;
int offset] = (int)(5.0*(md.nextDouble()) + 5.0);
int offset2 = -offsetl;
if (md.nextDouble() < 0.5) {
offset] = -offset]; offset2 = -offset2;
}
sizel += offsetl; size2 += offset2;
/f generate two random primes, so that p*q = n has size bits
pl = new Biglnteger(sizel, md}; // random int
p  =nextPrime(pl);
pM1 = p.subtract(Biglnteger. ONE);
ql =new Biglnteger(size2, md);
q = nextPrime(ql);
qM1 = g.subtract(BigInteger. ONE);
n = p.multiply(q);
phiN = pM1.multiphy(qM1); // (p-1)*(g-1)
d = emodlnverse(phiN);
/f remaining stuff needed for fast CRT decry ption
dp = d.remainder(pM1);
dq = d.remainder(qh1);
¢2 = p.modInverse(q);
}

/f nextPrime: next prime p after x, with p-1 and 3 relatively prime
public BigInteger nextPrime(Biglnteger x) {
if ((x.remainder(TWO)).equals(Riglnteger. ZER ()
x = x.add(Biglnteger. ONE);
while(trie) {
Biglnteger xM1 = x.subtract(Biglnteger. ONE);
if (!(xM 1.remainder(THREE)).equals(Biglnteger. ZER Q)
if (x.isProbablePrime(10)) break;
x =x.add(TWO);
}
return x;

}

/f RSADecrypt: decryption function, fast CRT version
public Biglnteger RSADecrypt(BigInteger ¢) {
// See 14.71 and 14.75 in Handbook of Applied Cryptography, by
!/ Menezes, van Qorschot and Vanstone
/f retun c.modPow(d, n);
Biglnteger ¢Dp = c.modPow(dp, p);
Biglnteger ¢Dq = c.modPow(dg, q);
Biglnteger u = ({(cDq.subtract(cDp)). multiply (c 2)).remainder(q);
if (u.compareTo(Biglnteger. ZERO) < 0) u =u.add(q);
return ¢cDp. add{u.multiply (p));
}

/f RSASign: same as decryption for RSA (since it is a symmetric
PKC)
public Biglnteger RSASign(Biglnteger m) {
M return m.modPow(d, n);
return RSADecry pt(m); // use fast CRT version
}

public Biglnteger R8ASignAndEncrypt{Biglnteger m, RSAPublicKey
other) {
/ two ways to go, depending on sizes of n and other.getN()
if {n.compareT o(other. getN()) = 0)
retum RSAS{ign{other RSAEncrypt(m));
else
retum other. RS AEncry pt(RS ASign(m));
}

public Biglnteger RSADecryptAndVerify(Biglnteger c,
RSAPrivateKeyFast other) {
{f two ways to go, depending on sizes of n and other.getN()
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it (n.compareTo{other. getN () = O)

return other RSA Verify (RSADecrypt(c));
else

return RSADecrypt(other RSA Verify(c));

/I RS ATestFast: Test Fast RSA Tmplementation
import java.math.*; // for Biglnteger
import java.util.*; // for Random

public class RS ATestFast {

public static void elapsedTime(long startTime) {
long stopTime = System. cuwrentTimeMillis();
double elapsedTime = ({double)(stopTime - startTime))/ 1000.0;
Systern.out.printin("Elapsed time: " + elapsedTime + " seconds");

}

public static void main(String] | args) {

Random md = new Random();

Biglnteger m, ml, m2, m3, c, s, s1;

RSAPrvateKeyFast alice = new RSAPrivateKeyFast(1024, md,
"Alice");

RS APrivateKeyFast bob
"Bob ");

m = new Biglnteger(
"1234567890987654321012345678909876543210" +
"1234567890987654321012345678909876543210" +
"1234567890987654321012345678909876543210" +
"1234567890987654321012345678909876543210" +
"1234567890987654321012345678909876543210" +
"1234567890987654321012345678909876543210");

System. out.println("Message m:in" + m+ "n'");

Systern. out.println"ALICE ENCRYPTS m FOR BOB; BOB
DECRYPTS IT:");

¢ = bob.RSAEncrypt{m); // Using Bob's public key
System.out. println("Message encrypted with Bob's public key:in" +
¢+ "n");

ml = bob.RSADecrypt{c); // Using Bob's private key
System.out.printing"Original message back, decrypted:'n” + ml +

")
Systemn.out.printin("ALICE SIGNS m FOR BOB; BOB VERIFIES
SIGNATURE:");

s = alice.R8ARign(m); // Using Alice's private key

Sy stem. out.printIn(*Message signed with Alice's private key:\n" +
s+ "0y,

m2 =alice. RSAVerify(s); // Using Alice's public key

System. out.println("Original message back, verifiedn” + m2 +
")
System.outprintln('BOB SIGNS AND ENCRYPTS m FOR
ALICE;" +
"n  ALICE VERIFIES SIGNATURE AND DECRYPTS:");
¢ = bob.R8ASignAndEncrypt(m, alice);
Sy stem. out.println"Message signed and encrypted,” +
"n using Bob's secret key and Alice's public key:'\n" + ¢ + "n");
m3 = alice. RSADecryptAndVerify(c, bob);
System.out.println("Original message back, verified and decrypted,"

= new RSAPrivateKeyFast(1024, md,

"n using Alice's secret key and Bob's public key:in” + m1);

A Test Run: Here 1s a run of the above test class,
showing simple encryption, signing and a combination of
signing and encryption. M3-DOS command line appear in
boldface.
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Cv= javac RSAPublicKey java
C:\> javac RSAPrivateKeyFast java
Cv= javac RS ATestFast.java

Civ= java RSATestFast

Message m:

1234567850987654321012345678909876543210123436785098765432 10
1234567890987654321012345678909876543210123456785098765432 10
1234567850987654321012345678909876543210123436785098765432 10
1234567890987654321012345678909876543210123456785098765432 10

ALICE ENCRYPTS m FOR BOB; BOB DECRYPTS IT:
Message encrypted with Bob's public key:

54340581367664807805701276287259968381366767413365992537733576
0556755516424469233387398561 035220096421 542902314 0044424963553
9200998635 905637447 900288319457686182172001813317733 0034484625
9417152944 029631425875 669266652443 878370384 1869144887617324529
2324151150663861 262596533907 16812617231192297350676070135287

Original message back, decrypted:

1234567850987654321012345678509876543 210123456 789098765432 10
1234567890987 654321012345678909876543210123456789098765432 10
1234567850987654321012345678509876543 210123456 789098765432 10
1234567890987 654321012345678909876543210123456789098765432 10

ALICE SIGNS m FOR BOB; BOB VERIFIES SIGNATURE:
Message signed with Alice's private key:

2399906270921 635869383607 2721907 18758557 259655 9729003884362678
4334056744376 101809741 282 946428993 573655 987 193 640986 3729003566
7891 043703227777 233447498657 899393 572096857 419835871 3462782149
8696787638971 515840503912 198001239564 362434452467 151 9902599537
1266867400547 136422789069497 185692715034254 109803 5705104040

Original message back, verified:

1234567890987654321012.345 678909876 543210123456789098765432 10
1234367890987654321 012345 678909876 543210123456 785098765432 10
1234567890987654321012.345 678909876 543210123456 789098765432 10
1234367890987654321 012345 678909876 543210123456 785098765432 10

BOB SIGNS AND ENCRYPTS m FOR ALICE;

ALICE VERIFIES SIGNATURE AND DECRYPTS:
Message signed and encrypted,

using Bob's secret key and Alice's public key:
5556809544892284516339561 864124500759244273912586952822242823 5
0607993390851 939181 6363062327609 12706003 539593 7753704903768704
45903174464182907651250228523269660222 146752849711 1242219800301
0354802348474705334032443 131116047 240 106578 190163202891 6581722
4833283798363570908509851 773 688615057 167242 160604 046117 12970

Original message back, verified and decrypted,

using Alice's secret key and Bob's public key:
1234567890987654321012345678909876543210123456785098765432 10
1234567890987654321012345678909876543210123456785098765432 10
1234567890987654321012345678909876543210123436785098765432 10
1234567890987654321012345678909876543210123456785098765432 10
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