Information Technology Journal 3 (1) 57-68, 2004
ISSN 1682-6027
© 2004 Asian Network for Scientific Information

A Schema Comparison Approach to Determine Semantic Similarity among Schema Elements

Nayyer Masood
COMSATS Institute of Information Technology, Wah Campus, Wah Cantt, Pakistan

Abstract: A semantic based schema comparison approach is presented that generates semantic similarity
assertions among schema elements of the component database of a federated database system. The schema
comparison approach 1s a part of a schema analysis methodology ECCAM. The approach uses the
interpretation assigned to component schemas and generates ranked semantic similarity assertions. These
assertions may be used by the integrator to develop an integrated schema.

Key words: Semantic heterogeneities, schema interpretation, semantic similarity, similarity assertions

INTRODUCTION

A federated database system (FDBS) supports
different federations of schemas (Fig. 1b). Each federation
is represented by a federated schema that is developed on
the basis of requirements of different users” groups of the
FDBS. A federated schema results from the process of
schema integration (SI) in which the schema elements
from export schemas are merged to form the federated
schema. The export schemas are the subsets of the
component schemas where as each component schema
belongs to a component database of the FDBS!. Schema
integration is a crucial process for establishing an FDBS;
the most critical phase in ST is schema analysis in which
elements from export schemas are compared with each
other to identify the semantically similar elements, that 1s,
the elements that model the same or similar concepts. The
schema elements identified as semantically similar are then
candidates to be merged into a federated schema.

An effective schema analysis approach should be
based on the semantics of the component database
schemas rather than their structures™. A number of SI
approaches that are based on the semantic enrichment of
the component schemas™. One such approach presented
in Masood™ is ECCAM (BExtended Common-Concept
based Analysis Methodology). The schema comparison
approach presented m this paper is a part of ECCAM. In
the following, ECCAM 13 presented briefly that will help
to understand the schema comparison approach
presented in the present research.

ECCAM-A recap: ECCAM is a semantic-based schema
analysis methodology in which component schemas are
compared with each other to identify the semantically

similar elements. A pre-requisite to ECCAM is the
development of a set of concept hierarchies™ a form of
ontology!'l. Ontology is an explicit specification of a
conceptualization where a conceptualization is an
abstract, simplified view of the world that we wish to
represent for some purposes!'. An ontolegy in ECCAM
consists of general concepts that may exist m the
common/global Umverse of Discourse (UoD) being
modeled within the component databases of an FDRBS.
Fig. 1a presents an example set of concept hierarchies for
a umversity library system. ECCAM consists of three
phases:

Schema interpretation: In this phase component schemas
are assigned an interpretation

Schema comparison: The component schemas are
compared with each other to generate similarity assertions
between schema elements

Similarity analysis: The assertions generated in phase 2
are analyzed to identify the ones that are more probable to
be true.

This research presents the last two of the above three
phases of ECCAM, that is, schema comparison and
similarity analysis. The first phase has been discussed in
detail in Masood and Eaglestone!! however as help in
understanding the schema comparison approach the first
phase and other necessary notions are discussed briefly:

Schema interpretation is the first phase of
ECCAM!"™' In this phase each element from a
component schema 15 mapped to the concept(s) that it
models. The mapping process results in an interpretation
of the entire schema. The same process is performed on

Corresponding Author: Muhammad Zaheer Aziz,

Department of

Computer Science, Faculty Block 2,

International Islamic University, H-10, Islamabad, Pakistan

Inform. Technol. J., 3 (1): 57-68, 2004

reference
name number External External
schema schema
Id number cat number |
location Federated Federated
/) i\ schema schema
Shelf room Export | |Export || Export | | Export
college department address schema| [schema| | schema] | schema
person
author borrower publisher Component| o 4 o |Component
/ .\ schema schema
staff student Local Local
/ \ /' x ‘\ schema| ®®® |schema
teaching office post under short
grad grad course
Fig. 1a: Example concept hierarchies (b) Federated database architecture
acc_no
name B {id_number}
rson |bk_issued| item .
fnamel’ ~{borrower} {issue} [[published} holding
- Name {shelf id_number}
reg_no / \ / \ {name} ed name
{id_number} ¥~——_[Student | [Publisher Book news_pap /{'publisﬂer name}
_ [student}| [fpublisher] [{textbook} newspaper}\ ’
dept ‘m {lives_at} 3 pap_type
{department, name} d_adr address c_comp au_names {type
college {study, college} faddress} 4 foompany} {author, name}
college, name r_umn {
fcollege, }{room,i d_number} {publisher, address}
attribute relationship Type

: A
@ aggregation is_of_type 1A{c::mct-:pt,...}

Fig. 2a: Concept model of a component schema

Tua

fconcepts,...} [{concept,...}

V_title ¥_name
{name} % [V _Acad_mat] V_Borrower | ¥ {name}
V_placed_at {texthook, <_»{te_achin V_dept
V g st,|—» —dep
{shelf, id_number} journal} V_BE:S\::;’iV student} [Na (department, name}
V¥_puname V_shop A ¥_status
{publidher, name} {selling_co} {typel
V_Student
V_sh_names ¥V_reg no —
{name} v _located {id_number} fsuident]
{assress}

Fig. 2b: Concept model of a target federated schema

each component schema of the FDBS. The outcome of the
schema interpretation phase 1s a concept model for each
component schema of the FDBS. A concept model of a

component schema assigns explicit semantics to each of
the constituent elements of the schema individually as
well as collectively. In addition to the component concept

58

Inform. Technol. J., 3 (1): 57-68, 2004

models, a concept model for each federated schema is also
prepared called the federated concept model (FCM). An
FCM consists of concepts and mter-concept relationships
agamnst the virtual schema elements that are to be
included in a particular federated schema based. Tt is
defined by the global DBA based on the requirements of
a particular user group and it provides a context for
dentifying semantically similar elements from the
component schemas to be integrated into the federated
schema. The main advantages obtained by the concept
models resulting from the schema interpretation phase can
be listed as:

® better understanding of the schema semantics

® provide a basis for semantics oriented schema
comparison

® make many of semantic heterogeneities (SHs)
meffective for the schema comparison phase

® provide a context for the schema comparison phase

Figure 2 shows concept models for example
component and federated schemas.

Other important 1deas discussed during schema
interpretation phase and used in the later phases are
given below:

Intrinsic and in-context semantics: The intrinsic
semantics of a schema element is its meamng, i.e., the
concepts that it denotes, independent of the context
within which it is used and is represented by the function
Int from the set of schema element names to the power set
of concepts. Thus, the intrinsic semantic of a schema
element O, is defined by

Int (O,)={c,, I=1,m}
where ¢;., fori=1, ..., m are the concepts denoted by O,

Further, the m-context semantics of an element are its
more specific semantics within the contexts in which the
element is defined within the schema. The in-context
semantics of a schema element are determined by the
concepts that it denotes, i.e., its intrinsic semantics and
the contexts within which it is modeled. The contexts of a
schema element are modeled within a schema by the
structures in which the element is defined, which in turmn
denote Srs between the schema element and the
structural elements to which it 1s related. A context (O, O,)
is an immediate context of O, if O, and O, are linked with
each other through a single SR, for example, in “Person
has name” the “Person has” provides an immediate
context for element “name”.

The in-context semantics of a schema element Oi in
context (O1, Ox) 18 represented by concatenating the

59

intrinsic meamng of the element Oi, the SR srelx,x-1 and
the in-context meamng of the element Oy, in context (O,.,,
0,), 1.e,

ICMean(O,, O,)=<Iut(O)=1f O=0,
Otherwise
ICMean(O, O,)=ICMean(Qy,,) ? stel, ., ? Int(O);)

where O,0,,,...0,,,0; denotes the structural path from
the in-context schema element O, to the schema element
O,
Shallow and deep semantic similarity: ECCAM
establishes two types of semantic smmilarity among
schema elements; shallow and deep semantic
similarity" . Shallow similarity between a pair of schema
elements is based on their respective ntrinsic meamngs
only. Two schema elements (O, O,) have shallow similarity
between them if there are some concepts common among
therr intrinsic meanings. The existence of shallow
similarity between two elements can be determined using
the Tnt function (f1). Formally, T define shallow similarity
as follows:

Two schema elements, O; and O, are shallow similar
if! Int{O) N Int(O)) #

Schema elements cannot be integrated on the basis of
shallow similarity alone, because the same concept(s) may
represent different real-world objects when viewed in
different contexts. Eligibility of two schema elements to be
integrated 15 therefore asserted on the basis of deep
similarity (called semantic similarity in general) between
them in ECCAM, which is defined as:

two schema elements are semantically similar if there is a
correspondence between the concepts that they model
when compared in a particular context.

Semantic similarity between a pair of elements O; and
O,, with respect to the contexts, context((, O,) and
context(O,, O,), exists if the following conditions hold:

1. Int(O) N Int(O) # o, ie, O and O, are shallow similar

2. (0, # O) and (O, # O,) then srel,, = srel,,; 1.e., the
corresponding SRs are compatible
3. Oy and O, are semantically similar, respectively

within context(0;,,,0,) and context(C,,,0,)

where 0,0, ,...0,,,0, denotes the structural path from
the context element O, to the schema element O, and
0,,0,,,...0,,,0, denotes the structural path from the
context element O, to the schema element O,.

Inform. Technol. J., 3 (1): 57-68, 2004

Taxonomy of semantic similarity: Semantically
Equivalent Schema Elements: Two schema elements, O,
and O, are said to be semantically equivalent if they

model exactly the same concepts in a particular context.

Semantically related schema elements: Two schema
elements (O, O,) are semantically related if they have some
concept(s) in common a particular context.

Semantically disjoint schema elements: According to
proposed schema analysis methodology two schema
elements (O, O) are semantically disjoint if there is no
coneept common between their intrinsic meanings

Contextually disjoint schema elements: This category
mcludes those element pairs that are neither semantically
equivalent, related nor disjoint. These are the pairs which
are intrinsically shallow similar, but cannot be related
because there 1s no comrespondence between their
respective contexts.

Schema comparison approach: The objective of schema
comparison 1s to identify the schema elements from each
component schema that are semantically similar to those
required to be included in the target federated schema.
The process is based on the comparison of the concept
model of target federated schema (FCM) with the concept
models for each of the component schemas one by one.
The comparison process results in assertions showing the
pairs of semantically similar schema elements represented
within the concept models of the target federated schema
and a component schema. The comparison process uses
both the intrinsic and in context meanings of schema
elements to compute two different types of similarities
between them, called the shallow and the deep similarity.
The sections to follow explain what I mean by these types
of similarities and how they are computed.

Establishing shallow similarity: The strength of semantic
similarity between O, and O, is computed on the basis of
their respective intrinsic meamngs. For computation
purposes, the respective intrinsic meamngs, Int(Q,) and
Int(O,) are represented as an n-component concept
vectors!” where n is the total number of concepts in
ontology and CV(x), 1 <x<n, denotes the xth component of
CV, namely the xth concept. The association of a set of
concepts with an attribute, say element O, can be
represented by an n-component vector CV, where
CV,(x)=0 if concept C(x) is not associated with O
otherwise CV,(x)=1. These concept vectors are later used
to compute the semantic similarity between a pair of
elements, say O, and O, The concept vectors are

&0

compared using the sim function (f-2 below)™ to compute
shallow semantic similarity. This specific use of sim is
defined as a function, Ssim (0,0,), the value of which
indicates the existence/non-existence and the strength of
shallow similarity between O, and O as explained below.

The detection and computation of shallow similarity
consists of following two main steps:

Preparing concept vectors: n-component vectors, CV(n),
are created to represent this mtrinsic semantics of each of
the schema element, where n 1s the total number of
concepts in the CMU and each component of CV
represents a particular concept within CMU. The values
of the vector elements are set to represent the mappings
from the elements to the concepts they denote the ith
element of a concept vectors (CV(i)) is set to 1 to
indicate that concept ci is denoted by element Oj,
otherwise 1t 1s set to 0.

Application of the sim function: After preparing the
concept vectors for the both O1 and Oy, the strength of
shallow similarity (Ssim(0,,0;)) is computed by applying
the sim function, 1.e.,

CV, _sCV

voi o]
JTCV, . IX[CV,

where CV,5 and CV, are the concept vectors for the
elements O; and O, + is the dot product of two vectors and
|| 1s the number of ones m a vector. Ssim(C,0;) returns a
value between 0 and 1 mclusive. A O denotes the absence
of shallow similarity between (O,, O,), where as a non-zero
value indicates not only the existence of the shallow
similarity but also represents its strength. The greater the
value of Ssim(Q,, O), the more the strength of shallow
similarity between O, and O;. A 1 represents that intrinsic
meanings of O, and O, are exactly the same, that is they
model exactly the same concepts mtrinsically.

The strength of shallow similarity 13 computed
between every elements pairs (O,, O), where O; and O,,
respectively belong to the (target) federated schema and
(a particular) component schema. The aim 1s to find
component schema elements (O,) that are shallow similar
to those in the target federated schema. As an example,
the process is applied on the federated and component
concept models of sss 2. The process results in 53
shallow similarity assertions”” scme of them are (Fig. 3).

Shallow similarity plays two critical roles. One, it
provides a basis for establishing deep similarity between
schema elements and the second, it narrows the scope of
search for the deep similarity between schema elements,

sim(CV,

vol*

Cv,)=

Inform. Technol. J., 3 (1): 57-68, 2004

Ssim(Oy, O) Concepts for O; Concepts for O;

Ssim(V_Acad_mat, C_Itemn)=0.71 textbook, journal newspaper, magazine, textbook, journal
Ssim(V_Acad mat, C Book)=0.71 textbook

Ssim(V_title, C name) =1.00 name name

Ssim(V_title, C ¢ comp)=0.71 name, comp any

Ssim(V_title, C_name)=1.00 name

Ssim(V_placed_at, C_holding)=0.50 shelf, iterns id_number, shelf

Ssim(V_puname, C_Person)=0.24 name, publisher
Ssim(V_puname, C dept)=0.50
Ssim(V_puname, C _name)=0.71
Ssim(V_shop, C_c_comp)=0.71
Ssim(V_sh_name, C_name)=1.00
Ssim(V_Borrower, C_Person)=0.75

name
selling_co, name

teaching_st, under_
grad, short_course,

Ssim(V_Borrower, CStudent)=0.89

author, borrower, publisher, teaching_st, office_st, under_grad, short_course,

research_pgs, taught pgs
name, department.

name, comparny
name

author, borrower, publisher, teaching_st,

office st, under grad, short course, research pgs,
taught_pgs research_pgs, taught_pgs

under grad, short. course, research pgs, taught pgs

Fig. 3: 8sim(O,, O,) for some of the elements from example FCM and the compenent concept model of Fig. 2 with

corresponding concepts of O; and O,

since I define deep similarity only for elements which are

shallow similar. The next section discusses the

computation of deep similarity in detail.

Establishing deep similarity: This section discusses deep
sinilarity; the type of similarity that acts as a basis for
mtegrating schema elements within a federated schema.

Detection of deep similarity: Detection of deep similarity
between schema elements 13 based on shallow similarity
assertions. Two schema elements (O, O,) can have deep
similarity only if they have shallow similarity between
them. Deep similarity between two shallowly similar
schema elements, O, and O, is asserted when a
correspondence between a context of O, and a context of
0O, is established.

An exhaustive implementation of the above approach
1s not feasible, since it requires all the contexts of O, to be
compared with all contexts of O;. In order to reduce the
problem complexity, such that it becomes tractable, T have
restricted the
correspondences between immediate contexts of the

search space by testing only for
schema elements bemng compared. The procedure
implemented for testing for deep similarity between two
shallowly similar elements is therefore as follows:

Two shallow similar schema elements, (0,0,), are
deep similar if: there exists two immediate contexts, (O,,
srel,;) and (O,,srely), such that:

O, and O, are shallow similar
the SRs, srel; and srel;, are compatible.

For this purpose, each of the context element of O,
(O,), 15 checked for a possible shallow similanty with all of
the context elements of O; (O,). If the Ssim(O,, O,) 1s
non-zero then this means that O, is deep similar with O;
The element pair (O, O)) therefore qualifies for the
computation of deep similarity n their respective contexts.

Formally, deep similarity between two shallow similar
schema elements, O, and O, holds if the following
condition is true:

(Ssim(0;, 0)>0) AND (Ssim(O,, 0,)>0)

where O, and O, are the context elements of &; and O,
respectively.

The deep similarity is checked semi-automatically
within ECCAM.

® Ifvalues of Ssim(C, O)) and Ssim(O,, O,) are nen-zero
then ECCAM (automatically) asserts (O, and O, to be
semantically similar)

® Fach assertion of semantic similarity is presented to
the integrator along with the SRs involved. The
mtegrator then (manually) determines if the relevant
SRs are compatible. Tf so, the integrator accepts the
assertion as valid, otherwise it is rejected.

The deep similarity 1s checked for each virtual and
component schema elements pair (O, &) which have a
non-zero shallow similarity. Some of the elements (O, O;),
from the example concept models of Fig. 2, which are deep
similar, their respective context schema elements, the SRs
between them and the corresponding concepts (in italics)

&1

Inform. Technol. J., 3 (1): 57-68, 2004

Table 1: Some virtual and component schema elements having deep similarity

Schema elements with in-context elements, SRs between them and the concepts they model

Target Federated Schema (Virtual) Elements

Component Schema Elements

V_Acad_mat, V_Acad_mat, self
textbook, joumnal

V_Acad_mat, V_Acad_mat, self
textbook, joumnal

V_title, V_Acad_mat, has

name, textbook, journal

V_puname, V_Acad_mat, has
publisher, name, textbook, journal
V_Student, V_Borrower, generalises
under grad, short. course,
research_pgs, taught_pgs, teaching_st
WV Bomower, V_Bomrower, self
under grad, short. course,

research pgs, taught pgs, teaching st

C_Itemn, C_Item, self

newspaper, magazine, textbook, journal

C_Book, C_Item, generalises

textbook, newspaper, magazine, journal

C_title, C_Item, has

name, textbook, newspaper, magazine, journal
C_publ, C_Book, has

publisher, address, textbook

C_Person, C_Person, self

author, publisher, teaching_st, office st,
under_grad, short_course,research_pgs, taught_pgs
C Student, C Person, generalises

under grad, short course,research pgs, taught pgs
author, publisher, teaching_st, office st

are shown i Table 1. The concepts denoting the mtrinsic
meanings of the schema elements are underlined.

Note that in the above table, SRs are described from
the context element (O,) to the element (), for example,
generalises (instead of 1s-a). So, the pairs for which deep
similarity 1s detected are the ones for which the deep
similarity is computed, as is discussed next.

Computation of deep similarity: After detection of deep
similarity between a pair of schema elements (O, O)), the
next step is the computation of value of deep similarity
and thus reveals the exact nature of semantic similarity
between the pair. ECCAM uses the same function for
computing the deep similarity value between elements O,
and O, that is used for shallow similarity (f-2), however the
concept vectors for the former are prepared by merging
the concepts modeled by both the elements (being
compared) and their respective in-context elements. Once
the in-context concepts of the schema elements that have
been detected as being deep similar are accumulated
together, they can be used in the computation of deep
similarity. For this purpose their concept vectors are
prepared as for the computation of shallow similarity and
the sim function (f-2) is applied.

The existence and details of the deep similarities
detected and measured are presented to the integrator as
a set of assertions. These assertion are defined by the
function, Dsim, as follows:

Dsim (O, O)={=0,, srel,;, O, srel;;, Sval, Dval, strn>}(f-3)

where O, and O; denote virtual and component schema
elements;

O,, O, are the respective context schema elements that are
related to O; and O, through SRs srel and srel ,
respectively.

Sval and Dval represent the shallow and deep similarity
values,

62

the final compenent “strn” denotes the strength of the
assertion.

A deep similarity assertion states that a wvirtual
element O, m-context of O through srel 15 (deep)
semantically similar to O, in-context of O, through srel,
the value of shallow similarity between the two is Sval and
that of deep similarity is Dval and strn is the possibility of
thus assertion being valid. An example for the computation
of deep similarity (Dval) follows.

Consider the elements V_puname and C_publ in the
Table 1. These two elements have non zero shallow
similarity between them, that 1s,

Ssim(V_puname, C_publ)=0.5

So, they do qualify for the testing of deep similarity
between them. Their respective in-context elements are
V_Acad mat and C_Book and

Ssim(V_Acad mat, C Book)=1.0

That is, the in-context elements of V_puname and
C publ also possess shallow similarity between them. To
compute the deep similarity, sets of their respective in-
context concepts are prepared as shown in Table 1, these
concepts are used to prepare their concept vectors and
finally sim function (f-2) is applied on these concept
vectors and the following assertion 1s produced:

Dsim(V _puname, C_publ)=<V_Acad mat, has, C Book,
has, 0.50, 0.58, strn>

The above assertion shows the value of deep
similarity (Dval) between the elements V_puname and
C publ as 0.58.

Deep similarity 1s computed for all contexts of each of
O;and O, i.e, each element is compared within the context

Inform. Technol. J., 3 (1): 57-68, 2004

Dsim(0;, 0)={<0,, srel;;, O, srel,,, Sval, Dval, stm>}

1 Dsim (V_Acad mat, C Ttem)=<V_Acad mat, self, C Ttem, self, 0.71, 0.71, stm>

2 Dsim (V_Acad_mat, C_Book)=<V_Acad_mat, self, C_Item, generalises, 0.71, 0.71, sttm>

3 Dsim (V_title, C_title)==V_Acad_mat, has, C_Item, has, 1.00, 0.77, strm>

4 Dsim (V_title, C_au_names)=V_Acad_mat, has, C_Book, has, 0.71, 0.67, stmn>

5Dsim (V_placed at, C acc no)=<V_Acad mat, has, C Ttem, has, 0.71, 0.67, stm>

6 Dsim (V_placed at, C holding)=<V_Acad mat, has, C Ttem, has, 1.00, 0.82, stm>

7 Dsim (V_puname, C Publisher==V_Acad mat, has, C Book, has, 0.50, (.58, strm>

8 Dsim (V_puname, C_title)=<V_Acad_mat, has, C_Item, has, 0.71, 0.67, strn>

9 Dsim (V_puname, C_publ)=<¥_Acad_mat, has, C_Book, has, 0.50, 0.58, strm>

10 Dsim (V_puname, C_au_names)="V_Acad_mat, has, C_Book, has, 0.50, 0.58, strn>

11 Dsim (V_puname, C_name)=<V Acad mat, has, C Book, has, 0.82, 0.75, st

12 Dsim (V_Bomrower, C Person)=<V Bomrower, self, C Person, self, 0.79, 0.79, stm>

13 Dsim (V_Borrower, C_Student)=<V_Bomrower, self, C Person, generalises, 0.89, 0.79, st
14 Dsim (V_name, C_name)=<V_Borrower, has, C_Person, has, 1.00, 0.82, stm>

15 Dsim (V_name, C_depty=<V_Borrower, has, C_Student, has, 0.71, 0.83, strn>

16 Dsim (V_dept, C_name)=<'V_Borrower, has, C_Person, has, 0.71, 0.76, strm>

17 Dsim (V_dept, C_dept)=<V_Borrower, has, C_Student, has, 1.00, 0.93, strm>

18 Dsim (V_Student, C Person)=<V Bomower, generalises, C Person, self, 0.71, 0.79, stm>
19 Dsim (V_Student, C_Student)=<V_Bomrower, generalises, C Person, generalises, 1.00, 0.79, st
20 Dsim (V_reg_no, C_reg_no)=V_Student, has, C_Student, has, 1.00, 1.00, stm>

Fig. 4: Deep similarity assertions for example schemas

of each related element. The comparison process may
therefore generate more than one assertion for a single
virtual element, mainly due to SHs. Consequently, the
mtegrator must identify those assertions that are
valid/applicable. As a further help to the integrator,
assertions are ranked according to their respective
probability of validity.

Figure 4 illustrates the presentation of deep similarity
mformation as sets of assertions. The deep similarity
assertions shown mn the Figure are generated for our
example concept models of Fig. 2. However, note that the
value of st 1s still unspecified which will be explamed
later when I describe the process for ranking the
assertions. Note also that schema elements which are not
mvolved in an SR that establishes a context for them, e.g.,
V_Acad mat and C Item, are treated as being contexts for
themselves with an arbitrary SR “self” (as in assertion 1 in
the Fig. 4).

The general format of an assertion 1s given at the start
of Fig. 4, as a help to the reader in understanding different
constituents of assertions.

The assertions given in Fig. 4 are generated by
applying ECCAM to the case study concept models. Note
that for some schema elements of the FCM, multiple
assertions are generated, e.g., assertions 1 and 2 are about
the same virtual schema element, i.e., V_Acad mat. On the
other hand for scme virtual schema elements, no
assertions are generated which signifies that these
schema elements are not semantically similar to any of the
elements in the particular component schema. However,
a critical assumption behind this declaration 1s that all the
phases of the proposed methodology have been
performed properly and strictly as described. However,
there 1s always room for human error. Specifically, the
requirements that, (a) mapping is performed to the most

63

specific concepts within a particular concept hierarchy
and that (b) semantic similarity is required to be explicitly
declared mn the form of FCM, might cause the omission of
possibly valid assertions 1n the following circumstances:
1) The methodology would not identify two schema
elements (O, O)) as semantically similar if one, say O,
is mapped to concepts {c;} and the cther, say O, is
mapped to {¢;}, such that {c;} is/are parent(s) of {c;}.

For example, consider the Fig. 5 in which virtual and
component schema elements in (b) and (¢) are mapped to
the concepts from the concept hierarchy given in (a). The
attribute V_name is mapped to concept name (in b), where
as the attributes mitial and surname are mapped to
concepts 1 name and f name (in c¢), respectively. The
former type of mapping, that is to a non-terminal concept,
1s not recommended by ECCAM. So the attribute V_name
will not be 1dentified as being similar to either of the nitial
or surname.

1-reference

2-name 3-number

4-acronym 5-f_name 6-1_name 7.id number

(a)
V_Student Student
{ug, pg} u
V_I1£1E initial sumame
{name} {f name} flname}
(b) ©

Fig. 5: Mapping to parent and child concepts (b and ¢)
from concept hierarchy in (a)

Inform. Technol. J., 3 (1): 57-68, 2004

In order to compensate for missing assertions due to
such type of mapping, the detection phase is run again for
the virtual schema elements for which no assertions have
been generated (Fig. 6). This time the matching between
concepts is searched among their respective
generalizations. If such a match is found, the child
concept(s) isfare set equal to the parent one(s) and
similarity is computed between the schema elements in
question. However, an assertion computed in this way is
labeled, so that the integrator knows the basis on which
it was generated.

To illustrate this generalized comparison of schema
elements we again consider the example concept models
and following assertion is generated:

21 Dsim{V shop, C ¢ comp)==V_Acad mat, has, C Book, has, 1.00,
0.41, stm>

Fig. 6: Assertion generated by generalised mapping

2) The integrator may omit, by mistake, to map a

particular schema element to one or more concepts
that are actually being modelled by that element, or
may forget to declare some schema elements as
semantically similar in the FCM.

To illustrate this second source of assertion
omission, consider Fig. 7, in which (a) contains an example
concept hierarchy, (b) and (c) are example schema
elements from wvirtual and component schemas,
respectively. VMg (in b) denotes the concept magz
(magazine), which is not represented in the component
schema (in c¢), rather it models the concept book in
Pub mat. We can not therefore establish semantic
similarity using the proposed methodology. However, in
a case when there i1s no match found for V. Mg, or when
the integrator, by mistake, may omit to mention the
concepts book and magz as being semantically similar
whereas they are in this particular context, it might be
useful to declare (V_Mg, Pub_mat) as being ontologically
similar.

CH=n
1-items

2-published 3-au_vi

4-book 5-magz 6-Jour 7-n_pap 8-a-cst F-vcst 10-cd
(a)

V_Mg Pub_mat
{magz} {book}
V_puname title
{publisher, name} {name}
(b) ()

Fig. 7. Schema elements having ontological similarity

&4

Such assertions are presented to the integrator as
relatively less probable ones and they might be applicable
as such or to prompt the integrator to correct his mistake
or omissions.

Figure 8 containg ontelogical similarity assertions for
the virtual schema elements from example FCM for which
the proposed methodology does not generate assertions.

22 Dsim (V _sh name, C college)=<V shop, has, C d adr, has, 0.71,
0.55, strn>>

23 Dsim (V located, C address)=<V shop, has, C Publisher, has, 1.00,
0.45, strm>>

24 Dsim (V_status, C Student)=<V Borrower, has, C Person, generalises,
0.00, 0.80, st

25 Dsim (V_status, C_d_adr=<V_Borrower, has, C_Student, has, .35,

0.75, strm>
Fig. 8: Ontological similarity assertions

If there are still some virtual schema elements for
which assertions have not been generated, then for such
elements assertions are generated based only on the
shallow similarity (with O deep similarity). Such assertions
are also useful since, (i) they inform the integrator that for
these virtual elements no semantically similar component
element could be found, and (ii) knowledge of shallow
similarity might also be useful on its own. This situation
is illustrated in the Fig. 9.

In this situation, the elements model similar concepts
in exactly inverse fashion and there 13 no other
relationship that could establish a commonality between
them. So none of the above mentioned types of deep
similarity could be computed in such a situatior, so
shallow similarity assertions are the best possible
solution.

The detection and computation activities of the
schema comparison process has been explained above.
The comparison process is carried out with the objective
of establishing semantic similarity (deep similarity)
between schema elements. The methodology produces its
best results if the mapping process has been performed
properlyt'™". Specially, the development of FCM is

¥Y_Bk Author
{book} {author}
j written_by j writes
V_au book
{author} {book}
(@ (b)

Fig. 9: Elements for which deep similarity cannot be
computed

Inform. Technol. J., 3 (1): 57-68, 2004

critical to the comparison process, since it establishes the
context for the comparison. However, the proposed
schema comparisen method also mnclude steps which
compensate for some of the possible errors made during
the mapping process as explained above.

Similarity analysis: The comparison process may
generate many assertions for a single schema element, for
different reasons, like the semantic heterogeneity among
component schemas and the availability of different
constructs to model the same real-world object. The final
phase of the proposed schema analysis methodology 1s
therefore designed to assist the integrator in validating
the assertions generated. Tt does this by assigning a
strength to each to indicate their likelihood of bemng valid.
The heuristics applied for this purpose 1s as follows.

Ranking of assertions: The Schema Comparison phase of
ECCAM may generate many assertions for individual
virtual schema elements of the target federated schema.
This is illustrated in the example assertions given in Fig.
8, 6 and 4. This is mainly a consequence of semantic
heterogeneity between CDBSs. Multiple assertions for a
single virtual schema element makes the task of the
integrator more complex, since many of these will be
invalid or irrelevant to the integration task. Tt is therefore
beneficial to the integrator if these assertions are ranked
according to their probability of being valid. The ranking
process used in ECCAM assigns a strength to each
assertion, that represents its likelihood of being valid. The
strengths are presented to the mtegrator as part of the
assertions generated by the Dsim function (-3).

An assertion strength 1s a numeric value between 0 and 6:

0 denotes a (probably) false assertion;

1 to 6 represent valid assertions with decreasing
possibility of validity.

A strength of 1 (strongest) 1s assigned where there 1s
a ‘perfect’” match, m which case other assertions
involving the wvirtual and component schema
elements in that particular assertion are overridden
and assigned a O strength (invalid).

Strength values 2 to 6 are assigned where the match
is less strong; where as represent semantically related
schema elements.

The assertion rankings are assigned by applying the
following heuristics:

Perfect match heuristic: An assertion if semantic
similarity between two schema elements, O, and O, is

65

20 Dsim(V reg no, C reg no)=<V Student, has, C_Student, has, 1.00,

1.00, 1>

Fig. 10: An assertion showing semantically equivalent
schema elements

assigned a strength of 1 (strongest), if the deep similarity
value, Dsim in Dval(O,, O)), 1s equal to 1.

This happens only when Ssim(0,, O) and Ssim(O ,
O,) are both equal to 1. Such an assertion indicates that
the schema elements involved are semantically equivalent,
1.e., they model exactly the same real-world concepts. All
other deep similarity assertions involving both of Q; and
O, are then rejected, i.e., assigned a O strength (invalid).

Application of the perfect match heuristic has
resulted following assertion in the assertions of Fig. 10
being assigned a ranking of 1, since this was the only
assertion generated for V_reg no, so there 1s no assertion
with a zero ranking.

If the deep similarity strength between two elements,
O, and O, is between 0 and 1, this indicates that the two
schema elements are semantically related, that 1s, they
have some concepts in common. However, because this
1s a weaker association than semantic equivalence, there
may be many assertions generated on this basis which
declare one virtual schema element to be semantically
related to component schema elements. Multiple
assertions are ranked by applying heuristics based upon
their cause as follows:

Multiple assertions may be generated for a smgle
schema element, O, as a consequence of an SH, where by
the mformation modeled by O, 1s collectively modeled by
multiple component schema elements with a shared
immediate context, which I call Horizental Information
Dispersion SH, which 1s illustrated in Fig. 11. Note that the
information denoted by V_name (in (b)) 15 distributed
(horizontally) between the initial and surname attributes

(in (c)).
} f%

2-name 3-number

4-acronym 5-f_name 6-1_name 7.id number

(a)
V_Student Student
fug, pg} u
V_name initial surname
{Lname, f_name} |{f_name} {Lname}
(b) (=]

Fig. 1la: Concept hierarchy used for mapping the
elements to (in b and ¢)

Inform. Technol. J., 3 (1): 57-68, 2004

A horizontal information dispersion SH will cause
assertions to be generated for each of the schema
elements within the shared context. Multiple assertions
for a single virtual schema element that are a consequence
of an mstance of this type of SH are ranked according to
the following heuristic.

Horizontal information dispersion heuristic: Given a set
of assertions of semantic similarity between a schema

element O, and elements which are a horizontal
information dispersion of that element, O,, O,,O,, the
assertions are ranked as follows:

The assertions(s) with the maximum deep similarity
value 1s/are assigned a strength of 2; others are assigned
a weaker strength of 3. Example of assertions (Fig. 4)
ranked by applying the horizontal information dispersion
heuristic are given below:

1 Dsim (V_Acad mat, C Ttem)=<V Acad mat, self, C Ttem, self, 0.71, 0.71, 2=

2 Dsim (V_Acad_mat, C_Book)=<V_Acad_mat, self, C_Item, generalises, 0.71, 0.71, 2>

3 Dsim (V_title, C title=<V Acad mat, has, C Ttem, has, 1.00, 0.77, 2=

4 Dsim (V_title, C_au_names)=<V_Acad_mat, has, C_Book, has, 0.71, 0.67, 2>

5Dsim (V_placed at, C acc noy=<V_Acad mat, has, C Ttem, has, 0.71, 0.67, 3=

6 Dsim (V_placed_at, C_holding)=<V_Acad_mat, has, C_Item, has, 1.00, 0.82, 2>

7 Dsim (V_puname, C_Publisher)=<V Acad mat, has, C_Book, has, 0.50, 0.58, 3=

8 Dsim (V_puname, C_titley=<V_Acad_mat, has, C_Item, has, 0.71, 0.67, 2>

9 Dsim (V_puname, C_publ)=<V Acad mat, has, C Book, has, 0.50, 0.58, 3=

10 Dsim (V_puname, C_au_names)=<V_Acad_mat, has, C_Book, has, 0.50, 0.58, 3>

11 Dsim (V_puname, C_name)=<V_Acad mat, has, C Book, has, 0.82, 0.75, 2>

12 Dsim (V_Borrower, C_Person)=V_Borrower, self, C_Person, self, 0.79, 0.79, 2>

13 Dsim (V_Bormower, C_Student=<V_Borraower, self, C Person, generalises, 0.89, 0.79, Z»
14 Dsim (V_name, C_namey=<V_Borrower, has, C_Person, has, 1.00, 0.82, 2>

15 Dsim (V_name, C_dept)=<V_Bomrower, has, C_Student, has, 0.71, 0.83, 2>

16 Dsim (V_dept, C_name)=<V_Borrower, has, C_Person, has, 0.71, 0.76, 2>

17 Dsim (V_dept, C dept)=<V_Bomrower, has, C_Student, has, 1.00, 0.93, 2>

18 Dsim (V_Student, C_Person)=V_Borrower, generalises, C_Person, self, 0.71, 0.79, 3>
19 Dsim (V_Student, C_Student=<V_Borrower, generalises, C Person, generalises, 1.00, 0.79, 2>

Fig. 12: Assertions marked by heuristic 2
From the above example, note that:

® assertions 1 and 2 declare V_Acad Mat to be deep
similar to C Ttem and C Book and since both have
the same Dval value and also have the same context
schema element (C_Item), both are therefore assigned
a strength 2.

On the other hand assertions 5 and 6 have been
assigned the strengths 3 and 2, respectively, since
assertion 6 has the greater Dval value in the same
context.

Most of the multiple assertions for a same virtual
schema element have been assigned the strength 2,
since either the corresponding component schema
elements have different context element or have the
same Dval value in the same context.

The rankings of assertions that have been ranked 2
by the horizontal information dispersion heuristic are
further refined on the basis of their shallow similarity
values, since a strong shallow similarity value suggests a
greater likelihood of validity. Accordingly, this third
heuristic 1s applied:

66

Horizontal information distribution match heuristic:
Given a set of assertions of semantic similarity between a
schema element O, and elements which are a horizontal
information dispersion of that element, O, @,,O_ and
which have been ranked 2 by the horizontal information
distribution heuristic:

® Agsertion(s) ranking 1s unchanged (at 2) if the
shallow similanty value 1s 1;
® Otherwise, assertion ranking are changed to a weaker

strength of 3.

The application of horizontal information distribution
match heuristic is illustrated in the following two
assertions, 18 and 19, from Fig. 12:

18 Dsim (V _Student, C Person)=="V_Borrower, generalises, C Person,
self, 0.71, 0.79, 3>
Dsim (V_Student, C Student)=="V_Borrower, generalises, C_Person,

generalises, 1.00, 0.79, 2>

19

Fig. 13: Assertions whose rankings are set by heuristic 3

Inform. Technol. J., 3 (1): 57-68, 2004

Note, that these assertions declare V_Student as
being semantically similar to two different component
elements (C_Person and C_Student) in the same context
(C Person). However, the value of shallow similarity in
assertion 19 is 1, so according to the above heuristic, 19
is maintained at ranking 2, where as assertion 18 is
dropped to ranking 3.

ECCAM also asserts (weak) semantic similarity on the
basis of similarity between concepts denoted by a schema
element and their generalisations denoted by other
elements. These assertions are ranked according to the
following heuristic:

Generalization heuristic: Deep similarity assertions that
are established by comparing the concepts to their
generalizations are assigned a strength of 4.

Application of the generalisation heuristic
illustrated by the following assertion which has already
been mentioned (without stm) mn Fig. 6:

i

21 Dsim (V shop, C ¢ comp)==V_Acad mat, has, C Book, has, 1.00,
0.41, 4>

Fig. 14: Assertion ranked according to heuristic 4

Note that, the elements V_shop and C_comp are
mapped to the concepts selling co and company,
respectively. The latter concept is a generalisation of the
former. This relationship among the corresponding
concepts of two elements 1s represented by assigning a
rank four to this assertion.

ECCAM also generates assertions based purely on
ontological similarity, using the mapping proposed in Yu
et alPl This form of assertion is generated for (virtual)
elements of the target federated schema for which no
other assertions have been generated. These are given a
weak ranking by the followmng heuristic:

Ontological similarity heuristic: Assertions based only
upon ontological similarity are assigned a ranking of 5.

Application of the ontological similarity heuristic is
illustrated by the following assertions:

22 Dsim (V_sh_name, C_college}=<V_shop, has, C_d_adr, has, 0.71,
0.55, 5>

23 Dsim (V_located, C_address)=<V_shop, has, C_Publisher, has, 1.00,
0.45, 5>

24 Dsim (V_status, C_Studenty=<V_Borrower, has, C_Person,
generalises, 0.00, 0.80, 5>

25 Dsim (V_status, C_d_adry=<V_Borrower, has, C_Student, has, 0.35,

0.75, 5=

Fig. 15: Assertions ranked by heuristic 5

67

The similarity for the virtual elements in the above
assertions can not be determined by adopting the direct
mapping approach of ECCAM. So these assertions
actually represent the ontological similarity and are ranked
accordingly.

Finally, the virtual elements whose corresponding
elements could still not be found are checked if they have
shallow similarity with one or more component schema
elements. If one or more shallow similarity assertions are
found for such elements, then these elements are declared
as contextually disjoint elements and such assertions are
assigned a ranking 6. The example schemas deo not
contain any such elements so example is not quoted here.

Related research: Initially, schema comparison has been
mainly considered as a part of the schema integration (SI)
process, so we see different schema comparison
approaches in SI approaches™”. However two major
factors lughlighted the importance of schema comparison:
(1) it proved that the most critical phase of ST is the
schema comparison and success in 3l mainly depends on
a successful schema comparison approach and (2) the
emergence and popularity of new areas m IT like E-
Business, semantic query processing and data
warchousing. Now we see number of projects
concentrating solely on schema comparison (the term is
more popular with the name “schema matching™)!'*"".
Different approaches accept input schema in the form of
relational, XML, ER or OO. They also differ in the level of
schema elements that they match. For example, TranScm!™?
matches at the element level, SKAT!"Y matches between
elements and structures as well. In this regard, the
strength of schema comparison approach of ECCAM 15
that it i1s independent of any particular structure in
establishing semantic similarity.

Another commonality among schema matching
approach 1s that they generally assign a value between 0
and 1 value to represent the level of semantic similarity
among schema elements. ECCAM also adopts the same
approach but as a further help to integrator it ranks the
semantic similarity assertions to rank the likelihood of the
assertions of being valid.

This research presents the last two phases of
ECCAM, schema comparison and similarity analysis. The
former phase generates a set of semantic similarity
assertions between the elements of target federated
schema and a component schema. The similarity analysis
phase assigns different ranks to these assertions that
represent their likelihood of being valid. The utility of
these ranked assertions is twofold. (i) elements identified
from a particular component schema as being semantically
similar to the virtual ones collectively form a “first cut’

Inform. Technol. J., 3 (1): 57-68, 2004

export schema, which can then be validated by the
integrator; (ii) the structure and integrity constraints of
the wirtual and component elements
semantically similar by assertions are analyzed to identify
and resolve SHs, to enable integration into the federated
schema.

The ECCAM further needs to be implemented on
some more real life schemas to test its applicability.
Moreover 1t can also be enhanced to perform the merging
of the semantically similar elements semi-automatically.

identified as

REFERENCES

1. Sheth, A P. and I.A. Larson, 1990. Federated Database
Systems for Managing Distributed Heterogeneous
and Autonomous Databases, ACM Computing
Surveys, 22: 183-236.

2. Garcia-Solace, M., F. Saltor and M. Castellanos, 1996.
Semantic Heterogeneity in Multidatabase Systems’
Object-Ortented Multidatabase Systems A Solution
for Advanced Applications, Bukhres, O.A. and A.
Elmagarmid, chapter 5

3. Larson, J.A., Navathe, S.B. and R. Elmasri, 1989. A
theory of Attribute Equivalence m Database with
Application to Schema Integration, ITEEE Transactions
on Software Engineering, pp: 449-463.

4. Siegel, M. and S.E. Madnick, 1991. A Metadata
Approach to Resolving Semantic Conflicts), 17th
VLDB, Barcelona, pp: 133-145.

5. Yu C, W. Sun, S. Dao and D. Keirsey, 1991.
Determining Relationships Among Attributes for
Interoperability of Multi-Databases Systems,
Proceedings of the first International Workshop on
Interoperability m Multidatabase Systems, IMS,
Kyoto, Japan, pp: 251-257.

6. Fankhauser, P. and E.J. Neuhold, 1992. Knowledge
based integration of heterogeneous databses, In
proceddings of TFTP Conference DS-5 on Semantics of
Interoperable Ddatabase Systems, Lome, Victoria,
Australia.

68

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Sheth, A.P., SK. Gala and S.B. Navathe, 1993. On
Automatic Reasoning for Schema Integration, Int. J.
Intelligent Co-operative Info. Sys., 2: 23-50.
Kashyap, V. and A. Sheth, 1996. Semantic and
Schematic Similarities between Database Objects: A
Context Based approach, 22nd VL.DB, Bombay, India.
Masood, N. and B. Eaglestone, 1998. Semantics Based
Schema Analysis, Proceedings of 9th Int Conf.,
DEXA’98, Vierma, Austria, LNCS 1460, pp: 80-89.
Masood, N., 1999. Semantics Based Schema Analysis,
Ph.D. Dissertation, University of Bradford, UK.
Masood, N. and B. Eaglestone, 2002. Component and
Federation Concept Models in a Federated Database
System, accepted in Malaysian Journal of Computer
Science, University of Malaya, Malaysia.

Gruber, T., 1993. A translation approach to portable
ontology specification, Knowledge Acquisition, An
Int. J. of Knowledge Acquisition for Knowledge-
Based Systems, 5: 2.

Milo, T. and S. Zohar, 1999. Using schema matching
to smmplify heterogeneous data translation, Proc.
Fusion, Sunnyvale, USA.

Palopoli, L., D. Sacca and D. Ursino, 1998. Semi-
automatic semantic discovery of properties from
database schema, In Proc Int Database Engineering
and Applications Symp., IDEAS, TEEE Computer, pp:
244-253,

Mitra, P., G. Wiederhold and M. Kerson, 2000. A
graph oriented model for articulation of ontology
interdendencies, In Proc HExtending database
technologies, LNCS 1777, pp: 86-100.

Doarn, A H., P. Domingos and A. Levy, 2000. Learmng
source descriptions for data integration, In Proc Web-
DB workshop, pp: 81-92.

Madahvan, J., Bemstein, P.A. and E. Rahm, 2001.
Generic schema matching with Cupid, In Proc 27th
Conf VLLDB., pp: 49-58.

Yan, L., R.J. Miller, I.M. Haas and R. Fagin, 2001.
Data-driven understanding and refinement of schema
mappings, In Proc ACM SIGMOD conf., pp: 485-496.

	ITJ.pdf
	Page 1

