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Abstract: To the case k = 3 of the Berman’s approximation algorithm, the improved algorithm 1s proposed mn this

study. It constructs a Voronoi region to get the cost of triple subtree on the basis of using Fibonacci heap to
count the shortest distance of each pair of points in the corresponding set. Then, to decrease useless triples
by the topology analysis of Steiner tree, it simplifies the topology and reduces the time complexity. In the
experiment results, the filter factor P is above 0.9 for each example, some even up to 0.999. Tt shows that many

useless triples have been filtered before the beginming of the evaluation phase and the construction phase.
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INTRODUCTION

Let G =(V, E) be an undirected graph, let each edge
(i, })¢E have a nonnegative real-valued cost and let Sbe a
subset of V. A tree T of G (that 1s, the vertex set V(T)1s a
subset of V and the edge set E(T) 1s a subset of E) 15 a
Steiner tree of S in graph if S is contained in the vertex set
of T, V(T)=S. The problem is to find a Steiner tree T

o(T)= ¥

(1, 2€E(T)

(2)

whose cost ¢(ij) is minimum among all

()
(7)
()—) B—

(ay S ={1.2,3,4,5,6}, the vertexes in 3 are circled n bold

(b) SMT for G
Fig. 1: An example of the Steiner tree problem

Steiner trees; an optimal solution T 15 called a Steiner
mimimal tree (SMT for short) and the vertexes in S are
called given points (Fig. 1). The problem has been widely
applied in the routing in VLSI layout, design and
optimization of communication network and so on
Especially, in the application of multicast in network, SMT
reduces the total cost and saves bandwidth.

It is known that the Steiner tree problem is
NP-complete!”. So it is valuable for finding the
approximation solution in polynomial time. Berman!”
introduced a good idea to solve it. The algorithm reduces
the approximation ration and time complexity.

When |t] = 3, the ration will be 11/6 and time
complexity will be O(ct+V||SF+S[™) where, ¢ is the time
complexity of the all-pairs-shortest-paths problem.
Analyses the topology of G, it shows that not all vertexes
1 G are useful for the solution. With topology analysis of
Steiner tree to decrease useless triples, it can simplify the
topology and reduce the time complexity. According to
the feature, the improved algorithm is presented as the
time complexity is O(| V]| S[log| VIHE| | S V]| SFH(1-B)|S ) and
the ratio 15 still 11/6. In the experiment results, the value of
the filter factor B is very high. Tt shows the many useless
triples are filtered before the beginning of the evaluation
phase and construction phase.

BERMAN’s ALGORITHM

Lemma 1: Let T denote a subset of S, assume that [t]>1.
Let e be an edge of maximum cost such that both the
connected components of M-{e} contain a vertex of .
Then there exists a maximum cost removal set for T in M
that contains e.
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Lemma 2

1. Ris aremoval set for T in M with the maximum cost.

2. A s aspanning tree of T.

3. cost(A)=cost(R).

4. if f=(uv)eA, then cost (f) is equal to the largest cost
of an edge on the path in M between u and v.

Corollary 1: The edge set M-R UA 15 a spamung
tree of S.

The computation is divided into to phases, namely,
the evaluation phase and the construction phase.

Imitially the evaluation phase 1s executed. The phase
processes every subset T of S that has size between 3 and
k, progressing from smaller to larger sets. For every such
T, the removal set R and the add set A are computed by
calling the procedure PrepareChange. The gam 1s
computed for the subset T, the value equals
cost(R)-scost(1). If gain is not positive, then the sets R
and A are discarded; T is never considered again by the
algorithm. Otherwise, the cost of every edge in A 1s
decreased by gain and M i3 modified by actually
removing R and adding A; moreover, the tuple [T.R,A] is
pushed onto the stack o, By Corellary 1, M remains a
spammung tree of S after this modification.

After the evaluation phase is completed, the
construction phase is executed. The purpose of this
phase 1s to use the entries stored on the stacks to remove
all the artificial edges from M and construct the output
which is a Steiner tree of S. In particular, this phase will
ensure that no edge that belongs to an add set will be
present in the final solution.

DESCRIPTION OF IMPROVED ALGORITHM

In Berman’s algorithm, every subset T of S that has
size between 3 and k 1s processed 1 evaluation phase and
construction phase. Finally, approximation SMT is
constructed. When [t| = 3, the total of triples © = (i,5,k),
1,5.ksS, is |S. In the computing proceeding of
approximation SMT for this case, there are some features
in the computation of scost(t) and the triples which are
needed to be processed in the two phases.

The cost computation of subtree T with Voronoi region
Definition 1: For any two vertexes v and w of G, let c(v,w)
denote the cost of a shortest-path between v and w in G,

L
le, o(v.w) :IHIHE (v Vi) where, the mimnimization

1=1
is over all paths P=vyv ... ... vinGfromv=v,tow=v.

Definition 2: For each given pomnt 1€S, define V(1) to be
the set contaning 1 and all the vertexes veV\S that are

Fig. 2: The division of Voronoi region

closer to 1 than to any other given point j, j#1, if v is

closest to two or more given points i,,..., i.e., if ¢(v,i) =

c(v,))=..= Tlnc(v,k), then v is mcluded in the set
(5]

of the given point having the smallest index among 1],... .
In symbols, the Voronoi Region of every given point
shows as follows:

Vi) =il ulveVi\8: civ,i)=minc{v,k)and
kel

c{v,1)=minc(v, k)
kes

i=minfj=1,2....,|S]:

With the following two steps, the cost of subtree 1 is
computed.

Step 1: Computing the shortest-path between every

vertex of S and every vertex of V with Fibonacci Heap™.

Step 2: For every triples T = (1,1.k), computing the Steiner
subtree, scost(T), with Voronoi Region.

Figure 2 shows the division of Voronoi Region for
Fig. 1 as an example.
The description of step 2 shows as follows:

Triples—{ 1< S: |t| =3}
For every teTriples do

ve u V(s) which mimmizes E o(v,s]

SETr SET

Fmd

v(T)-v

oot X ov(0).)
Topology simplify: Tn the evaluation phase, the minimum
spanning tree M turn to M™ in the n-th step of the
iteration. For the triple T = (1,3,k), let (...,1,... J.....k,...)
denote the traversing path of minimal spanning tree M
and R;, denote the removal edge set of T in the m-th
iteration of evaluation phase, Ry = {save®(ij),
save™(j.k)}. We denote save™(i]) as the max edge from i
to j in M™, the weight is save®,. Similarly, Let save™(j.k)
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(a) Minimum spanning tree is indicated by thick lines

(7)
(O— (3O)—)

(b) SMT is indicated by thick lines
Fig. 3 Comparison between minimum spanning tree and
SMT for Fig. 1

dencte the max edge from j to k in M, the weight is
)

ik -
In Fig. 3, (a) 13 the minimum spanning tree M and (b)
15 SMT, the final solution we get. It is obviously that only

save

the triple (1,3,5), not all the triples, will contribute to the

evaluation phase and construction phase. How to discard
the useless triples before the begimming of evaluation
phase? The following lemma will show the way.

Lemma 3: For the triple T = (1,,k), if save;+save,, < scost
(1), T will not be under consideration in construction

phase.

Proof: Berman’s algorithm shows that the triple T is
discarded in evaluation phase and will not be processed
in construction phase, iff, save®™ +save™, < scost (T) is
true. Observing the triple T that has the feature
save;tsave,< scost(t), if the inequality save®™;+save <
scost(T) 1s true in evaluation phase, then the triple will be
discarded and absent in construction phase.

Assume the triple T' = (uv,w) is the former of T.
Consider such triple t' that it is one part of the tuple
[T.R,A] which 1s pushed onto the stack g, since it will
change the set R, Assume that the triple is
processed in the m-th iteration of evaluation phase, there
is R, = {save™(wv), save™(v,w)}.

If for every T' exits R, {save(i)), save(3.k)} = &,
obviously, the edge save™(ij) is still save(ij) and

13

save®™{j k) is save(j,k) too. Until the processing of T, there
is Ry, = {save®(ij).save ™{j.k)} = {save(i, ), save(j.k)}.
Therefore, save™ +save®, = save,+tsave, < scost(T) and
gain(t)<0. Then T 1s discarded and absent in construction
phase.

Inversely, if R, {save(i,j),save(j,k)} # ¢, that means
save™(1,j) will be save'(1,j) and save®(j,k) will be save'(j.k).
It 18 now clear that in order to prove the lemma it suffices
to show the following: For the triple T that save,+save, <
scost(T), save';+save' < scost(T). The rest of this section
1s devoted to proving this.

Case 1: R . N{save(i,j),save(jk)}| = 1. Without loss of
generality, we can cnly consider the case that save™(u,v)
is save(ij). The topology of M®™" has four cases:
(f.u 1, v, ) (2){..u. 1,
Jor¥on 1Dl LV B LY
... }.After the processing of v, M™ will be cnly one
topology, {....L....uv,.., J....}. Obviously, there 1s
save', = maxisave,, c(uyv), save'},

< save,, save'; < savey
(m)

save', < save,
= save;, save,, = save,, c(u,v)
w-2ain(t') = save;-gain(t’). Since there is gain(t’)
>0, we have o(u,v)<save,. Hence save, < save,. Similarly,
save', < savey, if save™(v.w) is save(jk). Now, for
Case 1, we can draw the conclusion that save'+save',
< save,save, < scost(T).

<

<

= s5ave

<

Case 2: |R,Nisave(i))save(j,k)}| = 2, that means
save™(,v) is save(ij) and save™(v,w) is save(jk).
There’re eight cases for the topology of M®™:
(DLW L L D,

Toonko w3 (3L, 0, VLWL,
k. @ v ek W RS
sessw kL HO gk w, L (T
ool W LB L v

k,...,w,...}. At the end of the processing for 7', the
topology of M™ has two cases: {...i...u,
Voeoodseo oW,k dand S uws Lk wv, s T
Without loss of generality, we can just consider the first
result. Obviously, there is save;, = max{save',, c(uv),
save',}, save, = save, < save™ = savey, save', = save,
< save™, = save,, c(uv) = save™ -gain(t)< save™
save, As a result, save!, < save; Similarly, we can get
that save', <save,. Therefore, save!+save,
< scost(T).

From the analysis of Case 1 and Case 2, it shows the
following: if there is [R,,.N{save(1,]), save(),k)}|#d, it will
be sure that save',+save', < scost(T) after processing of
T'. Process the triples till t. At this point, the removal
edge set of T is Ry, = {save®™(i,j), save®™(j.k)} with the
feature save™+save™, < scost(t). Therefore, gain(t) <

cost(R;)-scost(T) < O and T 1s discarded.

i wo

K< save,Tsave,

3
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This completes the proof of Lemma 3.
We now describe the procedure Topology-Cut:
precedure Topology-Cut (M, Triples)
Begin
for every i,jeS do

Find save; in spanning tree M
for every T = {1,3.k} eTriples

if save;+save, < scost(T) then

remove T from Triples

End

COMPLEXITY ANALYSIS

In the computation of scost(t) with Voronoi Region,
stepl requires O(|V]|S[log|V|+ |E[|S]) steps and one can
execute step 2 in O(|V|log|[V|+E[+S[HV||S[). So the running
time is O(|V||S[log|VHE[|S|+ [SPHV||S[).

To the Topology-Cut procedure, it requires
O(|S[log|S|y for finding save; in spanning tree M and
O(S/") to remove the useless T from Triples. Sc the
running time is O{S[). With the processing of the
Topology-Cut procedure, the total of Triples is reduced to
(1-BIs.

In conclusion, the total ttme complexity of the
improved algorithm is O(V|[S|log|VH E|SHV]ISIH1-BIS™.
The experiments show that the filter factor {3 is very high.

After the filtering, there are only few triples left to be

processed in the continued computation, evaluation
phase and construction phase.

NUMERICAL RESULTS

Tn the experiments of the improved algorithm, the test
data comes from the SteinLib library™), which is built by

Table 1: Results of the improved algorithm

1 L 2

2 098
0.96
Eom
™ 092

0.90+
0

*

23 45678 9101112131415161718
Test data
Fig. 4: The value of the filter factor

40001 o improved algorithm

H Berman's algorithm

30004

& 20001

10001

1 234 567 891011121314151617 18
Test data

Fig. 5: Comparison of running time

Thorsten Koch and Alexander Martinn PC for the
experiments 1s Intel PIIT 800 with 128M SDRAM.

From Table 1, it shows the following results:
1. The mproved algorithm has good performance. The

approximation solution is closed to the optimal
solution, even equals to latter for some examples.

Approxi-

Test Optimal mation Total of triples Total of triples Running time Running time of
data V] 12 18] golution golution before filtering after filtering B of Berman (ms) _ improved algorithm (ms)
bol 50 63 9 82 82 81 8 0.9048 135 7
b02 50 63 13 83 85 286 14 0.9510 141 13
b03 50 63 25 138 139 2300 2 0.9990 354 66
bod 50 100 9 59 59 84 7 0.9167 147 8
bo0s 50 100 13 6l 62 286 9 0.9685 137 13
bos 50 100 25 122 124 2300 & 0.9974 355 68
bO7 75 94 13 111 111 286 19 0.9336 346 15
b08 75 94 19 104 104 969 14 0.9856 458 36
b0 75 94 38 220 222 8436 11 0.9987 1320 228
b10 75 150 13 86 87 286 14 0.9510 357 16
bll 75 150 19 88 88 969 11 0.9886 409 33
bi12 75 150 38 174 174 8436 11 0.9987 1409 235
bl13 100 125 17 165 172 680 26 0.9618 695 27
bl4 100 125 25 235 236 2300 39 0.9830 1030 75
bls 100 125 50 318 318 19600 24 0.9988 3689 549
bls 100 200 17 127 133 680 12 0.9824 781 31
bl17 100 200 25 131 133 2300 23 0.9900 1026 76
big 100 200 50 218 218 19600 19 0.9990 3682 555

14
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2. For every example, [ is above 0.9. Tt even reaches
0.999 especially for some examples. Be the
performance of the Topology-Cut procedure, there
are only few triples left to be processed in evaluation
phase and construction phase after the filtering.

3. Observing each example group with invariable |V| and
|E| (b0O1~b03, bO4-b06, b07~b09, b1 0~b12, b13~b15,
bl6~bl8), it 13 obviously that bigger the size of S,
higher the B (Fig. 4). That means the Topology-Cut
procedure has better performance as the topology of
Steiner tree turn to more complex when the size of
S increases.

4. The decrease of time complexity reduces the running
time (Fig. 5). The improved algorithm runs faster.

CONCLUSION AND FUTURE WORK

This study we analyzed the topology of Steiner tree
mn case k = 3 and presented an improved algorithm. The
proposed algorithm reduces the total time complexity with
the ration 11/6. In the experiment results, filter factor j is
above 0.9, even 0.999 for some examples. Tt shows that
many useless triples are filtered before the beginming of

15

the evaluation phase and construction phase. Future work
will address how to simplify topology in other cases (k>=3).
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