http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 4 (2): 118-124, 2005
ISSN 1812-5638
© 2005 Asian Network for Scientific Information

Detection of Parallelism in Sequential Programs Based on Functional Partitioning

"Banshidhar Majhi, *Hasan Shalabi, *Mowafak Fathi and *Abbas M. Ali
3 Department of Computer Science and Information Technology,
Al-Hussein Bin Talal Umversity, Ma’an, Jordan
'On Leave from National Institute of Technology, Rourkela-8, Orissa, India
“Department of Computer Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan

Abstract: Partitioning programs into smaller slices facilitates easy maintenance and testing of any software. A
method for partitioning programs into segments performing single specific functions is required for simplifying
the things. The notion of program slicing 1s observed to restrict the focus of a task to specific sub-components

of a program. The slicing method utilizes information on data and control dependence and based on the concept
of program slicing in order to carry out the task of partitioning programs. The tightly coupled program is
formalized and it is shown that the tightly coupled statements performing single specific function can be

extracted from a given program. After wraveling a sequential program into different specific functions executed
in parallel environment and tested whether it is providing same output same as parent program.

Key words: Software engineering, program dependence graph, program slicing, program partitioning

INTRODUCTION

Program slicing 1s a program analysis and reverse
engineering technique that reduces a program to those
statements that are relevant for a particular computation.
Informally, a slice provides the answer to the question
"What program statements potentially affect the value of
a variable (v) at statement (3)?" Programmers have some
abstractions about the program i mind dunng
development. Durmng the development followimg
dependences from the statement s back to the influencing
parts of the program. These statements may influence s
either because they decide whether s 15 executed at all
(control dependence) or because they defne a
variable that 13 used by s (data dependence). A program
slicer can be used to automatically compute and visualize
the slice of the program with regard to the statement s and
the wvariables used or defined at s. It allows the
programmer to focus his attention on the statements that
are part of the slice and that might therefore contribute to
the fault. However, in some cases the programmer may
overlook the statements pertaining to a particular slice.
Program slicing is an approach to assist the programmer
during debugging, program integration, software
maintenance, testing and software quality assurance.
Several variants of program slicing have been proposed
for these purposes, including static slicing, dynamic
slicing, backward slicing, forward slicing, chopping,
interface slicing, etc!™. A survey of existing program

slicing tools shows that most of them are written for the
programming language C, some for COBOL and
FORTRANY. Since program slicing is an interactive
method intended to assist the programmer, the results
should ideally be presented immediately. Tt is
unsatisfactory to wait for several minutes before the slice
can be viewed.

Slicing algorithms together with their data structures
can be viewed as a data flow as well as graph-reachability
problem™. Initially, Weiser™ used a control flow graph as
an intermediate representation for slicing algorithm and
computed slices by solving the data flow problem of
relevant nodes. Subsequently, he suggested algorithms
for intraprocedural and interprocedural slicing. However,
since the interprocedural version did not account for
the callng context, it produced imprecise slices.
Ottenstein et al™ recognized that intraprocedural
backward slices could be efficiently computed using
dependence graphs as intermediate representations by
traversing the dependence edges backwards (1e. from
target to source). Horwitz et al!” introduced system
dependence graphs for interprocedural slicing. They also
suggested a two-phase algorithm that computes precise
interprocedural slices.

The program slices introduced by Weiser
static program slices since it produces the slices
irrespective of the input values. Therefore, it often results
in producing relatively larger slices. To overcome these
shortcomings, Korel and Lasky™ introduced the concept

% are called

Corresponding Author: Dr. Hasan Shalabi, Department of Computer Engineering,
Al-Hussein Bin Talal University, P.O. Box 20, Ma’an, Jordan
Tel: 0096232179000 E-mail: shalabi@ahu.edujo

Inform. Technol. J., 4 (2): 118-124, 2005

of dynamic slicing, which contains only those statements
that actually affect the value of a variable at a program
point for a given execution. Therefore dynamic slices are
usually smaller than static slices and have been found to
be wuseful n debugging, program understanding,
maintenance, testing etc!""",

In retrospect, the mtra—procedural static program
slicing based in interactively solving data flow equations
representing inter-statement influences. {1
presented a two-phase algorithm for
inter-procedural slices. Ottenstein and Ottenstein

Weiser
computing
[16]
presented a linear time solution to intra procedural static
slicing in terms of graph reachability in the Program
Dependence Graph (PDG). Horwitz et al."” extended the
PD@G representation to System Dependence Graph (SDG)
for inter procedural static slicing. Korel and Laski®™
extended Weiser’s static slicing algorithm to the dynamic
case. They computed dynamic slices by solving the
associated data flow equations. Their method needs O (n)
space to store the execution history and O (n*) space to
store the dynamic flow data, where n is the number of
statements executed during the run of the program.

PARALLELISM IN PROGRAMS

Conventional uni-processor computers
programmed m a sequential environment in which

are

mstructions are executed one after another in a sequential
manner. In fact the UNIX operating systems kernel was
designed to respond to one system call from the user
process at a time. Successive system calls are serialized
through kernel. Most existing computers are designed to
generate sequential object codes to run on a sequential
computer. When using parallel computer, it requires a
parallel environment where parallelism is automatically
exploited. Language extensions or new constructs must
be developed to specify parallelism or to facilitate easy
detection of parallelism at various granulanty levels by
more mtelligent compilers. OS also plays an important role
to support parallel activities along with parallel languages
and compilers. The OS must be able to manage the
resources behind parallelism.

Tmplicit parallelism: This approach uses a conventional
language such as C, FORTRAN and Lisp etc. to write the
source program. The sequentially coded source program
is translated into parallel object code by a parallelizing
compiler as in Fig. 1. This compiler approach uses
shared-memory multiprocessors. With parallelism bemg
implicit, success relies heavily on the intelligence of a

parallelizing compiler.

119

Source code in
Sequential languages

Parallelizing
complier

Parallel object code

Execution by
runtime system

Fig. 1: Parallel compiler execution process

Source code on
parallel dialects of C

Concurrency preserving
complier

| Concurrent object code

Execution by
runtime system

Fig. 2: Parallel programs execution process

Explicit parallelism: This approach uses a parallel
language version of C, Lisp and Pascal Parallelism 1s
explicitly specified in the user programs as depicted
i Fig. 2. This will significantly reduce the burden on
the compiler to detect parallelism. Instead, the compiler
needs to preserve parallelism and where ever possible
assigns target machine resources. This approach is
adopted in a multiprocessor environment'”. Special
software tools are needed to make an environment
friendlier to user groups. Some of the tools are parallel
extensions of conventional high level languages. Others
integrated which
providing different levels of program abstraction,
validation, testing, debugging and tumng.

are environments include tools

Inform. Technol. J., 4 (2): 118-124, 2005

PROGRAM-DEPENDENCE GRAPHS
AND PROGRAM SLICES
Different definitions of program dependence
representations have been giver, depending on the
intended application; they are all variations on a theme
intreduced by Kuch et al™ and share the common
feature of having an explicit representation of data
dependences. The program dependence graphs defined
the additional feature of an explicit representation for
control dependences™. The definition of program
dependence graph given below differs in two ways. First,
our definition covers only a restricted language with
scalar variables, assignment statements, conditional
statements, while loops and a restricted kind of output
statement called an end statement and hence is less
general than the one. Therefore, we refer to our graphs as
program dependence graphs, borrowing the term from!®.
An end statement, which can only appear at the end of a
program, names one or more of the variables used in the
program; when execution terminates, only those variables
will have values in the final state; the variables named by
the end statement are those whose final values are of
interest to the programmer.

The program dependence graph: The program
dependence graph for program P, dencted by Gy, is a
directed graph whose vertices are connected by several
kinds of edges. The vertices of G, represent the
assignment statements and control predicates that occur
in program P. In addition, G, includes three other
categories of vertices:

1. There is a distinguished vertex called the entry
vertex.

2. For each variable x for which there is a path in the
standard control-flow graph for P on which x is used
before being defined, there is a vertex called the mutial
definition of x. This vertex represents an assignment
to x from the initial state.

3. Foreach vanable x named n P’s end statement, there
is a vertex called the final use of X. Tt represents an
access to the final value of x computed by P.

The edges of G, represent dependences among
program components. An edge represents either control
dependence or data dependence. Control dependence
edges are labeled either true or false and the source of a
control dependence edge is always the entry vertex or a
predicate vertex. A control dependence edge from vertex
v, to vertex v, denoted by v, - v, means that, during
execution, whenever the predicate represented by v, is
evaluated and its value matches the label on the edge to

v,, then the program component represented by v ,will
eventually be executed if the program terminates. A
method for determining control dependence edges for
arbitrary programs is given by Thomas"™. However,
because we are assuming that programs include only
assignment, conditional and while statements, the control
dependence edges of G; can be determined in a much
simpler fashion. For the language under construction
here, the control dependences reflect a program’s nesting
structure; program dependence graph G, contains a
control dependence edge from vertex v, to vertex v, of G;
iff one of the following holds:

1. v, 13 the entry vertex and v, represents a component
of P that is not nested within any loop or conditional;
these edges are labeled true.

2. v, represents a control predicate and v, represents a
component of P immediately nested within the loop
or conditional whose predicate is represented by v,.
If v, 1s the predicate of a while-loop, the edge v, - v,
is labeled true; if v, is the predicate of a conditional
statement, the edge v, - .v,is labeled true or false
according to whether up occurs n the then branch or
the else branch, respectively.

A data dependence edge from vertex v, to vertex v,
means that the program’s computation might be changed
if the relative order of the components represented by v,
and v, were reversed. Program dependence graphs
contain two kinds of data dependence edges,
representing flow dependences and def-order
dependences. The data dependence edges of a program
dependence graph are computed using data-flow
analysis.

A program dependence graph contains a flow
dependence edge from vertex v, to vertex v , iff all of the
followings hold:

1. v, is avertex that defines variable X.

2. v,is avertex that uses X

3. Control can reach v , after v, via an execution path
along which there is no intervening definition of X.
That is, there is a path in the standard control flow
graph for the program by which the defimtion of X at
v, reaches the use of X at v ,. (Tnitial definitions of
variables are considered to occur at the beginning of
the control-flow graph; final uses of variables are
considered to occur at the end of the control-flow

graph).

A program dependence graph contains a def-order
dependence edge from vertex v, to vertex v ,iff all of the
followings hold:

Inform. Technol. J., 4 (2): 118-124, 2005

1. v, and v, both define the same variable.

2. v, and v, are in the same branch of any conditional
statement that encloses both of them.

3. There exists a program compenent v, such that v, -,
vyand v, =& v, .

A def-order dependence from v, to v, with “witness”
v ;is denoted by v, »y0y V

Program Dependence Graph has different uses like
detection of Parallelism, node splitting, code motion, loop
fusion, program slicing etc. The dependence graph for the
example program 1 is shown in Fig. 3.

Example Program 1
1 #include<stdio.h>
2 void main()

34

4 mt nprod,x,sum;

5 scanf("%d", &n),
Gprod=1;

7 sum = 0,

Ex=1;

9 while(x<nt1)

10§

11 prod = prod*x;

12 sum = sum+x;
13x=x+1;

14%

15 prntf("%d" x);

16 printf("%d",prod);
17 printf("%d" sum);
18

-------- Def-order dependency edge
—— b Flow order dependency edge

Control dependency edge

Fig. 3: Program dependence graph

Program Slice: A program slice with respect to a vertex
v of a program dependence graph Gy i1s defined as:
Go/v = [V (G4v), A (G)] where, V (G 4¥) 1s a set of
vertices on which v has a transiive flow or control
dependence (1.e. all vertices that can reach v via flow or
control dependence edges) 1.¢.

_r {wweV(G,) and w—¢,f'}

V(&) [&, forany v¢ G,

and

AGv)={w-wv|w-vEeAGy andw, v

e V(G y U
fw-ov|w-veAGp) and w, v
e V(Gyv) U
W 2wV [W oV € A(Gr)
and w, v, x € V(Gy/v) }

This definition can be used to compute a slice S as:
S=Usand GyS = Gulls, = U G,
SLICING BASED ONFUNCTIONAL PARTITIONING

Much of the literature on program slicing is
concerned with improving the algorithms for slicing both
1n terms of reducing the size of the slice and improving the
efficiency of slice computation. These works address
computation of precise dependence information and
accuracy of the computed slices. When a program
performs multiple different functions, users or maintainers
are often faced with the need of partitioning the program
into programs performing single specific functions. For
example, consider a program performs set of relatively
unrelated functions, one of which is explicitly selected
according to the interpretation of some parameter of the
calling program. In order to utilize this kind of program in
a given environment appropriately, users must
understand the roles of the parameters of the module,
which 1s bound to increase the complexity of the program.
In contrast, programs that perform single specific
functions are easy to understand and manage because
changes are easy to understand and manage because
changes or errors can easily be isolated. Therefore, it is
desirable to restructure programs performing multiple
different functions in order to perform single specific
functions.

The need of partitioning a program into programs
performing single specific functions also arises while the
program 1s being verified. For verification of a program,

Inform. Technol. J., 4 (2): 118-124, 2005

requirements must be stated in a formal language and
each program statement must be examined in a step of
mductive proof to ensure that the program will produce
the correct outcome for all possible input sequence.
However, such proofs are very expensive and have been
applied only to small programs. One way to ease the task
of correctness proving is to partition a program mto
meaningful smaller units n such a way that the different
aspects of the program can be verified independently by
different persons. Further more, partitioning the program
mto programs performing single specific functions may
improve the performance when the program 1s executed on
a parallel machine. In a parallel machine, all processors
must be used at all times to keep utilization at maximum
level. If a program can be partitioned into independent
pleces (ina sense of performing single specific functions),
then we can assign each partitioned program to one
processor to result in speed up than executing the
program as a whole on one processor.

We have considered the case of intra procedural
static slicing with functional partitioning approach.
Functional partitioning approach!™ utilizes the PDG to
partition a multifunction program into programs
performing single specific functions, if exists. Side by side
sufficient care is taken to keep the semantic equivalence
of the original program. The proposed method is based on
the assumption that program P can be considered as a
function F(X, Y), Where, X = <x,, x, ..x,> input vector
and Y = <y, y,..y.> output vector. Execution of the
statements in P may cause the values of x,, x,, -
p<m to be changed and propagated to the final value o
some output variables y, (1 = 1,2.3..m). If all the input
variables and output variables and output variables other
than v, are relevant to the computation of the final value
of y,, then P 13 regarded as a program performing a single
specific function F(X, y;). Here the output variables other
than y;, as well as auxiliary program variables participate
in the computation of the final value of y; and all
statements in P possibly mnfluence the final value of v,
Otherwise, P 1s considered to be a program performing
multiple different functions. Before actually going to
functional partitioning, let us discuss program slicing in
more detailed and mathematically. This 1s because
program slicing 1s used in functional partitiomng.

Definition 1: For a program P the statements of P are
tightly coupled iff the following condition is satisfied:
There exists an output statement O, such that

O={W|W-,03u {0}

where, O 1s the set of all output statements of P.

122

- Functional dependency edge

Fig. 4: Functional dependency diagram of program 1

First we check whether the program is tightly coupled
or not. If the program is not tightly coupled, there exist
functionally mdependent output statements O;, O,..0,
and then the slices of that program can be computed.

Definition 2: Functional Partitioning: For vertices
denoting output O1and Oj (1! = J) of a PDG Gy, O1 18
directly functionally dependent(fd) on O], denoted as
0j-y01, if there exist vertices v,c V(Gy/O1) and v,e V(G/Oj)
such that v, +;v,and v, is a statement that assigns a value
to a variable used m O1. Otherwise, O11s said to be directly
functionally independent of Oj"". The functional
dependence is transitive that is if O, is directly
functionally dependent on O, and O, is directly
functionally dependent on O, Figure 4 depicts the
functional dependency relations of program 1.

The above program performs F (n, x, prod, sum).
Statement 16 1s functionally dependent on 15 as 86V
(G/15), 11V (G¢/16) and 8-.11. Smmilarly, 17 and 15 are
functionally dependent. But statement 16 and 17 are
functionally independent. Thus the program can be
divided inte two sub-partitions, performing
F (n, prod) and other one F (1, sum). The two partitions
can be computed by the program slicing appreach ie.
V (G/16) and V (Gy/17). The two partitions are given
below.

one

Partition 2:
1 #include<stdio.h>
2 void main()

Partition 1:
1 #include<stdio.h=
2 void main()

34 34

4 mt n,prod,x; 4 mt n,x,sum,;

5 scanf("%d" &n), 5 scanf("%d" ,&n);
6prod=1, 6 sum = 0;
Tx=1; Tx=1;

8 while(x<n+1) 8 while(x<n+1)

Inform. Technol. J., 4 (2): 118-124, 2005

9 9

10 prod = prod*x; 10 sum = sum+x;
11 x =x+1; 11 x =x+1;

12} 12}

13 printf("%d" x);
14 printf("%d" ,prod);
15%

13 printf("%d" x);
14 printf("%d" sum);
153

After obtaining the above two partitions, they are
subjected two run in parallel environment using UNTX
Pthreads. The execution time is measured comparing with
the execution of the parent sequential program. In a similar
manmner various test programs were taken into observation
fro sumulation and it"s found out that the execution time of
partitioned programs 1s less than original parent program.

Language features used: The language used 1s subset of
C language.

Input and output statements: The input and output
statements are like C language scanf () and printf (). But
at a time only one variable is read or outputted at a time.

Control structures:

While loop: Syntax: while(x<n)

¢
X =x+1;
y =yl
§
If statement: Syntax: if(x! = 5)
¢
X =x+1;
H
if... then ...else: Syntax: if (x ==0)
¢
x=x+l;
§
Else
¢
y =yl
§
For loop: Syntax: for (1=0;1<=n; 1++)
¢
s =st+l;
H
Do While: Syntax: Do
¢
x=x+l;

twhile(x< = 10),

123

The control structures do not support complex
expressions in its predicate i.e. while(x! =5 & y! = 6) is not
allowed.

Assignment statements: The assignment statement is of
the form x =y + w/z. The number of right variables should
be less than or equal to 5.

CONCLUSIONS

In thus study, a simple but useful method of
partitiomng programs on functional basis 1s presented.
The concepts of data, control and functional
dependencies are thoroughly. The
construction of PDG and its importance 1s discussed in
detail. Exhaustive simulation has been carried out to test
different programming features of C language and
partitions are generated wherever possible . Even though,
partitions of a program are basically used here to execute
1n parallel, it can be used m software complexity reduction
and testing. Further, to incorporate the completeness all
other features of the programming language can be
included.

discussed

REFERENCES

Frank, T., 1995. A survey of program slicing
techniques. J. Progr. Lang., 3: 121-189.

http:/Awrww. infosun. fmi.uni-passau. de/st/staft/krinke/
slicing/node2 html

Thomas, R., 1998. Program analysis via graph
reachability. Information and Software Technolgy,
40: 701-726.

Weiser, M., 1982. Programmers use slices when
debugging. Communications of the ACM., 25
446-452.

Ottenstein, K. and .. Ottenstein, 1984. The program
dependence graph development
environments. In: Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments.

Ferrante, J., K. Ottenstein and J. Warren, 1987. The
program dependence graph and
optimization. ACM Trans. Program. Lang. Syst.,
9: 319-349,

Horwitz, S., T. Reps and D. Binkley, 1990.
Interprocedural slicing using dependence graphs.
ACM Trans. on Progr. Lang. Systems, 12: 26-60.
Weiser, M., 1984. Program slicing. IEEE Transactions
on Software Engmeering, 10: 52-357.

i software

its use in

10.

11.

12.

13.

14.

Inform. Technol. J., 4 (2)

Korel, B. andT. Laski, 1988. Dynamic program slicing.
Information Processing Letters, 29: 155-163.

Lyle, J., 1984. Evaluating variations on program
slicing for debuggmng. Ph.D Thesis, Umversity of
Mariland, College Park.

Podgurski, A. and T..A. Clarke, 1990. A formal model
of program dependences ansd its mmplications for
software testing, debugging and maintenance. [EEE
Transactions on Software Engineering, 16: 965-97%.
Mall, R., 1999. Fundamentals
Engineering, Prentice Hall, India.
Lucia, AD., AR. Fasolme and M. Murmo, 1996.
Understanding function behaviors through program
slicing: Proceedings of the Fourth TEEE Workshop
on Program Comprehension, Berlin, Germany, March
1996, IEEE Computer Society Press, Los Alamatiso,
CA., pp: 9-18.

Shimoura, T., 1992. The program slicing technique
and 1its applicaton to testing, debugging and
mamtenance. J. IPS. Taparn, 9: 1078-1086.

of Software

124

15.

16.

17.

18.

19.

2 118-124, 2005

Agarwal, H., R.A. DeMillo and E.H. Spafford, 1993.
Debugging with dynamic slicing and backtracking.
Software-Practise and Experience, 23: 589-616.

Ottensteir, K. and L. Ottenstein, 1984. The Program
dependence graph in software development
environment. Proceedings of the ACM
SIGSOFT/SIFPLAN Software Engineering

Symposium on Practical Software Development
Environments, STHPLAN Notices, 19: 177-184.
Kai, H., 1993. Advanced Computer Architecture:
Parallelism, Scalability, Programmability. McGraw-Hill
Inc.

Kuch, DI, Y. Muracka and S.C. Chen, 1972. On the
mumber of operations simultaneously executable
m FORTRAN-like programs and their resulting
speed-up. [EEE Trans. Comput., pp: 1293-1310.
Sang, C. and Y.R. Kwon, 1994. An approach to
partitioning programs on the functional basis and
application. Elsevier, Micro
Microprogramming, 40: 315-326.

Processing and

	ITJ.pdf
	Page 1

