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Abstract: In this study we present the techmques that are useful in securing the data against tamper in between
communicating parties by the man in the middle. This mvolves the use and implementation of message digest
(or hashing), message authentication and digital signature schemes. A hash function can provide message
authentication in a most satisfying manner when combined with digital signature algorithm, which does have
a key. Digital signatures currently provide Internet applications with data authentication and non-repudiation
services and 1s set to continue playing an important role m future as Internet services continues to grow.
Typical digital signature schemes, however, have some performance overhead, which, while acceptable for the
periodic setup of communication sessions, is often too large on a message-by-message basis. Thus, the need
today 1s to focus on the message authentication based on shared secrete-key, which 1s ideally integrated into
the hash function in some manner and that’s the subject of this study.
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INTRODUCTION

Hash algorithms are one-way mathematical algorithms
that take an arbitrary length mput and produce a fixed
length output string!!. The hash value is a unique and
extremely compact numerical representation of a piece of
data. Some of the currently approved hash functions are:
SHAL, MD5, RIPEM-128 and RIPEM-160 ete. MD5
produces 128-bits while SHA-1 produces 160-bits™,
respectively. Tt is computationally improbable to find two
distinct inputs that hash to the same value (or collide).
Hash functions have some very useful applications. They
allow a party to prove they know something without
revealing what it is and hence are seeing widespread use
in password schemes. They can also be used in digital
signatures and integrity protection.

A message digest 18 a compact digital signature for
an arbitrarily long stream of binary data. An ideal message
digest algorithm would never generate the same signature
for two different sets of input, but achieving such
theoretical perfection would require a message digest as
long as the input file. Practical message digest algorithms
compromise in favor of a digital signature of modest size
created with an algorithm designed to make preparation of
input text with a given signature computationally
infeasible. Message digest algorithms have much in
common with techniques used in encryption, but to a
different end; verification that data have not been altered
since the signature was published.
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Many older programs requiring digital signatures
employ 16 or 32-bit cyclical redundancy codes (CRC)
originally developed to verify correct transmission in data
communication protocols, but these short codes, while
adequate to detect the kind of transmission errors for
which they were intended, are insufficiently secure for
applications such as electronic commerce and verification
of security related software distributions!™.

The most commonly used present-day message
digest algorithm 1s the 128-bit MD5 algorithm, developed
by Ron Rivest of the MIT Laboratory for Computer
Science!. Message digest algorithms such as MD35 are
not deemed encryption techmology and are not subject to
the export controls some governments impose on other
data security products. The MD35 algorithm was originally
developed as part of a suite of tools intended to momtor
large collections of files (for example, the contents of a
Web site) to detect corruption of files and inadvertent
{(or perhaps malicious) changes.

MESSAGE AUTHENTICATION WITH MD5

Message authentication algorithm 18  currently
playing an important role in a variety of applications,
especially those related to the Internet Protocols (IP) and
network management, where undetected manipulation of
messages can have disastrous effects. There is no
shortage of good message authentication codes,
begimming with DES-MAC, as defined in FIPS PUB 1131
However, message authentication codes based on
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Fig. 2: Message authentication (MAC) with MD3

encryption function such as DES, which were originally
designed for hardware implementation, may be somewhat
limited in performance for software and there is also the
question of TS export restriction on high quality
encryption functions. In standards applications such as
the Simple Network Management Protocol (SNMP)® and
proposals for Internet Protocol (IP) security, a more
practical solution seemed to be to base the authentication
codes not on data security standard (DES) but on hash
functions designed for fast software implementation
which are widely available without restriction, such as
MD5 message-digest algorithm, SHA-1 etc™.

But how to do 1t? Hash functions are intended to
resist inversion-finding a message with a given hash
value - and collision - finding two messages with the same
hash value. Message Authentication Codes (MAC), on
the other hand, are mtended to resist forgery - 1e.,
computing a message authentication code without
knowledge of a secrete-key. Building a message
authentication code on an encryption function thus
seems a logical choice (and the security relationship has
been recently settled-in the work by Bellare et al[™).
Building one on a hash function, however, is not as
simple, because the hash function doesn’t have a key.

As an illustration of the challenges, consider the
prefix approach where the message authentication code 1s
computed simply as the hash of the concatenation of the
key and the message, where they key comes first and
which we denote as MD5(k-m). MD5 follows the
Damgérd/Merkle™" iterative structure; where the hash is
computed by repeated application of a compression
function to successive blocks of the message (Fig. 1).
For MDS5, the compression function takes two inputs - a
128-bit chaming value and a 512-bit message block-and

produces as output a new 128-bit chaiming value, which
15 the mput to the next iteration of the compression
function. The message to be hashed is first padded
to a multiple of 512 bits and then divided into
sequence  of 512-bit message blocks. Then the
compression function is rapidly applied, starting with an
initial chaining value and the first message block and
continuing with each new chaining value and successive
message blocks. After the last message block has been
processed, the final chaimng value 1s then passed to the
output as the hash of the message.

Because of the iterative design, it is possible, from
only the hash of a message, to compute the hash of
longer messages that start with the initial message and
include the padding required for the initial message to
reach a multiple of 512 bits. Padding data helps to add
random bytes to our data so that it 15 more difficult for a
prospective attacker to find which bytes are the actual
data. Padding also allows us to put our data into blocks,
so that we can operate on pieces of data that are of the
same size!l. Applying this to the prefix approach, it
follows that from MD3(k-m), one can compute MD5(k-m")
for any m’ that starts with m-p, where p is the padding on
(k'm). In other words, from the message authentication
code of m'px for any x, without even knowing the key k
and without breaking MD5 m any sense. This 15 called a
message extension or padding attack!?. Taking into
account the joint work of Kaliski et ol and Bellare and
Krawczyk of IBM!" and a number of other approaches to
message authentication with MD35, we are going to settle
on three which are recommended to the Internet Protocol
Security (TPSEC) working group: (1)MDA5(k,-MD5(k,-m))
where, k, and k, are mdependent 128-bit keys; (i1)
MD5(k'p'm-k), where, k 15 a 128-bitkey and p 1s 384 bats of
padding and (iii) MD5(k-MD5(k-m)), where, k is a 128-bit
key.

The first and third approaches (Fig. 2) are sumilar and
solves the message extension attack on the prefix
approach by the outer application of MDS5, which
conceals the chaining value, that is needed for the attack.
The outer MD5 also solves the concerns of cryptanalysis

of the suffix approach, because the message
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authentication code is a function of the unknown
secrete-key and other varying values, which are unknown.
These approaches also approximate certamn provably
secure constructions developed by Bellare et al.''. The
message authentication code is computed by combining,
perhaps bit-wise exclusive-or (XOR), the cutputs of the
pseudorandom (PRNG) function applied to the blocks of
the message. A random block 1s also mecluded for
technical reasons!®l.

Bellare et al"'? techniques assume the existence of
pseudorandom function, which takes two mputs, a key
and a message block and produces ome output. By
assumptiorn, if the key input is fixed and unknown, it is
difficult to distinguish the pseudorandom function on the
message block from a truly random one in any reasonable
amount of time!"". (This is similar to the idea that it is
difficult to find collisions for a hash function-although it
is possible because they exist, however, the amount of
time required is large!) Bellare et al'"*' also showed that
if an opponent can forge message authentication
codes, even with the opportunity to request message
authentication codes on many different messages, then
the opponent could also distinguish the pseudorandom
function from truly random one. Thus, under the
assumption that it is difficult to distinguish the
pseudorandom function from a truly random one, the
message authentication code is secure!'™.

The mdependent processing of the message blocks
leads to the parallelizability of this approach. Tt seems that
many of the concemns about designing a message
authentication code from a hash function are a
consequence of the fact that the key 1s processed only
once, or maybe twice. As a result, the key is isolated and
mformation about it can be mampulated independent of
the key. By contrast, in message authentication codes
based on encryption functions, such as DES-MAC, the
key is processed at every step which is also the case with
Bellare’s et al.l'? techniques.

THE MECHANICS OF THE HASH ALGORITHM

Tt is conjectured that it is computationally infeasible
to produce two messages having the same message

Listing 1: Message digest source code (HashCodesGenerators.java)

digest, or to produce any message having a
given pre-specified target message digest. This is a
fingerprint for the data. A digest has two main properties:
In the first case, if even one single bit of data 1s changed,
then the message digest changes as well and there is a
very remote probability that two different arbitrary
message can have the same fingerprint. Secondly, even if
someone was able to intercept transmitted data and its
fingerprint, that person would not be practically able to
modify the original data so that the resulting data has the
same digest as the original one. Hashing functions are
often found m the context of digital signature. For secure
electronic signatures, in a Public Key Infrastructure (PKI)
procedure, a hash function must be collision-resistant,
which means that it 18 computationally infeasible to find
two different documents yieldng the same hashcode
(alternatively, it is infeasible to find a different document
yielding the same hashcode as a given document). This is
a method for authenticating the source of the message,
formed by encrypting a hash of the source data. Public
key encryption is used to create the signature so it
effectively ties the signed data to the owner of the key
pair that created the signature”. Scme of the currently
approved hash functions are: SHA-1, MD5, RIPEM-128
and RTPEM-160 etc. The MD5 and SHAI algorithms are
the most commonly used in digital signature applications,
where a large file must be compressed in a secure manner
before being encrypted with a private (secret) key under
a public-key cryptosystem such as RSAM1,

A JAVA IMPLEMENTATION
OF MESSAGE DIGEST ALGORITHMS

The program in Listing 1 shows how to use
java.security to create a message digest (also called a
hash value): mn particular SHA-1, MDS5, RIPEM-128 and
RIPEM-160 are presented here. Some further information
onthe use of message digests in digital signatures may be
found™*: The program shown in Listing 1: reads in
the a Plamtext data file and calculates a SHA-1, MD35,
RIPEM-128 and RTPEM-160 hash values, which is printed
in a file hashout. Listing 2 shows the helper code for hex
marmpulation.

package com.rsc.messagedigest;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.PrintS tream;

import java.security. MessageDigest;

class HashCodesGenerators {

public static void main(String[] args) {
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try {
FileOutputStream outFile = new FileQutputStream("hashout');
PrintStream output = new PrintStream(outFile);

byte b;
String w;

//SHA-1 Hash value of data
MessageDigest sha = MessageDigest. getInstance("SHA-1");

FileInputStrearn fis = new FileInputStream(args[0]);
while (fis.available() = 0) {

b = (byte) fis.read();

sha.update(b);

»

fis.close();

byte[] hash = sha.digest();
h = new String{HexCodec. bytesToHex(hash));
output.printin("SHA-1 hash of " + args[0] + " is: " + h);

//MDS Hash value of data
MessageDigest md5 = MessageDigest.getInstance("MD5");

fis = new FilelnputStream{args[0]);
while (fis.available() = ) {
b= (byte) fis.read();
md5.update(b);

s

fis.close();

hash = md5.digest();
h = new String(HexCodec.bytesToHex(hash));
output. printIn("MD3 hash of " + args[0] + " is: " + h);

//RIPEM 128 Hash value of data
MessageDigest rpml 28 = MessageDigest. getInstance("RIPEMD128");

fis = new FilelnputStream(args[0]);
while (fis.available() =) {

b = (byte) fis.read();

rpml 28.update(b);

»

fis.close();

hash = rpm1 28.digest();

/inew Siring{HexCodec. by tesToHex(timestamp By tes));

h = new String(HexCodec.bytesToHex(hash));
output.printin("RIPEM1 28 hash of " + args[0] + " is: " + h);

//RIPEM 160 Hash value of data
MessageDigest rpml 60 = MessageDigest. getInstance("RIPEMD 160™);

fis = new FilelnputStream(args[0]);
while (fis.available() = ) {

b= (byte) fis.read();

rpml 60.update(b);

s

fis.close();

hash = rpm160.digest();
h = new String{HexCodec. bytesToHex(hash));
output. println"RTPEM1 60 hash of " + args[0] + " is: " + h);

} catch (Exception e) {
System. err.printIn(” Caught exception " + e.toString());
}

1
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Listing 2: Helper class source code (HexCodec.java)

package com.rsc.messagedigest;

public class HexCodec {
private static final char[] kDigits = {
O T R e )
lal, lbl, 'C', ldl, lel, If‘
b

public static char[] by tesToHex(byte[] raw) {
int length = raw.length;
char[] hex = new char| length * 2];
for (int i = 0; i<length; i++) {
int value = (raw[i] + 256) % 256;
int highlndex = value>>4;
int lowIndex = value & 0x0f
hex[i * 2 + 0] = kDigits[highTndex];
hex[i * 2 + 1] = kDigits[lowIndex];
}
return hex;

}

public static byte[] hexToBytes(char[] hex) {
int length = hex.length / 2;
byte[ ] raw = new byte] lengthl];
for (int i = 0; i<length; i++) {
int high = Character. digitthex[i * 2], 16);
int low = Character.digitthex[i * 2+ 1], 16);
int vahie = (high=i<4) | low,;
it (value=127) value—= 256;
raw[i] = (byte)value;

retum raw;

}

public static byte[] hexToBytes(String hex) {
retun hexT oBytes(hex.toCharAmray());

}

Here 15 the data file of the message to be digested shown
mn Listing 3.

Listing 3: Sample text message input (data)
Miss Alice Johnson
Nairobi, Kenya

Dear Miss Johnson,

This letter is to inform you that we have received US$ 2.0 million as your
first installment due for your mortgage down payment and opened mortgage
servicing account no. 6688668024 on your behalf and deposited therein said
amount. To service your account you will need to use your new password
GKGQU78BRS53.

Yours very truly,
James M Kavungu

Vice President, Finance
First Finance Bank of Nairobi

Compile the program using java interpreter: javac
HashCodesGenerators. java. You will get two classes
output: HashCodesGenerators.class and HexCodec.class.
Next execute the program as follows: java
HashCodesGenerators data. Listing 4 shows the output
file hashout which 1s the output of the digested file data.
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Listing 4: Hash values output (file: hashout)
SHA-1 hash of data is: e5e5137567a6a39d385d203222c¢73052d%adb31

MD35 hash of data is: 7bce3d267467a8103765 0c0ated 31018

RIPEM1 28 hash of data is: 20ebfa7e21bcb1f6dc3643bad1531d33

RIPEM160 hash of data is: cddf358db7bbec17432¢6670a2754bac9529595a

DIGITAL SIGNATURE AND AUTHENTICATION

For a digital signature, the main idea 1s no longer to
disguise what a message says, but rather to prove that it
originates with a particular sender. Digital signatures have
been used in Intemet applications to provide data
authentication and non-repudiation services. Digital
signatures will keep on playing an important role in future
Internet applications. For example, if electronic mail
systems are to replace the existing paper mail systems for
business transactions, signing an electronic message
must be possible. One way to address the authentication
problem encountered i public-key cryptography is to
attach digital signature to the end of each message that
can be used to verify the sender of the message®**". The
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procedure. So how can user B (Bob) send user A (Alice)
a signed message my in a public-key cryptosystems?
(Here, the subscript indicates the respective entity’s
mitial; while m = message, E and D are encryption
(or private-key) and decryption (or public-key)
procedures, Tespectively, S represents signature
algorithm.) To accomplish this, Bob first uses his own
secret-key or Dy to encrypt hus digital signature, Sg
according to Dy(Sp). (Deciphering the unenciphered

message makes sense - a property of public-key
cryptosystem: each message 15 the ciphertext for some
other message.). For detail discussion readers are referred
to ref'”. He then appends his encrypted digital signature
to his personal message, mg, to produce the signed
message, myDe(S; ), where the dot denotes concatenation.
Next Bob applies an encryption procedure to his signed
message, using Alice’s public-key E, (for privacy) which
is available on the public-key sever, to obtain the
ciphertext: Cp = E,(mp Dp(Sg)) and transmats it to Alice.

When Alice receives Cp she first applies her
private decryption procedure using her secret-key to
produce, Do(S5) = myDg(Sg). Thus, the message my will
appear, along with a portion of gibberish at the end
of the message. To authenticate msz, Alice uses Bob’s
public-key, Eg, (available on the public-key server) to
perform, E.(Dy(Sp)) = S;. If Bob’s digital signature
appears, she knows the message is authentic.

She now possesses a message-signature pair (mg, Sg)
with properties similar to those of signed paper document.
Bob cannot deny having sent Alice this message, since
no one else could have created S, = D, (m®,,;) (where m®
15 Bob’s plamntext digital signature message). Alice can
convince a judge that Fz(Sz) = m”; and so she has proof
that Bob signed the document.

Clearly, Alice canmot modify my, to a different version
m’s, since then she would have to create the
corresponding signature, S, = D (m';), as well. Therefore,
Alice has received a message signed by Bob, which she
can prove that he sent, but which she cannot modify.
(Nor can she forge his signature for any other message).

The only remaimng issue involves selecting the
digital signature Sg. If Bob uses the same digital signature
in every message, Eve (the person in the middle or
attacker) will be able to detect thus by looking for common
string among Bob’s transmissions. Even though by doing
this Eve will only discover Do(Sg), this all she needs in
order to sign a rogue message and misrepresent herself as
Bob to Alice.

Therefore, it is important for Bob to use a different 5,
1 every message. One strategy 1s to make S; depend on
the message mg. Hash functions are commonly used to
implement this strategy. In this setting a public hash
function h 18 required to transform a variable-length
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message into a fixed-length message fingerprint F, i.e.,
h:T;~F. Bob’s ciphertext message to Alice i1s now
encrypted using, Cy = H,(Ta"D5(F)). After applying D, to
this ciphertext, Alice can authenticate it by first
computing E.(D¢(F)) = F and then comparing this result to
the result she obtains by applying the hash function h
to mg.

However, there are some instances in which the main
security issue is authentication and not secrecy. For
example, a financial institution may be content with
sending and receiving their transactions unencrypted, as
long as they can guarantee that these transactions are not
altered. Specifically, if Bob sends messages, mz'Dp(F) to
Alice, then even though Eve can read m., however, she
will not be able to alter it unless she is able to determine
F.

In order for a public hash function h to be
effective, it must posses at least the following two
properties: First, since h is known to all, for any y it must
be computationally mtractable to find m; such that,
himg) =y. In other words, Eve should have great difficulty
in trying to invert h in order to obtain mg. Second, it
should be computationally mtractable to find messages
that collide™. To see why, assume we have a hash
function h that does not satisfy this property. Now
suppose Eve constructs two messages m; and m'y such
that, h(m;) = h{m';) and Bob is perfectly happy to sign m,
but not m’,. If Eve can convince Bob to sigh my, then Eve
will also be able to achieve her fraudulent goal of signing
m’, with Bob’s digital signature.

Many digital hashing schemes are based on the
following idea. Tet h' be a hash function that maps s-bit
keys to k-bit values, for some fixed s>k. From h' we
construct a public hash function that produces a k-bit
messages fingerprint by first breaking the message T into
blocks, Ty, Tes-e....s To @ach containing, s-k bits. Next let:
F(Tg)=h' (F_ Ty, where the dot denotes concatenation
and F, 1s a k-bit initialization value, often chosen as all
zeros. The message fingerprint is then given by F,. Now
that we have a kind of a basic idea how digital signature
15 accomplished m theoretical sense, how can it be
packaged to allow for its use in real application! Further,
you might have observed that this technique implements
digital signature scheme using encryption algorithm, a
subject which 1s dear to US-export regulator, who do not
allow the export of lugh quality cryptographic procedures.
So how do we go around this? And that is the subject of
the next section locking at how Digital Signature
Algorithm (DSA) came to be. But before taking on the
DSA, we will take a plunge and have a look at the Discrete
Logarithm Problem (DLP), another mathematical tool that
15 useful for implementing public-key crypto-algorithm
procedures.
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The mechanics of Discrete Log Problem (DLP): The
most important tool necessary for the implementation
of public-key cryptosystems is the Discrete Log Problem
(DLP). Many popular modem crypto-algorithms base their
security on the DLP. Based on the difficulty of tlus
problem, Diffie-Hellman™" proposed the well-known
Diffie-Hellman key agreement scheme in 1976. Since then,
numerous other cryptographic protocols whose security
depends on the DLP have been proposed, including: the
ElGamal encryption and signature scheme"”, the U.S.
government digital signature (DSA)P? is perhaps the best
known example of a DLP system, the Schnorr signature
scheme™ and the Nyberg-Reuppel signature scheme™.
Due to mterest in these applications, the DLP has been
extensively studied by mathematicians for the past
20 years. The mathematical challenge here lies in
computing discrete logarithms in finite fields of type Z,,
which consist of the integers modulo a large prime p.
Although this problem can be considered difficult, there
are  known sub-exponential time algorithms for
solving it, such as the number field sieve. In practical
terms, sub-exponential time means that a determined
hacker with enough processing power can break the
system in a few months.

In an (abelian) group G (multiplicatively written) we
can consider the equation y = x", x, y¢G, neZ. If x and y
are known real numbers and it is also known that x is some
power (say, n) of y, then logarithms can be used to find
n(“=log,(y)”) m an efficient manner. However, 1f x and y
are given such that: y = x* = xx-.....’x (n-times), then in
general it is technically much harder and hence the
determination of n cannot be carried out in a reasonable
amount of time. This is equivalent to the well-known real
logarithm, we call n the discrete logarithm of y related to
the base x*. The operation exponentiation x-y: = x* can
be implemented as a quick, efficient algorithm.

The Discrete Logarithm Problem (DLP) is the
following: given a prime p, a generator g of Z, anda
non-zero element BeZ,, find the umque integer k, O<k=<p-2,
such that B = g* The integer k is called the discrete
logarithm of 3 to the base g. Here, Z, denotes the set of
integers {0, 1, 2., p-1}, where addition and
multiplication are performed modulo p. Tt is well-known
that there exists a non-zero element geZ, such that each
non-zero elements in 7, can be written as a power of g;
such that an element g is called a generator of Z..

The corresponding problem 1n additive (1.e., abelian)
groups is: given P and kP (P added to itself k times), find
the integer k. This is much more difficult! There is no
one-step operation like taking logarithms that we can use
to get the solution. So we may know P and kP and yet not
be able to find k in a reasonable amount of time. This is
called the Discrete Log Problem for abelian groups. We
could always repeatedly subtract P from kP till we got 0.
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But if k is large, this will take us a very long time. Several
important cryptosystems are based on the difficulty of
solving the DLP over finite abelian groups. The solution
is even tougher if the underlying group arises from an
elliptic curve over a finite field.

Standard DLP cryptosystems are based on
multiplicative groups with the main operation of
exponentiation. In elliptic curve cryptography (ECC)PY,
the multiplicative group is replaced by the additive
group of elliptic curve points and exponentiation
operation by scalar multiplication of a pomt (1e.
calculation of g* = g-g-..-g for a generator g of a
multiplicative group is replaced by calculation of [k]P =P
+ P+ ... + P (k-times) for a generator point P of an additive
group of elliptic curve points). Thus, the computational
performance of cryptographic protocols based on elliptic
curves strongly depends on efficiency of the scalar
multiplication.

Digital signature algorithm: The Digital Signature
algorithm (DSA) was proposed in August 1991 by the
17.S. National Institute of Standards and Technology
(NIST) for use in their Digital Signature Standard (DSS)
and, was later specified in a 1.5, Government Federal
Information Processing Standards (FIPS 186) called the
Digital Signature Standard (D3S). It was designed at the
NSA as part of the Federal Government's attempt to
control high security involving cryptography. Part of that
policy included prolubition (with severe criminal
penalties) of the export of high quality encryption
algorithms. The DSS was intended to provide a way to
use high security digital signatures across borders m a
way which did not allow encryption. Those signatures
required high security asymmetric key encryption
algorithms, but the DSA (the algorithm at the heart of the
DSS) was intended to allow one use of those algorithms,
but not the other. Tt didn't work. DSA was discovered,
shortly after its release, to be capable of encryption
(prohibited high quality encryption, at that), however, it
is so slow when used for encryption as to be even more
than usually impractical.

The US government based their Digital Signature
Algorithm {DSA) on much of ElGamal’s study™ and is the
best known example of a large system where the Discrete
Logarithm (DI) algorithm is used. Tts security is based on
the intractability of the discrete logarithm problem (DLP)
in prime-order subgroup of Z',. As with the RSA
algorithm, these transformations raise the computational
complexity of the problem. The discrete logarithm system
relies on the discrete logarithm problem modulo p for
security and the speed of calculating the modular
exponentiation for efficiency. In terms of computational
difficulty, the discrete logarithm problem seems to be on
a par with factoring™”.
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The mechanics of Digital Signature Algorithm (DSA):
The Signature-Creation Data (SVD) consists of the public
parameter an integer y computed as: y = g* mod p, as per
the DLP above. Note that p and q are large prime
numbers™ When computing a signature of a message M,
no padding of the hashcode is necessary. However, the
hashcode must be converted to an integer by applying
the method described in Appendix 2,207,

The basic idea of DSA is for the signer of message
M - that is, the possessor of the value x behind the
publicly known, g* mod p - to append a pair of numbers r
and s obtained by secretly picking another number k
between 1 and q, computing r = (g mod p) mod q
(i.e., computing g* mod p and then taking the remainder of
that mumber mod q) and s =k~ (SHA (M) + xr) mod q,
where k™' is the multiplicative inverse of k(mod q) and
SHA 1s the Secure Hash Algorithm. He then sends (M, r,
8) to the commumcating partner. Another NIST standard,
SHA (official acronym is SHA-1) reduces a character
string of any length to a 160-bit string of gibberish. In the
implementation of DSA, q is a 160-bit prime divisor of p-1
and g is an element of order qin F',.

The receiver of (M, 1, s) from person g* computes

=s"' SHA(M) mod q and v = s™' 1 mod q and then

checks that ((g")(g")" mod p) mod g equals r. If it doesn’t,
then, by elementary number theory, something defimtely
went wrong. If it does, then, according to NIST, you can
safely assume that message M came from the presumably
umque mdividual who knows the discrete logarithm of g*.
Table 1 shows the sequence of DSA scheme.

Key and parameters generation algorithm: The prime
mumbers p and g shall be generated following the
accepted procedure suitable for cryptographic prime
number generators™. The integer x generated by applying
a random number generation method that satisfies the
requirements for true random number generator (TRNG) or
using a method satisfymmg pseudorandom number
generator (PRNG)™ with an appropriate size seed. Each
value of x shall effectively be influenced by EntropyBits
bits of true randomness or a seed of appropriate length.
Finally, generate k using one of these methods; k does
not have to be generated using exactly the same method
as x. The DSA requires that q be a 160-bit prime and p a
prime with between 512 and 1024 bits.

Random number requirements: As already observed
above, there are two main types of random number
generators used in cryptography: the true random number
generator (TRNG) and the pseudorandom number
generators (PRNG). The aim of a TRNG is to generate
individual bits, with uniform probability and without
any correlation between those bits. Consequently,
the knowledge of some bits does not give any

Table 1: Digital Signature Algorithm (DSA)

Digital Signature Algorithm (DSA)

Key Generation

1.  Choose an L-bit prime p, where 512<T.< 1024 and 1. is divisible by 64

2. Choose a 160-bit prime q, such that p-1 = gz, where z is any natural

number

Choose h, where 1<h<p-1 such that g =h* mod p>1

Choose x by some random method, where (<x<q

Calculate y =g* mod p

6. Public key is (p, g, g, ¥). Private key is x

Wote that (p, q, g) can be shared between different users of the system, if

desired

Signing

1.  Choose a random per message value k (called a nonce), where 1<k<q

2. Calculate r={g" mod p) mod q

3. Calculate s = k™'(H{m)+xr) mod g, where H{m) is the SHA-1 hash
function applied to the message m

4. Signature is (m, 1, )

Nonce means “for the present time” or ‘for a single occasion or purpose’

Verilying

1. Calculate w=s"! (mod q)

2. Calculate ul = wH{m) (mod q)

3. Calculate u2 = wr (mod q)

4. Calculate v=(g*" * v mod p) mod q

5. Signature valid if v=r

DSA is similar to ElGamal discrete logarithm cryptosystem signatures™ .

Implementation of Digital Signature Algorithm (DSA)

Here we will use an overly small prime and integer numbers to show how

DSA can be implemented in real applications.

Key Generation

7. Choose a prime number: p = 767813, which gives q=191953 and z
=4.

8 Choose h =67, such that g =h* mod p = 187983

9. Choose x = 23 and compute: ¥y = g° mod p =187983% mod p =

o

460280

10. Public key is: (p, q, g, ¥). Private key is: x = 23,

Signing

5. Choose a random per message value k = 79 (called a nonce), where
1<k<q

6. Compute r = (g mod p) mod q= 143753

7. Choose m = H(m) = 4076 and compute s = k™! (H(m)+xr) mod q =
95359

8. SBignature is (m, r, 8) = (4076, 143753, 95359)

Nonce means “for the present time’ or ‘for a single occasion or purpose’

Verilying

6. Compute: ul = H{m) (mod q) = 16935

7 Compute: u2 =g 'r (mod q) = 157837

8 Compute v=(g" * v mod p) mod q=143753

9 Signature valid, since: v =r = 143753.

information (in a strong information theoretic sense)
about the other generated bits. However, achieving
this task in real practice appears to be a difficult
possibility. Consequently, the cryptographic designers
and implementers often do resort to pseudorandom bit
generators (PRNG) i many applications. However, due to
the deterministic nature of the PRNG, they are not
generators of truly random bits but, starting with a
random seed, they are able to generate sequences of bits
that are random in behavior.

So how does one get the sense and feel of what a random
number is like?: For a start, a physical random generator
is based on a physical noise source (usually a primary
noise) which 1s coupled to a cryptographic or
mathematical post-treatment of the primary noise. Next,
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the primary noise must be subjected to an adapted
statistical test on a regular basis. Following this approach,
the expected cryptanalyst effort of guessmg a
cryptographic key shall be at least equivalent to guessing
a random value that is EntropyBits long™'. The notion of
entropy has to be used very carefully in practice, since it
applies to probability distributions and not to actual bit
strings.

So how do we overcome this difficulty in practice?: Due
to unavailability of perfect random sources, the practicing
cryptographers go round this problem, by using a source
of bits that may not be perfectly random (e.g., PRNG)
followed by hashing the bits in order to obtain really
random bits. Here, we assume that a hash function, such
as SHA-1, 1s able to extract the randomness {rom a biased
bit string. Usually, the amount of randomness of such a
string is measured by its entropy. From a more practical
point of view, it 1s useful to consider that a random source
generates sequences of bits and that only a ratio 1s
random. For example, on evaluation we may find that for
eight generated bits we have one bit of randomness;
consequently, hashing 1280 generated bits with SHA-1
will hopefully produce 160 truly random bits.

A java implementation of secure random generator: In
the implementation of DSA, the class java.security.
SecureRandom used. The class provides a
cryptographically  strong Pseudo-Random  Number
Generator (PRNG). The package java.security also offers
the class SecureRandomSpi, which defines the SPI for
SecureRandom. Let’s consider the following instruction:
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SecureRandom r = new SecureRandom();

This obtains a SecureRandom object containing the
implementation from the highest-priority installed security
provider (SUN, m our case) that has a SecureRandom
implementation. Another way to instantiate a
SecureRandom object is wvia the static method
getInstance(), supplying the algorithm and optionally the
provider implementing that algorithm:

SecureRandom random = SecureRandom.getTnstance ("SHA1PRNG",
IISUNTI);
CRYPTOGRAPHIC DESIGN
CRITERIA AND PACKAGING

The DSA cryptosystem, as we have already seen,
requires a lgh level of mathematical abstraction to
immplement. The good news about implementing any
cryptography is that we already have the algorithms and
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protocels we need to secure our systems™*. The bad
news is that that was the easy part, implementing the
protocols successfully requires considerable expertise
from the software developers and designers.
Cryptographic algorithms do not in themselves guarantee
security. There is an enormous difference between a
mathematical algorithm and its concrete implementation in
hardware or software. Moreover, cryptographic system
designs are fragile. Just because a protocol is logically
secure doesn't necessarily mean it will stay secure when
a designer starts defining message structures and passing
bits around. The entire systems design must be
implemented exactly, perfectly, or they will fail. A poorly
designed user a hard-drive
encryption program completely mnsecure. A false reliance
on tamper-resistant hardware can render an electronic
commerce system all but useless. Since these mistakes
aren't apparent in testing, they do end up in finished
products. Hence, a designer must strike a balance
between security and accessibility, anonymity and
accountability, privacy and availability. One significant
practical problem if this system is to be useful is how can
it be packaged m a user-friendly way so that developers
can incorporate it into their applications with minimal
knowledge of its inner workings. A solution to this
problem would be the provision of a relatively simple
interface to provide security while hiding the details from
users. This interface should be able to support and swap
cryptographic algorithms with ease and support related
cryptographic concepts like key management in an easy
to use way. Further, the interface should also be flexible
enough to allow future incorporaton of new
cryptographic algorithms as the need arises. Fortunately,
this task 1s very easy to accomplish in Java using the Java
Cryptography  Architecture  (JCA)®?
Cryptographic Extension (JCE)*¥ to develop and deploy
our interface framework.

interface can make

and Java

The JCA and JCE in Java: The beauty of using Java
programming for cryptographic design and deployment 1s
that the Java Cryptography Architecture (JCA) is already
included in the Java 2 run-time environment distributed
by Sun. It mncludes algorithms to perform message
digests, create digital signatures and generate key pairs.
The classes included in the JCA are available in
java.security package, including: MessageDigest, Digital
Signature, KeyPairGenerator and SecureRandom. There
are no algorithms to perform a ciphers process which 1s
necessary for the implementation of encryption/
decryption processes, because when JCA was first
released, export restrictions would not allow Sun to
distribute such algorithms. The lack of cipher algorithms
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later led to the release of the Java Cryptographic
Extension (ICE), which include the encryption and
decryption cipher algorithms. It also includes algorithms
to generate single keys and secret-keys. The usage of the
classes in the JCA and JCE are virtually identical. The
classes included in the SunJCE are located in the
javax.crypto package, which include: CipherSuits
KeyGenerator, PublicKey and SecretKey. The JCA and
JCE classes are all very well perfected and time tested with
both the classical and traditional symmetric and
asymmetric cryptographic algorithms. Support for
encryption includes symmetric, asymmetric, block and
stream ciphers. The software also supports secure
streams and sealed objects. The default provider shipped
with the JCA and JCE is Sun’s provider,
java.security. provider.Sun. The JCA and JCE use the
factory pattern, which 1s a pattern that defines an interface
for creating an object, but lets the subclasses decide
which class to actually instantiate™”. For example, we can
generate key pair using KeyGenerator class as follows:

KeyPairGenerator kpg = KeyPairGenerator.getTnstance
("Algorithm", " CryptoProvider™Name"™);

Here, the String Algorithm refers to respective
algorithm and String CryptoProviderName refers to
security provider name. This 1 simple enough and allows
one to easily change to algorithm of interest without
necessarily using new operator, as is normally true with
objects in order to create an instance of a class. Every
algorithm must be associated with a provider and multiple
providers can support any single given algorithm. A
provider 1s the underlying implementation of a particular
security mechanism. If no provider is specified, then the
JTava Virtual Machine (VM) will use the first
implementation it finds, according to the preference list in
the java.security file. As you can see all the hard stuff are
implement in the background and the user and/or
developer 1s left to concentrate on software development.
Therefore, to implement ones new algorithm, you only
need to change the string that refers to the algorithm e.g.,

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA", "SUN");

Here, the String DSA 1s the algorithm and String SUN
refers to java.security. provider with the provider from Sun
Microsystems, for example, which comes as a default
provider with Java 2. There are several existing providers,
some of which are freely available and others that are
quite expensive, if say, one is interested to implements
ones own provider. Companies that offers java.security
providers include IBM™ and RSA™ both under
commercial license and, Bouncy Castle which is an Open

Source license (freely available for download and use)*.
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A JAVA IMPLEMENTATION
OF DSA KEY PAIR GENERATION

Recall from above that the package java.security does
provide APIs for the message digest and digital
signatures processing. Using this package, one can
generate the pair of keys required to process digital
signature schemes by creating the mnstance of a
KeyPairGenerator object via the static method
getInstance(), supplying the DSA algorithm and,
optionally the provider implementing the algorithms. Next
you initialize it with the desired key size in number of bits
and, optionally a secure random provider. Then you call
the generateKeyPair() method to generate the DSA key
pair;

KeyPairGenerator KPG = KeyPairGenerator. getInstance("DSA", "SUN");,
KPG. initialize(1024, 1);
KeyPair KP = KPG. generateKeyPair();

The algorithm 15 passed to the factory getlnstance()
method as a String. If the algorithm is not supported by
the installed provider(s), a NoSuchAlgorithmException is
thrown Each provider must supply (and document) a
default imtialization. If the provider default suits your
requirements, you don't have to save the intermediate
KeyPairGenerator object.

If you need to generate more than one key pair, you
can reuse the KeyPairGenerator object; otherwise, you
can simply generate the key pair with one line of code.
This gives you much better performance than using a new
KeyPairGenerator object every time. Listing 5 shows the
complete listing of our above code fragments.

Listing 5: DSAKevMaker for generating key pair.
import java.security KeyPairGenerator;

import java.security NoSuchAlgorithmException;
import java.security KeyPair;

public class DSAKeyMaker {

public static void main(String| | args) {
String algorithm ="";
if (args.length = 1) algorithm = args[0];

try {

KeyPair keyPair = KeyPairGenerator
.getTnstance(algorithm)
.generateKeyPair();

Sy stem. out.println(key Pair.getPublic());
System. out.println(key Pair.getPrivate());

1 catch (NoSuchAlgorithmException e) {
System.err.println("usage: java DSAKeyMaker DSA™);
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Listing 6: the output from minning DSAKeyMaker

Sun DS A Public Key

Parameters:

P
9925ed8d a7a8a3af eSe84dc8 0d4b34bf ¢706d006 291123eb 221c6d0f 04134¢d7
b4f910cc 62b1f2bb £5998247 a7e31804 36783¢3f 551bS5ed5 aSa606b6 ¢2275527
40161cfb fecb0298 554¢58e9 78fdelct Teab85f2 9da393ed 0d792d92 c61d83b5
174bf813 857%ac32 fb0101a0 fb069d12 5f5a081 e 69dfe8fe c0O3bc58d al 09287
q

86882717 7f21150e e47d0937 aadc2d48 900e43d1

s

5ac700d0 084b4clc d4913ac2 99 cf76 9eRO6dfd £2f934da 00383beb e38bb5bS
89bb229a 8c4f8b3c fI971b04 4cebOdch 3696d5el 59f916d6 c33d84e3 82cledTe
206aef91 5b9e07al f2e0f460 88299d0 12a%bae 0b296771 4627b00e 3dfacfo9
d74abef] 0ec6c732 £1546018 2baddasl 2b05a690 ac3b996d ac87{932 d2f10109

y:
956bd 776 10d29fed 3b812819 5hal 2491 Off20fb0 96efDeeT 0R3baafly Ge5554ec
95869082 5310567 134a09cd 5¢8634% 16019beb a7S5e3cb2 6b9838bf 132aa%0e
298088ef a69f4ac 244bd647 45b2228f 96926366 bfg9ed6e Td0c72d0 53665762
c7521e6c 92058b97 86836d 7f aedecddS f4c82222 84b9a3eb fd84440b 6f8b9926

Sun DS A Private Key
parameters:

P
9925ed8d a7a8a3af eSe84dc8 0d4b34bf ¢706d006 291123eb 221c6d0f 04134¢d7
b4f910cc 62b1f2bb £5998247 a7e31804 36783¢3f 551bS5ed5 aSa606b6 ¢2275527
40161cfb fecb0298 554¢58e9 78fdelct Teab85f2 9da393ed 0d792d92 c61d83b5
174bf813 857%ac32 fb0101a0 fb069d12 5f5a081 e 69dfe8fe c0O3bc58d al 09287
q

86882717 7f21150e e47d0937 aadc2d48 900e43d1

s

5ac700d0 084b4clc d4913ac2 99 cf76 9eRO6dfd £2f934da 00383beb e38bb5bS
89bb229a 8c4f8b3c fI971b04 4cebOdch 3696d5el 59f916d6 c33d84e3 82cledTe
206aef91 5b9e07al f2e0f460 88299d0 12a%bae 0b296771 4627b00e 3dfacfo9
d74abef] 0ec6c732 £1546018 2baddasl 2b05a690 ac3b996d ac87{932 d2f10109

X
569eeeas 4ca7525a 3a1d68b3 SedecSd1 7fd0357a

The program compiled using java interpreter on
command line as: javac DSAKeyMaker java. Next execute
the program as follows: java DSAKeyMaker DSA to get
the values for p, q and g in both the public and private
keys. A value for y 1s provided in the public key and for
x 1 the private key, which should look like Listing 6.

The output above highlights the value of properly
overloading the toString() method in Java programming.
Two important points to note from Listing 6: the lines
beginning with SunJSSE DSA public key: and SunJSSE
DSA private key, these are the results of calling the
toString() method in the class DSAPublicKey and class
DSAPrivateKey, respectively with each class generating
their respective keys and parameters required for
signature algorithm or encryption processes. If your
interest is to encrypt data you should be careful about
how you transmit the public key wvalues to your
communicating partners. However, if the values are being
used to authenticate a transmission, you should make
them publicly available so that others can verify that a file,
for example, originated with you and was delivered
unaltered.
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So how do you use this key pair to sign messages?: Tn the
case of DSA, you begin by taking some text that you want
to sign and tumn it mto a number m and follow the
procedure given in Table 1. The RSA, for example, has a
simple way of domg this. If the owner of a code (N, )
wants to prove that she’s the sender of a messagem,
she can use her private decoding exponent d to compute
¢ =m*mod N and then send both C and m, i.e., (C, m)!'*".
The receiver can then persuade himself that the message
truly origmated with the owner of d by computing C° and
checking that it’s the same as m. For example, take a
message m = 3. Digital signature scheme with RSA
requires you to initially perform decryption using your
private-key, m™d (mod N) = 3101 (mod 559) = 542. Then
you send the deciphered message 542. The receiver then
performs the encryption process by calculating. C*d(mod
N) = 54275(mod 539) = 3.

Signature suites for secure electronic signatures: Due
to possible interactions which may influence security
of electronic signatures; algorithms and parameters
for secure electronic signatures shall be used only in
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predefined combinations referred to as the signature
suites. A signature suite consists of the followmg
components: signature algorithm with parameters, a key
generation algorithm, a padding method and a
cryptographic hash function.

Why pad messages?: The message block padding is quite
common practice n the implementation of cryptographic
algorithms. There are several reasons as to why we do
this, the first of which is most likely the most important,
security. Since security 1s the whole reason we have
cryptography in the fist place, it only makes sense to use
padding to our advantage. It helps us by camouflaging
the data mside of the encryption, which, in other words,
means that it adds random bytes to our data so that it is
more difficult for a prospective attacker to find which
bytes are the actual data. Padding also helps us by
putting our data in blocks, so that we can operate on
pieces of data that are of the same size. This makes our
job of cryptography simpler to use in a practical
environment. Finally, it provides a standard way to block
our data so that we can transport it to other users in a
form that they can recognize and use effectively. There
are two commonly used types of padding and which you
can implement with your own provider, these are OAEP
and PKCS1!'.

Stream ciphers: Tt is important to note that in
applications such as the generation of secret keys for
symmetric algorithms, which i3 usually used in
conjunction with asymmetric keys, the random data must
be random in a very strong sense. For example, 1t should
not be possible to derive any knowledge of generated
data from previously generated data, even if the
previously generated data is known. This situation may
also occur in the context of signatures, e.g., if an authority
generates secret keys and an attacker fries to gain
mformation on some of those keys after having obtamned
some others. Consequently, there must not be any usable
link between generated keys of different kinds.

Algorithmic countermeasures to improve security: Some
general algorithmic solutions may be used to increase
the security if a good souwrce of randomness is not
available. For example, consider the DSA signature
scheme; the signature algorithm involves a secret key k
related to the public vernfication key g” mod p and a
temporary secret key k that has to be refreshed for each
signature. FIPS 186-21") says that k may be true or pseudo
randomly generated. This means that the values of k do
not have to be perfectly independent (note that if the
discrete logarithm problem is hard, k is never revealed).
The secret key x 1s generated once and usually outside of

216

the devices such as smart card, so we can assume it has
good randommness properties. Consequently, when a bit
string is generated from the available source, the
following transformations may be used to increase the
security: (1) encrypt the bit strings with a stream cipher in
order to hide possible repetitions while keeping the same
number of available bits; (ii} combine the obtained bits
with the secret key x (using a hash function or a block
cipher for example) and (iii) other data, such as a counter
and/or a smart card umque serial number, can be added to
lncrease security.

A Java Implementation of DSA Scheme: Recall from
above that the package javasecurity provides APIs for
the message and digital signatures. Tt also offers
DigestInputStream and DigestOutputStream classes for
reading and writing to 1/O streams. The signature class
provides applications with functionality of the signature
algorithms, e.g., SHA-1/DSA while the SignatureSpi class
defines the SPIs for the signature.

In the signature class you can generate an object
using a getlnstance() method. You must supply the
algorithm or the algorithm and the provider. A signature
object must also be initialized by a private-key using
initSign() if it is for signing and by public-key using
mitVerify() if 1t 1s for verification. Further, the signature
provides an update() method that you can use to update
MessageDigest objects and Signature objects with the
data to be digested or signed/verified, respectively. Lastly
you can digest the data using the digest() method of the
MessageDigest class and you can sign or verify the data
using the sign() or verify() method 1 the Signature class,
respectively.

The Signature class mampulates digital signatures
using a key produced by the KeyPairGenerator class. The
following methods are used in the example below:

KeyPairGenerator.getInstance("DSA","SUN");

/falgorithm and provider supplied

s initialize(1024, r); //initialize KPG with secure random

»  generateKeyPair() //Generates the keys.

s Signature getInstance(" SHA1 withDSA")
the Signature object.

»  mtSign(key.getPrivate()) /lmtializes the Signature
object.

¢ update(plainText) and sign() //Calculates the
signature with a plaintext string.

¢ mnitVerify(key.getPublic()) and

/fVerifies signature.

//Creates

verify(signature)

The following program, Listing 7, shows the
implementation for generating keypair, signing a file and
then verifying the signature.
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Listing 7: Implementation of DS A to sign and verify message (SignVerifyFileDSA java)

package com.rsc.dsasignverify;

import java.io. *;
import java.security.*;
import java.security.spec.®;

class SignVerifyFileDS A

{
public static void main(8tring arg[])

{
it (arg.length !=3)
Systemn.out. println(Usage: java SignVerifyFileDSA DataFile SignatureFile PublicKeyFile™;
clse
ry

{

FileInputStream fis = new FileInputStream{arg] 0];
FileInputStream sfis = new FilelnputStream(arg] 1]);
FileInputStrearn pfis = new FilelnputS tream(arg[2]);

// We create the keypair-Key strength can be 1024 inside the United States
KeyPairGenerator KPG = KeyPairGenerator. getInstance("DSA", "SUN");
SecureRandom r = new SecureRand om();

KPG.initialize(1024, r);

KeyPair KP = KPG.generateKeyPair();

/fprint out on the command line the provider used
System.out. printlng "nProvider is: " + KPG.getProvider(). getTntol) );

// We get the generated keys
PrivateKey priv = KP.getPrivate();
PublicKey publ = KP.getPublic();

System.out. printlnd"nAlgorithm is: " + publ getAlgor thm() + ™0™,

// We initialize the signature
Signature dsasig = Signature.getlnstance(" SHA1withDS A", "SUN");
dsasig.initSign(priv);

// We get the file to be signed

BufferedInputStream bis = new BufferedInputStream(fis);
byte]] buft = new byte]1024];

int len;

// We call the update() method of Signature class->Updates the data to be signed
while (bis.available() !=0)

len=bis.read(buft);
dsasig.update(buft, 0, len);

// We close the buffered input stream and the file input stream
bis.close();
fis.close();

// We get the signature
byte[] realsignature = dsasig.sign();

// Wewrite the signature to a file

FileOutputStream fos = new FileOutputStream{arg[ 1]);
fos.write(realsignature);

tos.close();

// We write the public key to a file

byte[] pkey = publ.getEncoded();

FileOutputStream keytos = new FileQutputStream(arg| 2]);
keyfos.write(pkey);

keyfos.close();
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//Get the public key of the sender

byte[] encKey = new by te[pfis.available()];
pfis.read{encKey);

pfis.close();

/Import the encoded public-key bytes

H509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encKey);

KeyFactory KeyFac =KeyFactory.getInstance("DSA", "SUN"),
PublicKey pubkey = KeyFac.generatePublic{pubKeySpec);

J// Gret the signature on the file-This will be verified
byte[] sigToVerify = new byte[sfis.available()];
stis.read(sigT oVerify);

sfis.close();

// Initialize the signature-update() method used to update the data to be verified

dsasig initVerify (pubkey);

FileInputStrearn fis1 = new FilelnputS tream(arg[0]);
BufteredInputStream buf = new BufferedTnputStream(fis1);
byte[] buffl =new byte[1024];

int lenl;

while(buf.available() != 0)

{
lenl = buf.read (buffl);
dsasig.update(buftl, 0, lenl);
}
but. close();
fis.close();

/ Verify the signature
boolean verities = dsasig. verify (sigT oVerify);

if (verifies)
System.out.printind" Verified: Valid signature.");
else
System.out. printingWarning: Tnvalid signatire.");
)
catch (Exception e)
{
Systemn.out. println("Caught Exception: " + e);
}
)

The comments embedded in the code, Listing 7,
explain what the code does. Notice that we first must write
the public-key to file then import the encoded public-key
bytes from the file contaimng the public-key and convert
them to a PublicKey. Hence, we read the key bytes,
instantiate the DSA publickey using KeyFactory class
and generate the public-key from it, i.e.,:

//Get the public key of the sender

byte] ] encKey = new byte| pfis.available()];
pfis.read(encKey);

pfis.close();

/Tmport the encoded public-key bytes

X509%EncodedKeySpec pubKeySpec = new X 509EncodedKeySpec(encKey);
KeyFactory KeyFac = KeyFactory.getInstance("DSA", "SUN");

PublicKey pubkey = KeyFac.generatePublic(pubKeySpec),

The X509EncodedKeySpec class represents the
Distinguished Encoding Rules (DER) encoding of a public
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or private key, encoded to the format specified m the
X509 standard"”.

Notice that the names of the three files used in this
program should be passed by the user on the command
line when executing the program. They are:

1. DataFile - Input data file to be signed.
2. SignatureFile - File where the signature will be written
3. PublicKeyFile - File where the public-key will be

written

The program is compiled with following command:
javac SignVerifyFileDSA java

The program 1s executed in two steps:

Step I-Signs file, creates public key file and verifies the
signature: Execute the program by usmg the Java



Inform. Technol. J., 4 (3): 204-221, 2005

interpreter java and passing the names of the three files
on the command line, as follows:

java SignVerifyFileDSA DataFile SignatureFile PublicKeyFile

The program signs file and creates public-key file and
verifies the signature and displays the following:

Provider 1s: SUN (DSA key/parameter generation, DSA
sigmng; SHA-1, MD5 digests; SecureRandom; X.509
certificates; JKS keystore; PKIX CertPathValidator; PKIX
CertPathBuilder; LDAP, Collection CertStores)
Algorithm is: DSA

Verified: The signature on the file is correct.

Here we have used the same data of Listing 3 as our
DataFile. Listing 8 and 9 show the derived PublicKeyFile
and SignatureFile, respectively on executing our program.

Listing 8: Content of the PublickeyFile (It is all Gibberish to human eye)
0,0,0,0,00*tHis000,-

00000y ¢SOOumRBTe.idga0-R<IDOA-?OJQ&IE]@" Qi Y=0X1u,
A3P05EUl<0;00400f sk ™PEY YeO {0"A0»©

*xpe EDo; W¢E " |ODDUf60A-AD0STOZO " 26u0®+
ax*1p"D00ONHOCO00— POO#

i e,

AXOB0000+4 ... Ov=BE Vs W™ 18 0WL
=0,eQYWI0Y QzqO000 T0gHeL(O0-E
+Hluni¢

! sbatbzOS; oz Q0% MHaZAYD’ F0{U%dOL; pil*00...00000¢
E0e\iEeH.04Peu00 ef0é,®AehAcOCE

2EE[a<0z<T|0(af®-

Listing 9: Content of the SignatureFile
0-000; 0V Mg20%kwinEx 14{>00 —\P+2Uc*En«
OY YKO

Step IT-Tamper with any of the three files: In this step we
rerun the program but this time we tamper with any of the
three files. To test this, this time we must comment out the
sections implementing, write the signature to a file and
write the public-key to a file, since we have already done
soin Step I, i.e.:

/MWe write the signahure to a file

FileOutputStream fos = new FileOutputStream(arg[1]);
fos.write(realsignature);

fos.close();

/fWe write the public key to a file

byte[] pkey = publ.getEncoded();

FileOutputStream keytos = new FileOutputStreamiarg[2]);
keytos.write(pkey);

keyfos.close();

And instead we now get the signature file and use
the existing public-key to perform the verification
procedure.

The output is as expected:

1. If none of the three files have been altered after the
signatire was applied, the program displays the
following

Verified: Signature is valid.

2. If you change the contents of any of the three files,
the program displays the following message:

Warning: Invalid Signature.

3. If you modify the signature file, so that it no longer
respects the signature format, this 1s the message
displayed:

Caught Exception: java.security.SignatureException:
invalid encoding for signature

The program demonstrate how you can successfully
use the Java 2 APIs to send documents with proof of data
integrity and authenticity using high quality hash
function and DSA scheme.

OTHER POSSIBLE APPLICATION OF DS

Electronic checking: An electronic checking system
could be based on signature system such as the above. Tt
1s easy to imagine a futuristic encryption device in your
home termmal allowing you to sign checks that get sent
by electronic mail to the payee™. It would only be
necessary to mclude a umique check number in each
check so that even if the payee copies the check the bank
will only honor the first version it sees. Many other
secure transactions requiring message authentication and
DSA schemes can be implemented using coprocessor
assisted devices like smart cards etc.

CONCLUSIONS

We have shown how to implement message digest
using secure hash function, MAC and DSA. We have
also shown how one can successfully use the power of
Java 2 APIs to send documents with proof of data
integrity and authenticity using high quality hash
function and DSA scheme. We presume that in future,
MAC and DSA schemes can be implemented using
hardware/software coprocessor assisted devices like
smart cards ete.
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