http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 4 (1): 21-31, 2005
ISSN 1812-5638
© 2005 Asian Network for Scientific Information

Design and Implementation of a Semantic Document Management System

Guoren Wang, Bin Wang, Donghong Han and Baiyou Qiao
College of Information Science and Engineering, Northeastern University,
Shenyang 110004, People’s Republic China

Abstract: Easily accessible mformation on the World Wide Web (WWW) and affordable large capacity
secondary storage make 1t easy to build up very large document collections even in personal computers.
However, the method of orgamzing files in computers has not been changed too much for decades. Searching
for a particular document or file from a gegabytes collection based on traditional tree structured file directories
becomes never an easy task. This study presents a system where documents are no longer identified by their
file names. Tnstead, a document is represented by its semantics in terms of descriptor and contents vector. The
descriptor of a document consists of a set of attributes, such as date of creation, its type, its size, annotations,
etc. The content vector of a document consists of a set of terms extracted from the document. Such semantic
mformation provides the user with associative searching capability, that 15, documents can be obtammed by
giving required properties. The representation of document semantics and document organization and key
word-based indexing techmques are discussed. Furthermore, for the largely used XML data in Web
representing and exchanging, some structure-based querying techmiques are proposed in this study,
L.e. structural indexes and path expression optimization principles. A prototype visual based explorer that makes
use of semantics of documents 1s also described.

Key words: Document databases, semantic documents, document clustering, path expression querying, visual

document exploring

INTRODUCTION

With the rapid development of the Internet and the
World Wide Web (WWW)', very large amount of
mnformation is available and ready for downloading, most
of which are free of charge. At the same time, secondary
storage device, the hard disk with large capacity is
available at affordable prices. Disk space seems no longer
a concerns even for personal computer users. Most of us
nowadays often dump a large number of various types of
documents into our computers without much thinking. On
the other hand, the file system has not been changed too
much for the past decades. Although there are various
types of file systems most of them orgamze files in
directories that form a tree structure and a file 1s identified
by its name and patlmame in the directory tree. Finding a
particular file on the disk with dozens of gegabytes data
becomes never an easy task.

The problem has attracted attentions from both the
academic researchers and indus-trial vendors. One of
possible solutions is to introduce semantics of files into
file systems"™. By semantics of files, it is meant any
higher-level information related to the file. Vasudevan and

such

Pazandak listed the

information':

following example of

¢ Definitional: e.g. file extension and magic numbers
define file type;

* Associative: e.g. keywords in file that characterize
content;

s Structural: e.g. physical and logical orgamzation of
the data, including intra-and inter-file relationships;
Behavioral: e.g. viewing and modification semantics,
change management and

¢ Environmental: e.g. creator, revision history.

With such built-in information, tocls that use such
information can be built to provide users with more
flexible way to access files other than files names and
paths in directories.

In the traditional file systems, the
based’keyword-based querying is widely used to make

content-

users searching their interests with some keywords in the
documents. While there are a growing amount of Web
documents that are semi-structured documents, especially
XML documents. The XML data is proposed as the new

Corresponding Author:

Guoren Wang, College of Information Science and Engineering, Northeastern University,

Shenyang 110004, People’s Republic China E-mail: wanggri@ymail.neu.edu.cn

Inform. Technol. J., 4 (1): 21-31, 2005

standard of data representing and exchanging in the Web.
For tlus kind of data, the conventicnal content-based
querying is not enough as there could be some queries
like "find all peoples who live in New York and buy more
than 10 books per-year". These queries need to check the
structure of documents and perform the querying. We call
the procedure of processing document structure related
queries as structure-based querying. The various XML
query languages proposed for XML data are all structure-
based” ™. The path expressicns are adapted as cne of the
core components of them to reach the arbitrary depth of
the data. And some algorithms and index structures are
already proposed to support efficient structure-based
querying on semi-structured data’®!.

The present study is along the same line: managing
large document collections using semantics. Among
those semantic mformation mentioned above, two types
of information, descriptive and associative ones were
used. The rationale is that when a user searches for a
document stored in her/his computer, s/he most likely has
some vague idea about the document. The typical
information includes the source of the document
(creators, places where the document was obtamned), its
type (text, html, word, postscript, etc.), the topics and its
main theme, etc., though most of time such information
s/he can remember is not precise, while the most difficult
thing to remember is the name of the file that contains the
document. On the other hand, in order to support the
structure-based querying on semi-structured data, 1e.
XML data, we adopted Xpath™ as the query language and
some index structures and query optimization techniques
are proposed to efficiently evaluate XPath queries. A
prototype system has been developed to demonstrate the
feasibility and merits of such a system. Comparing to
existing systems and tools, our system has the following
unique features.

* File name becomes optional and a document mn the
system is no longer identified by the name of the
stored file. Instead, semantic mformation, such as
document descriptor consisting of a number of
attributes and a content vector consisting of a set of
terms contained in the document are used to capture
the semantics of a stored document. Flexible
associative query about the document based on such
semantics becomes possible.

* In order to support semantic based exploring and
retrieving of stored documents efficiently, R*-tree
index is built on scalar descriptive attributes and
mverted index 1s built for string attributes of the
descriptor and content vector. Furthermore, not only
text-based documents, but also some non-text
document, such as postscript and pdf files, are also
full-text indexed.

22

¢+ Documents are clustered into topics based on
semantics so that only portions of the collection will
be searched for a particular query.

+ Structural indexes are built on XML documents to
support structure-based queries with XPath
language. Meanwhile, two path expression
optimization techniques, named path-shorten and
path-complementing, are applied.

+ A document is viewed as a point in the
multidimensional space defined by the attributes
i its descriptor. A visual document exploring tool,
X-Explorer, allows users to browse the documents
over the multidimensional document space.

The preliminary experiments indicated that the system
achieves its goal and its performance is satisfactory.

MANAGING DOCUMENT COLLECTION
USING SEMANTICS

This study defines what kinds of semantics should
be supported by the semantic document system and then
discuss how to extract the semantics from documents,
finally discuss how to index the extracted semantics.

Semantics of documents: General speaking, semantics of
a document include any information regarding the
document and its relationship with other documents.
Among various kinds of semantic information about a
document, we are in particular interested in two types of
semantics, definitional and associative information
because (1) they can help to retrieve documents more
efficiently and (2) they are easy to remember by users,
though may not be precise.

Definitional semantics of a document refers to
descriptive information about the document. We use a
Document Descriptor (DD) to represent such information.
In our system, the document descriptor has the following
structure:

enum FileType {PS, PDF, XML, TXT?};
typedef struct {
d Ref <Document> XMILId; // for XMI, documents

d Binary fileld; /f for other files

1DOCID;

class descriptor: public d Object{

private:

d String createdTime; /f time when the document is
created

d ULong fileSize, /f size in bytes

FileType fileKind; // type of document

d_UShort clusterNo; /f the cluster to which the doc
belongs

d String title; // title of the document

Inform. Technol. J., 4 (1): 21-31, 2005

d String source; // source of the file
d_String memo;

DOCID docld;

// anmotation to the document
// the TD of document public:
5

It can be seen from the structure that the document
descriptor contains meta-data about the document. Most
attributes in the descriptor are self-explainable. Attribute
fileKind specifies the type of stored document. What
listed are the types of documents implemented in the
current prototype system. It 1s obvious that the list can
grow to include more types of documents. The use of
attribute clusterNo will be described m later sections.
Attributes title, source and memo are string attributes
containing user provided information about the
document. The values of those attributes in the descriptor
can be imtialized when the document 1s stored m the
database. For example, title and source can be induced
from the link of documents when they are downloaded
from the Web. The contents of memo can be obtained
from the user who downloads/creates the document. Note
that there is no logical name for a document because a
document 1s stored mn a database as an object rather than
a file in the file system. Another reason of not including
name as one attribute 1s that unless strict naming rule 1s
enforced, a user tends to forget the name of a document
created earlier.

Associative information: Attributes title, source and
memo in the document descriptor provide certain
assoclative mnformation that helps the retrieval of
documents based on their contents. However, such
information is limited. A user may remember the contents
of a previously seen or downloaded document vaguely.
The keywords remembered may not be m the attributes.
The probability of those words appeared in the document
1s much higher. Such information for associative retrieval
of a document is captured by a vector of terms appeared
mn the document, denoted by Content Vector (CV).

Structural information: Some documents are structured
or semi-structured, such as XML documents. It is
possible to search for documents based on such
structural information. We use the schema
mformation/DTD as the schema constraints of XML
documents and guide the structure-based querying. In
this paper, we presented how to query the XML data
based on their structure information with XPath language.
It 13 our belief that with those information, stored
documents can be accessed through various querying
facilities, including query languages, keyword based
search and explorative browsing.

23

System reference architecture: We first briefly describe
the reference architecture of a system where documents
are managed based on their semantics, followed by
extraction of semantic information from downloaded
documents.

The system, as shown in Fig. 1, 1s based on the
client/server paradigm. The server side consists of an
X-Server, the document databases, Metadata and Indexes.
We use prefix X- because XML is used as a common
language to specify the documents and metadata where
exchange of data is involved. Documents are stored in a
document database system implemented on the top of an
object database system"*” conforming to the ODMG
Standard™. Definitional semantics, document descriptor
DD and structural semantics, document schema DS, are
stored as metadata. Asscclative semantics, the Content
Vectors (CV) are in fact a logical concept. They are stored
in the form of inverted mdex to provide associative
retrieval. The X-server consists of modules for storing a

I
| Client |
| I
! X-Loader X-Explorer X-Query i
S R F S -
[l misieiebeieb bbbt Sl —— A—— .
i X-Server :
| I
! |
i I
i I
I
I
| Document Semantic Semantic |
! database metadata indexes |
I
| |
: Server I

Fig. 1: Managing document collections using semantics

| Loader Interfaces |
XML ents & PS Textbased
Desgription F PS/PDHfiles
Pre-processing y
XML Parser | Pt | Text Extractor
—
w Semsntics Extraction v
Schema Topic-besed Clustering/ Term
Extractor Descriptor Generator Extractor
| | |
L 2NN v ¥
Schema DOM Multidimension Keywords
Interface Interface al Indexing Indexing
OODBMS

¥ ¥
[ocuments

Fig. 2. Storing documents
information

semantic

and extracting

Inform. Technol. J., 4 (1): 21-31, 2005

document into database, inserting semantic information
into metadata and index, processing user queries and
mterfacing with the client side.

The client side comnsists of X-loader and querying
facilities, X-query and X-explorer. X-loader is
responsible for loading documents and extracting
their semantics. X-query accepts queries expressed in
XML -based query languages, i.e. X-path and X-explorer
is a multidimensional document explorer to help users
browse and locate documents they want. The
content-based/keyword-based queries are integrated into
X-explorer by regarding the keyword as part of X-explorer
conditions.

Storing documents and extracting their semantics:
Figure 2 depicts the process of extracting semantic
information and storing it with documents in the system.
All documents and related information are managed by an
OODBMS.

The loader interface interacts with the user and
Internet Browser which is the default browser of the
system. When a user drags a link pointing to a document
of her/his interests from the Internet Explorer to the
¥ -Loader, the anchor text (treated as the title) and URL of
the link are captured using the Microsoft OLE drag-drop
technology. The document is then downloaded from the
source site. There are two major steps after the documents
are downloaded and before they are stored mn the
database.

The first step preprocesses a document. In case that
the document is compressed, it will be decompressed first
for semantic information extraction. The type of the
document is recognized (analyzed), currently based on the
file extensions. Documents can be categorized into three
groups: XMI, documents (semi-structured documents),
text-based documents and non-text based documents
such as postscript and pdf files. For semi-structured
documents, schema information 1s extracted. For non-text
based documents, text extraction is applied.

The second step, semantics extraction, generates
semantic information for the document. Most scalar
attribute values, such as creation time, size and etc., are
easy to be obtamed. If necessary, the value of clusterNo,
is obtained after the document is clustered into topics
using the method described in the next section. The
document descriptor is generated. In order to obtamn the
associative semantics of documents, the text
representation of a document is gone through the
traditional term extraction process. Those terms form the
context vector of the document. This term extraction
process consists of typical procedures such as removing
stop words, stemming, term selection, etc. For semi-
structured documents, such as XML documents, the

24

schema information is extracted and the structural indexes
are built to support structure-based queries.

Both the document and related information are stored
in a database managed by an QODBMS. To support
efficient access to the stored documents, the scalar
attributes in the document descriptor are indexed using a
multidimensional index and the string attributes in the
descriptor and content vector are indexed by a keyword
index, implemented as an inverted index.

SUPPORTING EFFICIENT RETRIEVAL
OF THE STORED DOCUMENTS

Two techniques, clustering and indexing, are used to
support efficient retrieval to the large volume of
documents stored in the database.

Topic based document clustering: Document clustering is
a well-known technique used in information retrieval. The
problem was re-examined in the recent surge of Web!'!
data mining research’™®. In our context, document
clustering can be used to improve the retrieval
performance in two ways. First, with the hypothesis that
similar documents are often accessed together,
documents in the same cluster are physically clustered in
the database so that disk seeking time is expected to be
reduced. Second, clustering information can be used by
users so that the search space of required document can
be effectively reduced. With our objectives in our mind
and inspired by Schutze and Silverstein’s projection
approach™, we developed a topic-based clustering
approach, which is proved an effective clustering method
for document clustering. Tt works as follows.

+ Different from traditional clustering methods where
no pre-defined cluster definitions are available, topic-
based clustering has a set of topic phases that are
used for clustering. This set of topics can be defined
by either users or system designers. The rationale is
as follows. The pre-determined topic phrases can
guarantee that clustering would be done according to
users' intention and the features of clusters are
interesting to users.

» Based on the topic phrases users specified, a
document is represented a n-dimensional vector x in
the following formula (1), where n is the number of
the topic phrases, t; is the i topic, F; is the frequency
of t, appearing in the document (if topic t; appears in
the title of the document, then F; is weighted,
because the title probably reflects the feature of
document), xi is the i th component of vector x for a
document.

X =<X, Xp..., X, > where, x,= \/E

L

Inform. Technol. J., 4 (1): 21-31, 2005

¢ The document space is divided into k+1 clusters. The
documents with F; = 0(1 <i<n) are grouped into the
same cluster called the miscellaneous cluster and the
left documents are divided into k clusters that
optimize the following criterion function (2).

E = {kj M dxm)

i=1 xecC;

@

In the above equation, m; is the centroid of cluster C;
while d(x, m,} is the euclidean distance between x and
m;. Thus, intuitively, the criterion function E attempts
to minimize the distance of every point from the mean
of the cluster to which the point belongs.

First, 2nt]1 initial cluster centers are determined by
the following formula (3), where % is the average of

Because the number of dimensionalities representing
documents 1s reduced, it 1s not doubted that the response
time of the clustering algorithm is dramatically improved
because the cost of distance computation is improved by
reducing the mumber of dimensions. In addition, the
topics based clustering approach overcomes the
disadvantage of losing valuable information of word-
based approaches.

To evaluate the effectiveness of the algorithm and
the quality of the clustering obtained, we presented here
one sample experiment. We use research papers in the
proceedings of SIGMOD'S7 as testing data. Based on the
sessions appeared in the proceedings, 19 topics are
selected to model the documents. The selected topics, the

Table 1: Selected topics and original grouping situation of sessions

the i* component of all document vectors, s; is the Session no. Selected topics No. of papers Paper encoding
standard deviation of the i® component of all 80 Similarity 3 1-1,1-2,1-3
document vectors $02 Tndex 6 2.1, 2-2, 2-3,
: 2.4, 2-5,2-6
$03 Data cube, OLAP 3 3-1,3-2,3-3
- - S Performance, Benchmark 3 4-1, 4-2, 4-3
m, = [X.%,.. X,] S05 Aggregate, Derived data 3 5-1,5-2,5-3
B - - 808 Distributed data 3 6-1, 6-2, 6-3
m,.m, = [X+0,,%,....%] 807 Query, Sort 3 7-1,7-2, 73
S08 Data ,mining 3 8-1, 8-2, 8-3
) (3) s09 Data alccess 3 9-1,9-2,9-3
v v - > - = S10 Spatial Data 3 10-1, 10-2, 10-3
MMy = (3% X X2 00X s X s11 View Maintenance 3 11-1,11-2, 11-3
S12 Rule 3 12-1,12-2, 12-3
_ _ 513 Security, Commit, Transaction 3 13-1, 13-2, 13-3
manl ’mZH - [Xl ’X‘Z"" ’xni On]
Table 2: Clustering result and cluster features
Cluster no. Cluster features Papers
Then, the nearest pair of clusters is merged until the o1 Similarity, Query 1-1, 1-2
desired number of cluster is achieved. co2 Index, Performance 21,22, 23, 24, 25, 26
Finall the iterative al thm of k- 20l ¢ C03 Rule, Performance 1-3, 9-3
mally, we use the 1ferauve algort Q means (o] o4 Data cube, Query 3-1, 3-2, 3-3
compute the final cluster centers to minimize formula Cos Benchmark, Performance 41,42, 43
E. COs Derived data, Aggregate 5-1, 5-2, 5-3
Co7 Distributed data, Query 61, 6-2, 6-3
CO8 Query, Sort 7-1,7-2, 7-3, 9-1, 9-2
* Summarize the features of clusters excluding the Coo Data mining, Rule 81, 82, 83
miscellaneous cluster. For a given cluster, the m (1 <m Clo Spatial data, Query o 10-1,10-2,10-3
<n) topic phr. ith imal f CI1 View maintenance, transaction 11-1, 11-2,11-3
<n) topic phrases with maximal average frequency are s Rule, transaction 121, 12-2, 12-3
selected to characterize the cluster. C13 Transaction, Security 13-1,13-2, 13-3
Table 3: Confusion matrix
Clusters gotten by the algorithms
Proceedings
segsions CO1 Co2 Ca3 Cc4 o5 C06 co7 CO8 Cco9 C10 Cl1 C12 C13
501 2 0 1 0 0 0 0 0 0 0 0 0 0
502 0 [0 0 0 0 0 0 0 0 0 0 0
8503 0 0 0 3 0 0 0 0 0 0 0 0 0
sS4 0 0 0 0 3 0 0 0 0 0 0 0 0
S05 0 0 0 0 0 3 0 0 0 0 0 0 0
S06 0 0 0 0 0 0 3 0 0 0 0 0 0
507 0 0 0 0 0 0 0 3 0 0 0 0 0
508 0 0 0 0 0 0 0 0 3 0 0 0 0
509 0 0 1 0 0 0 0 2 0 0 0 0 0
S10 0 0 0 0 0 0 0 0 0 3 0 0 0
S11 0 0 0 0 0 0 0 0 0 0 3 0 0
S12 0 0 0 0 0 0 0 0 0 0 0 3 0
S13 0 0 0 0 0 0 0 0 0 0 0 0 3

25

Inform. Technol. J., 4 (1): 21-31, 2005

original grouping of sessions are shown as in Table 1.
Note that two sessions about indexing in the proceedings
are merged, so there are fotally 13 sessions with 6 papers
in session 2.

Table 2 gives the clustering result and the feature of
each cluster. For each cluster in Table 2 except for C03
there exist a corresponding session. For example, C02,
C04, C06 correspondto 802, 503, 505, respectively and the
cluster and corresponding session have similar features.
Cluster C03 should correspond to session S09 about data
access. Because topic query appears in papers 9-1 and 9-2
many times, the two papers are grouped into cluster C08.
Asg for papers 1-3 and 9-3, topics except for rule and
performance do not almost appear in the two papers and
therefore they are grouped into the same cluster and the
features of the cluster are rule and performance. Actually,
the frequencies of all topics in the two papers are very
low, o the two papers cannot be characterized by the
topics appeared in the ftitles of sesszions
proceedings.

Table 3 gives the confusion matrix for the clustering
result and the pre-defined groupings. We can see that all
papers except for papers 1-3 and 9-3 are grouped into
clusters correctly and therefore the quality of clustering
decreases by about 5%. The main reason of incorrecily
grouping the two papers is that the selected topics did
not capture the features of these two papers.

Indexing the semantic information: Two types of
semantic information, the Document Descriptor (DD) and
Content Vector (CV) are indexed to support fact access.
Based on the properties of the values of DD and CV, two

Lttribute

r

text ()

a]ll.il or |

in the

J B

indexing structures are supported: Four scalar attributes,
createdTime, fileSize, fileKind and clusterNo, are indexed
using R*-tree®'). R*-free is an efficient multidimensional
indexing method when number of dimensions is not too
high®*, Terms in string attributes in DD, title, source and
memo, together with the content vector, are indexed using
a B+-tree. The leave nodes of the tree contain entries of
terms associated with alist of ID's of documents in which
the term appears.

STRUCTURE-BASED QUERYING
XML DOCUMENTS

As the popularity of using XML data as data
representing and exchanging standard on the WWW, we
take XML documents as the main target of the structure-
based query processor X-Query.

X-Query interface: Most query languages for XML data
proposed recently use path expressions to catch the tree
structure of XML data for path expreszion can reach the
arbifrary depth of XML data tree. In XBase, we used
XPath as the query language, which fully defined the
semantics of querying XML data with path expressions.
Figure 3 is the screen dump of the interface of X-Query.
The interface of X-Query is shown in Fig. 3, which
mainly consists of four parts: Document Selection
Window (DSW), DTD Displaying Window (DDW), Path
Expression Construction Window (PECW) and Result
Displaying Window (RDW). Users first can select a
document they want to query from the document
selection window wvia the left-up selection window.

x|

x|
Cancel

et |

Fig. 3: The X-Query interface

’!LAY. INDUCT, SCENE. LIME. STAGEDIR

26

Inform. Technol. J., 4 (1): 21-31, 2005

Once the document is selected, the DTD corresponding
to the selected document 1s shown in the DTD displaying
window, based on which users can construct an RPE-
based query through the path expression construction
window. The path steps are determined by the click
operation in the DDW and are shown at the bottom of
PECW. The attributes of the current selected path step are
listed on the top part of PECW and users can specify
predicated on attributes and element texts in this window.
After the query is constructed, it can be executed by
clicking the search button on the right-bottom and the
result is constructed as a XML document that is shown in
RDW, a pop-up window.

Data model and data type model: The Document Object
Model (DOM) 1s an Application Programming Interface
(APT) for XML and HTML documents, which defines the
logical structure of documents and the way a document 1s
accessed and manipulated In DOM, the data are
abstracted into entities (elements and attributes) and
these entities are orgamzed together via the parent-
children and element-attribute relationship to form a data
tree, i.e. DOM tree. Formally, we modeled DOM as a node-
labeled tree T, =(V, E,, 8, ¥, root,, oid), where V, is the
node set including element nodes and attribute nodes; F,
1s the set of tree edges that denote the parent-children
relationship between elements and the element-attribute
relationship between elements and attributes; &, is the
mapping function from nodes to nodes that actually are
the relationship constraints. Every node has a umque
name that 1s a string-literal of ¥, and a unique identifier
that comes from identifier set oid. Finally, every XML data
tree has a root element rootd that 1s included 1in V.
Though XMI, data is self-descriptive, the Document
Type Definition (DTD) is proposed by W3C to further and
explicitly constraint the relationship between XMIL
elements, e.g. an element should contain what kind of
orfand how many sub-elements. It mamly defines the
parent-children relationship between XML elements and
the order between the sub-elements of an element. In this
study, we model XML DTD as a directed, node-labeled
graph, 1 which the order constraint 1s not considered. We
will explain the reason that the order constramt i1s omitted
later in the following sections. Formally, a DTD is defined
as a directed graph G, = (V,, E,, 8,, ¥, root,). V, is the node
set including element type nodes. F, is the set of graph
edges that denote the element-subelement relationship
between elements. Attributes are parts of elements. 8, is
the mapping function from nodes to nodes that actually
constramt which element can contain which sub-elements.
Every node has a umque name that 1s a string-literal of

27

Y, and this name is actually element type name. Finally,
every XML DTD graph has a root element root, that is
included m V, which 1s defined as the node with only
outgoing edges and without any incoming edges.

Extent join algorithm and structural indexes: There are
many approaches proposed to evaluate path expression
queries. Among them the extent join algorithm is one of
the efficient ways. In extent join, path expression queries
first are decomposed into several path steps, then for
each path step a temporary result set is computed and
finally a multi-way join between these temporary result
sets are performed to evaluate the whole query.
Conceptually, the temporary result sets of path steps are
element extents that are defined below. All the definitions
are based on an XML data tree T, = (V,, E,; 8, Y ;, root,,
oid) and a corresponding DTD graph G, = (V,, K, §, ¥,
Toot,).

We should see some useful notations before define
XML, element extent. First, pe-pair(pid, cid) is a pair of
element identities in which pid, c¢id £ oid and pid is the
parent of cid and adpair(aid,did) is a pair of element
identities, in which aid, did € oid and aid is the ancestor of
did. A pcpair is a specialized case of an adpair.
Additionally, element is defined to act as any element.
Then we have the XML element extent and the path
constrained element extent.

Definition 1: XML element extent (Ext). All pcpairs of a
given tag name Tag is represented by Ext(any, Tag) =
{pepair(pid, 1d)ud 1s an instance of Tag ™ pepair(pid, 1d) is
true} while all adpairs of two given tag names an and dn
can be represented by Ext(an,dn) = {adpaw(aid, did) \
pepain(e,aid) € Ext(any, an) ™ pepair(€,did) € Ext(any, dn)
™ adpair(aid, did) is true}.

Definition 2: Path constrained element extent (PCExt).
PCExt(an; dn; P) = {adpair(aid, did) \ adpair(aid, did) €
Ext(an, dn) ™ did € P(aid)}, where P(aid) 1s the element
instance set that can be reached from aid via path P.

The basic idea of extent join algorithm 1s replacing the
tree traversal procedures by the set jom operations.
Before the whole path expression is evaluated, the
intermediate tesult sets to be joined must be first
computed that are actually Exts and PCExts. And then the
ancestor-descendant/parent-children relationship based
multi-join operation is performed to evaluate the whole
query. For the XML extents consist XML ancestor-
descendant/parent-children element pairs, so the joins
need not to check the relationships between sets to be
joined and therefore are very straightforward.

Inform. Technol. J., 4 (1): 21-31, 2005

| site | [Closed-auction |

| Ext (any, siw)l [Ext (site, Closod_mustion)]

|pcx {any, sita)l |ADX Gsite, Closed._anction)|

® ®

©

Fig. 4: Path expression (a) extent join tree (b) and execution tree (¢)

To support the extent jomn algorithm, structural
indexes are required to maintain the parent-children and
ancestor-descendant relationship with the index results.
XBase system totally implemented three structural
indexes: Ancestor-Descendant Index (ADX) and Parent-
Children Index (PCX). ADX is used to index Ext (Pname,
Cname) for given element names Pname and Cname where
Pname is the ancestor of Cname. ADX actually indexes
the ancestor-descendant relationship between elements
with specified element types. PCX 1s used to index PCExt
(Pname, Cname, "Pname/Cname") for given element names
Pname and Cname where Pname must be the parent of
Cname, which preserves the parent-children relationships.

About the indexes above, only the principles are
mtroduced. The implementations of them are relatively
simple for they have no special demands on the index
structures. The traditional index structures, e.g. B+ tree,
are fit for these indexes.

Consider path expression query "/site//closed
auction/amotation/description” containing three path
steps and two commectors. As Fig. 4 shows, each path
step corresponds to an intermediate results set, i.e. an
element extent; each connector is transformed mto a join
operation and the results of joins are the path constrained
element extents. For example, the join between Ext (any,
site) and Ext (site, closed-auction) is PCExt (site, closed
auction, "/site/closed auctions/closedc auction") and the
PCExt acts as a intermediate tesult used to perform
another join with Ext (closed auction, annotation) to get
vet another PCExt. Path expression queries must be
transformed mto evaluation plans to get evaluated. And
the art of transformation is focused on the path steps to
corresponding extents and the following shows the full
transformation rules.

¢+ Connectors ("/" and "/} are transformed into joins
between two sets.

¢ Path step "*" is rewritten with element types using
the mapping function &; e.g. 8(site) = {regioms,
people, closed auctions, open auctions} and path
expression "/site/*/person” should be rewritten as
"fsite/(regions\peopleiclosed-auctionsi\open-
auctions)/person”.

28

» Path steps with connector "//" ahead are transformed
into a corresponding ADX operator; e.g. for path
step S, 1n "8,//3," 1s transformed mto ADX(S,, 3,).

» Path steps with commector "/" ahead are transformed
1nto a corresponding PCX operator; e.g. for path step
S,1n"S/S," 1s transformed into PCX(S,, 3,).

» Path steps contamming "\ " are transformed into the
unmions of corresponding mdexes; eg. path step
(S8, of "S,A8A8,)" 1s transformed into PCX(S,, S,)
u PCX(5,,5,).

Optimizing path expression queries: We have mtroduced
the basic 1dea of extent join It uses joins over sets to
evaluate path expression queries. Its performance
depends largely on the mumber of joins and the size of
joining sets. In this section, we will propose some path
expression optimizing techniques to reduce the number of
joins when evaluating a path expression.

Suppose that path expression /P/E, be a path
beginming from the root element of an XML document tree
and if (Ve)(pepaw(p, e) € Ext(any, E)~adpair(e, p) € R(P)),
then P 1s defined as a umque path from root to E,, written
as UP(E,) = P. Where if P 1s a path expression, then R(P)
means the result set of path P. With the principle of
unique path, we get the following two path shorten rules.

Path-shorten rule 1: If UP(E) =P, then R(/P/E) = Ext(E,).

Path-shorten rule 2: If P/E/P, 1s a path expression
beginmng from root and UP(E) = P, then R(P/E/P,) =
R(E/P;).

Furthermore, let E, and E, are element names specified
in the XML schema or DTD, if (Ve, X pepair(e,e,) € Ext(any,
E,)~(Je,)(pcpair(e, e,) € Ext(any, E,) " adpair(e,, e,))), we
consider E, is a key ancestor of E,. And let E, is a key
ancestor of B, and there exist path expressions P, P,,..., P,
from E, teo E, if (¥e,)pcpair(e,e;) € Ext(any, E,)
~adpair(e, e;) € U, P(py)), then is called the
complementary paths of P, as for E, and E,(1<i<n). Then
we have the other path optimization rule.

Path complementing rule: If " (R(P U (R(p)) 1s the
complementary paths of P, as for E, and E,, 1<i<n, then
R(P,) = Ext(E,) -u™' R(P-D)(' R(P) = Ext(E,)).

Inform. Technol. J, 4 (1): 21-31, 2005

As a summary, the path-shorten rules reduce the
query costs by shortening the length of path expressions
and the path complement rule use the equivalent path
expressions to substitute the original ones. Both of them
need the knowledge of XML document schema/DTD.

A VISUAL MULTIDIMENSIONAL
DOCUMENT EXPLORER

Our system supports three ways for retrieving
documents from the database:; using query languages,
using keywords and explorative browsing. In this study,
we describe X-Explorer that provides both keyword based
querying and visual multidimensional explorative
browsing of the stored documents. Figure 5 is the screen
dump of the interface of X-Explorer. The screen is divided
into three areas: filtering window, document exploring
window and document list window.

The filtering window allows users to select
dimensions to explore and enter search conditions. Users
can also set up complex Boolean search conditions on the
document descriptor in the advanced filtering window.
After the search conditions are set up, the system
searches for the documents from the database and

displays the results both in the document exploring
window and the document list window. In the document
list window, users can see the values of attributes in the
document descriptor of the found documents.

A particular document can be viewed by clicking
corresponding entry in the document list window.

The search results are also displayed in the exploring
window, where documents are represented as objects in
a multidimensional space defined by the chosen
attributes. To facilitate visual exploring among large
volume of results, the following operations are provided:

« Rotating: Users can rotate the multidimensional
space arbitrarily to browse documents from a desired
angle.

= Zooming: When the result set consists of large
number of document, an object in the
multidimensional space might be too small to see
clearly. Users can use zooming operations to zoom
in/zoom out the space.

« Dirilling-down/rolling-up: One point in the exploring
window may represent a number of documents with
the similar wvalues with respect to the chosen
attributes. The drilling-down operation allows users

Qemebios liw Dot binds Bils, =i8lxl
DAQTFEANR) B[S]
" S Farr Seletum | WisimgTree Showlee |
=l T s S
IV Create Tiine 2
¥ File Type
Clusters:
.E \ri
Key Waords:
Memo:
URL:
- i
1 | ¥

] Conditiom I@ Advanced ji 3

x| [[
"_“J Pile nune | hbier | Creats tine | Size | fype | Mens | 1L 4|
F256 1696-6-23 160... FIF wed
FO4T 1608-12-7 14 . PIF
POBE 2001-2-14 14a .. IR
FITS 1580-4-23 193, OF
PIRY 100C6-2-E 10 IR -:.!

Al B Files |

Ready

Fig. 5: Interface of X-explorer

29

Inform. Technol. J., 4 (1): 21-31, 2005

to further explore documents contained in the sub-space.
Conversely, users can go back to the original space from
the drilled down space using the roll up operation.

¢ Scaling: Users can enlarge or shrink the scale of a
given dimension arbitrarily using this operation.

* Moving: This operation allows users to move an axis
to change the subspace displayed on the screen. As
such, some originally mvisible documents can be
brought on the screen.

* Undo/redo: These two operations allow user to undo
the previous operation or redo the undone operation.

Compared to the existing text-based file explorers and
file finding functions available in some operating systems,
the X-Explorer has the following advantages.

1. X-Explorer provides more flexible ways to form query
conditions, from browsing the full collection to a very
specific set of documents. Such a condition can be
combinations on both document descriptor attribute
values and terms appeared in the documents.
Documents are stored in a database. They can be
physically clustered based on contents. Both
multidimensional index and inverted index are
supported. Comparing with file systems where files
are scattered around the disks, X-Explorer is able to
provide better performance.

Most systems support content-based retrieval only
on text-based documents. Our system also provides
content-based based
documents, such as postscript files and pdf files.
X-Explorer is much more user-friendly than its text-

retrieval on non-text

based explorers as a visual-based tool. Users can
easily find documents based on his/her wvague
memory about the documents, such as the time when
the document was stored, its approximate size, the
type of the document, possible terms contained in
the document, etc.

CONCLUSIONS

This study describes a system that manages very
large documents based on semantics. Three types of
semantics employed:
semantics

sermantics,
information.
Documents stored in database are physically clustered

are defimtional

assoclative and schema
based on topics. Multidimensional mdex and inverted
index provide efficient access. Structural indexes are
implemented to support structure-based XMI. queries.
Two path expression optimization principles are also

introduced. A unique visual explorer provides a

30

convenient visual-based explorative browsing of the
documents stored in the database.

ACEKNOWLEDGMENTS

This research is partially supported by the Teaching
and Research Award Programme for Outstanding Young
Teachers in Post-Secondary Institutions by the Mimstry
of Education, China (TRAPOYT) and National Natural
Science Foundation of China under grants 60273079 and
60473074,

REFERENCES

1. Carey, M.T, 2001. Towards a scalable infrastructure
for advanced E-services. TEEE Data Engineering
Bulletin, 24: 12-17.

Gefther, S., D. Agrawal and A E. Abbadi et al., 1999.
Browsing large digital library collections using
classification hierarchies. Proceedings of the 1999
ACM CIKM Conference, Kansas City, Missouri,
USA, pp: 195-201.

Gifford, D.K., P. Jouvelot and M.A. Sheldon et al.,
1991. Semantic file systems. Proceedings of the
Thirteenth ACM Symposium on Operating System
Principles, Califormia, USA., pp: 16-25.

Vasudevan, V. and P. Pazandak, 1997. Semantic file
systems. Technical Report of Object Services and
Consulting, Inc. http://'www.objs.com/survey
/OFSExt.htm, 1997.3.

Cark, J. and S. DeRose, 1999. XML Path language
(XPath), ver. 1.0. Tech. Report REC- xpath- 19991116,
W3C, Nov. 1999.

Chamberlin, D., I. Robie and D. Florescu, 2000. Quilt:
An XML query language for hetero-geneous data
sources. In Proc. Third Int'l Workshop WebDB,
Dallas, USA, May 2000.

7. Robie, I, T. Lapp and D. Schach, 1998. XML, Query
Language (XQL), http:/fwww. w3.org/TandS
/QL/QLI8/ctp.

McHugh, T. and . Widom. Query optimization for
XML Proc. ofthe 25th VLLDB Conf., Edinburgh, Sept.
Goldman, R. and J. Widom, 1997. DataGuides:
Enabling query formulation and optimization m
semistructured databases. Proc. 23rd VLDB Conf.,
Athens, Greece.

L1, Q. and B. Moon, 2001. Indexing and querying
XML Data for regular path expressions. Proc. of the
27th VLDB Conf., Roma, Ttaly, pp: 361-370.

Milo, T. and D. Suciu, 1999. Index structures for path
expressions. Proc. Intl. Conf. Database Theory,
Terusalem, Tsrael, pp: 277-295.

10.

11.

12.

13.

14.

15.

16.

Inform. Technol. J., 4 (1): 21-31, 2005

Amano, H., Atitsugi and G. Bai et al., 1994. Shusse-
Uo: a persistent project of developing a flexible
platform for advanced database systems and
applications. Techmcal Report of IEICE, DES3-
63. Japan, pp: 137-144.

Bai, G. and A. Makinouchi, 1994 WAKASHID: A
distributed paged-object server for storage
management of new generation databases.
Proceedings of the International Symposium on
ADTI, Nara, Japarn, pp: 137-144.

Yu, G., K. Kaneko, G. Bai and A. Makiouchi, 1996.
Transaction management for a distributed object
storage system WAKASHI-design, implementation
and performance. Proceedings of the twelfth
International Conference on Data Engineering, New
Orleans, Lowsiana, pp: 460-468.

Cattell, R., D. Barry and M. Berler et al, 2000. The
Object Data Standard: ODMG 3.0. Morgan Kaufmann
Publisher.

Zamir, ©. and O. Etziom, 1998. Web document
clustering: a feasibility demonstration. Proceedings
of 1998 SIGIR Conference, Melbourne, Australia,
pp: 46-54.

31

17.

18.

19.

20.

21.

Zhang, T., R. Ramakrishnan and M. Livny, 1996.
Brich: an efficient data clustering method for very
large databases. Proceedings of the 1996 ACM
SIGMOD Conference, Montreal, Canada, pp: 103-114.
Guha, 5., R. Rastogi and K. Shim, 1999. ROCK: a
robust clustering algorithm for categorical attributes.
Proceedings of the 15th ICDE Conference, Sydney,
Australia, pp: 512-521.

Schutze, H. and C. Silverstein, 1997. Projections for
efficient document clustering. Proceedings of 1997
SIGIR Conference. Philadelplua PA, USA., pp: 74-81.
Gupta, S.K., K.8. Rao and V. Bhatnagar, 1999.
K-means algorithm for
attributes. of First
Conference on Data Warehousing and Knowledge

clustering categorical

Proceedings International
Discovery, Florence, Italy, pp: 203-208.

Beckmann, N., H.P. Kriegel and R. Schneider et al.,
1990. The R*-Tree: An efficient and robust access
method for pomts and rectangles. Proceedings of the
1990 ACM SIGMOD Conference, Atlantic City, NI,
pp: 322-331.

	ITJ.pdf
	Page 1

