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Abstract: Neural networks are used extensively in time series forecasting because it can learn the non-linear
pattern which is often present in time series data. Functional neural network is a modified neural network and
is rapidly gaining popularity in different fields. The method of presenting the input to the network makes
functional neural network different from the simple neural network. This study describes how functional neural
network is used to predict the values of S&P 500 index of New York stock exchange.
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INTRODUCTION

Artificial Neural Network (ANN) models have
been studied for many years with the hope of achieving
human-like performance in different fields ranging from
engineering to sociology, finance, etc. They are endowed
with some unique attributes: umversal approximation
(input-output) mapping, the ability to learn from and adapt
to their environment and the ability to invoke weak
assumptions about the underlying physical phenomenon
responsible for generation of input data. This model
attempts to achieve good performance via dense
interconnection of simple computational elements. Neural
net models have great potential in areas where there is a
non-linear pattern in the data, which the network has to
learn. Forecasting is such a field, where we try to establish
a pattern in the past data of a variable and in most
practical problems that pattern is inherently non-linear.
Neural networks are used extensively in electrical load
forecasting, weather forecasting, market trend prediction
and forecasting stock market indices. Lowe and Webb!!
has considered this problem using a Radial Basis
Function (RBF) network and applied it to some examples
of time series including simple chaotic maps, non-linear
differential equations and stock market prediction. Some
of the other ANN structures including recurrent neural

networks applied to time series**.

Moultiple Layer Perceptron (MLP): Typically, the MLP
consists of a set of sensory units or source nodes that
consists of the input layer, one or more hidden layers of
computation nodes and an output layer of computation
nodes. The feed forward structure of the MLP refers to a
network in which all nodes of a layer are fully connected

through the synaptic weights to all nodes of the layer just
above it. The input signal propagates through forward
direction, on a layer-by-layer basis. The learning of the
network is carried out in two phases. In the forward
phase, an input pattern is applied to the input layer of
the network and its effect propagates through the
network layer by layer. The set of outputs of output
layer constitutes the actual response of the network.
During the forward phase, the weights of the networks
are all fixed. Tn the backward phase, on the other hand,
the synaptic weights are adjusted in accordance with
the error-correction rule, most popularly known as
Back Propagation (BP) algorithm.

The Functional Link ANN (FLANN): Tt has been found
that Multi Layer Perceptron (MLP) suffers from slow
convergence rate and high computational complexity.
Even though an MLP with a single hidden layer is capable
of umversal approximation, in many practical applications
more than one hidden layer are employed for better
generalization capability. Further, to overcome the local
minima problem, sometimes more number of nodes are
added to the hidden layer. The increase in number of
layers or the number of nodes in the hidden layer gives
rise to computational burden on the network. Especially,
the computational requirement for propagating equivalent
errors (square error derivatives) backward, i.e. toward the
hidden layer is very high.

We describe an alternate ANN structure called
functional link ANN (FLANN). This network provides
large reduction in computational requirement and
possesses high convergence speed. This single layer
ANN, with capability of formation of complex decision

boundaries, was originally proposed by Pad.
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Fig. 1. Model of FLAAN structure

The processing action i MLP may be viewed n
two ways. In one view, the nodes in the first layer
construct hyper-planes, the nodes in the second layer
constructs hyper-volumes and those in other layers
specify the AND or OR decision rules™. From ancther
viewpoint™, the successive layers carryout a sequence
of mappings until a final representation i.e. a mapping
in a suitable space is found where the desired separation
1s possible.

In the FLANN, which i1s based on the second
viewpoint, the initial representation of a pattern is
described in a space of increased dimensions. The
concept of functional link i3 described in Fig. 1. In this
model, each component of mput vector 1s subjected to a
functional expansion to yield the enhanced representation
of the original pattern. The functions used in this may
be a subset of orthonormal basis functions spanning
over an n-dimensional representation space, such as
cos(PT*x), sin(PT*x), cos(2*PI*x), sin(2*PI*x), .... and so
on. Besides these trigonometric functions, other
orthogonal functions such as Legendre, Chebyshev
can be used DBut the motivation behind usmg
trigonometric function lies in Fourier series expansion
of the time series. The trigonometric bsis functions
which are given by {1, cos(PI*x), sm(P1*x), cos(2*PI*x),
sm(2*PI*x), ...., cos(N*PI*x), sin(N*PI*x)} provide a
compact representation of the function in the mean
square sense. The degree of freedom, i.e., the number of
basis fimctions needed in the case of polynomial basis
function 18 more than that of the trigonometric basis
function within a specified accuracy. When suitable
trigonometric polynomials are used, after training, the
FLANN weights represent a multidimensional Fourier
series decomposition of a periodic version of the desired
response function. Different applications of trigonometric
expansion can be found by Giles and Maxwell™*!"). For a
thorough theoretical discussion of FLANN, the reader
may refer’>",
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Forecasting the S&P 500: There has been a great
amount of mterest on Wall Street for neural networks.
Some application of Neural Network in stocks and
finance can be found by different researchers!*'”. The
S&P 500 index is a widely followed stock index, like
the Dow Jones Industrial Average (DITA). Tt has a
broader representation of stock market since this is
average based on 500 stocks. Whereas, the DITA 1s
based on only 30. The problem, which is approached
i this paper is to predict the S&P 500 index, given data
of prior weeks.

Output of the network is the value of S&P 500 index
ten weeks from now. Instead of predicting the absolute
values of S&P 500, we train the network to predict the
change in level of the index ten weeks ahead with respect
to current value.

Deciding the inputs to the network is a very complex
procedure and needs expertise of a stock market
analyst. Only those variables, which have a relationship
with the predicted index, are to be chosen as inputs.
But one inherent strength of neural network is that if
a relationship 13 weak, the network will ignore it
automatically. But proper selection of input variables
reduces the size of solution space and ensure quick
convergence. So the five inputs chosen for our problem
are;

Previous closing values of S&P 500 mdex

Breadth indicators for stock market like ratio of
number of advancing issues to declining issues
Other techmical indicators, ratio of number of new
highs to new lows achieved mn the week for NYSE
market. This gives some indication about the
strength of an uptrend or downtrend.

Interest rates, like short-termn mterest rates m the
three-month treasury bill yield and long-term rates in
the 30 year treasury bond yield.

Raw data for the period from January 4,1980 to May
27,1983 1s taken as the traiming peried, for a total of 178
weeks of data. These 178 facts were randomly divided into
tramning set consisting of 155 weeks data, which 1s used to
train the network and test consisting of 23 weeks data.
Test set 18 used to test the generalisation capability of the
network after traimng. Because over traming a network
results mn memorisation of the input and poor forecasting
outside the traimng set. So the trammng and testing should
be done in tandem until performance of the network over
the test set deteriorates. In our experiment, we tested the
performance of the network over the test set after every 50
iteration of traming.

The next step 1s to lughlight the pattern in the data.
For each of the five mputs, we use a function to lughlight
rate of change (ROC) of features. We use the following
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function proposed by Jurik.
ROC(n )= (input(t)-BA(t-n) )/(input(t)+ BA(t-n))

where, input (t) is the input’s current value and BA (t-n)
is a five unit block average of adjacent values centred
around the value n periods ago. Because we are
predicting the stock index value 10 weeks ahead, ROC (10)
is used. So the inputs to the network are current values,
ROC (10) values for each of the five input variables
making the number of inputs 10.

The input values are normalised to keep them within
the range -1 to +1. Normalisation is done according to the
following formula. The output of the network is the
percentage of change in S&P 500 index after 10 weeks to
the current value of the index.

Output = 100 X ((S & P 10 weeks ahead) - (S & P this week))
/(S & P this week)

The output value is also normalised between 0 and 1.

Multi Layer Perceptron (MLP) approach: We have used
a three layer network with 10, 3 and 1 number of nodes in
the input, hidden and output layer, respectively. The back
propagation algorithm is used to train the network and the
weights are updated on a batch basis. Hyperbolic tangent
function is used as the threshold function at each node in
the hidden and output layer.

Functional Link ANN (FLANN) approach: We
functionally expanded the five ROC (10) values. Instead
of feeding ROC (10) values directly, COS and SIN of
each of the five were fed to the network. The rest five
inputs i.e. the actual values of the five variables were fed
as usually i.e. without any functional expansion. So the
total number of inputs to the FLANN was 15. No hidden
layer was used and the output layer contained only
one neuron. So the total number of neurons in the
network was 16 (15 in the input layer and 1 in the output
layer) and the number weights was 15, where as number
neurons and number weights in the MLP network was
14 and 33, respectively. The Fig. 1 shows the structure of
FLANN used in our model.

Simulation results: Here, we give a comparison of
performance of two approaches in terms of number of
operations required In each of them, convergence

Table 1: Operation counts in MLP and FLANN

Operation MLP FLANN
Addition 70 45
Multiplication 143 62
Tanh( ) 4 1
Sin( )/ Cos() - 10
Total 257 118
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Table 2; Comparison of errors in FLANN and MLP

FLANN MLP
Training Test Training Test
set error set error set error set error
0.057 0.055 0.064 0.072
0.053 0.053 0.054 0.058
0.054 0.053 0.061 0.065
0.053 0.053 0.064 0.066
0.051 0.052 0.059 0.063
0.055 0.055 0.061 0.068
0.050 0.051 0.060 0.061
0.052 0.051 0.067 0.073
0.051 0.050 0.066 0.076
0.052 0.051 0.071 0.079
Convergence characteristics
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Fig. 2: Convergence charcateristics of FLAAN and MLP

characteristics and the forecast values of S&P index. No
of operations required in the two approaches are shown
in Table 1.

From Table 1, it is clearly evident that the
computational complexity is drastically reduced in FLANN
as compared to the MLP structure. This is due to the fact
that major computational burden on the MLP is due to
error propagation for calculation of square error derivative
of each node in all the hidden layers. On the other hand,
since FLANN has no hidden layer the number of
operations are very less. Both the programs were run 10
times and the Root Mean Square Error (RMSE) for training
set and test set in both approaches are shown in the
Table 2.

Table 2 shows the RMSE (Root Mean Square Error)
for training and test set obtained from the different runs
of the both method. One conclusion is that FLANN
structure gives consistently better performance than
MLP.

Figure 2 shows the convergence characteristic of the
two approaches. From 10 runs of each method the best
results found for each is plotted in the following graph
(i.e. Run No. 7 of FLANN and Run No. 2 of MLP of the
previous table). It can be seen that the convergence rate
of FLANN is much better than that of MLP. In MLP the
final error found after 2000 iterations was -8.88 dB, where
as that in case of FLANN was -9.49 dB.
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Fig. 3: Predicted Vs. actual values of S&P index by

FLLAN structure
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Fig. 4: Predicted Vs. actual values of S&P index by MLP
Structure

Finally, Fig. 3 and 4 show the forecast S&P values by
FLANN and MLP structures after training respectively,
plotted against the actual values of the index during the
same period. Table 2 depicts the better performance
results over the training set and test set of FLANN as
compared to those of MLP.

CONCLUSIONS

In this study we have discussed two different neural
network architectures namely, FLANN and MLP to
forecast the S&P index and a comprehensive comparative
analysis has been made. The prediction results obtained
from FLANN structure are better than that of MLP. In
addition, the single layer structure of FLANN makes it
computationally very efficient and provides faster
convergence.
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