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INTRODUCTION

In the computing age of today, we have witnessed
the growing popularity of the Internet and networks in our
society. With these tools at our fingertips, we are able to
communicate and do business even more quickly and
efficiently than ever before. For example, businesses can
market their products online so customers do not have to
leave their homes and banks can conduct transfers and
manage accounts with more ease, speed and functionality
than with the paperwork of the past. Also, what is
probably the most popular means of communication,
email, is used by just about everyone each and every day.
It is clear that these modern conveniences have made our
lives much smoother. However, as we continue to add
these conveniences to our lives, we open the door to
more numerous, possibly even more dangerous, outlets
for attacks. With the prominence of identity theft on the
rise, we must all be weary of the security of online
communication. One solution is to hide our data by using
encryption algorithms that only allow those that we
trust and/or exchanged cryptographic session keys with,
to view the information. We can also verify the integrity
of our data through electronic signatures and electronic
certificates-this is the heart of cryptography.

Cryptography offers a set of sophisticated security
tools for a variety of problems, from protecting data
secrecy, through authenticating information and parties,
tomore complex multi-party security implementation. With
most modern cryptography, the ability to keep encrypted
information secret is based not on the cryptographic
algorithm, which is widely known, but on a number called
a key that must be used with the algorithm to produce an
encrypted result or to decrypt previously encrypted
information. Currently, there are two popular kinds of
cryptographic protocols: symmetric-key and asymmetric-
key protocels!?. In the symmetric-key protocels, a
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common key (the secret-key) is used by both
communicating partners to encrypt and decrypt
messages. Among these are DES, IDEA and AESY. These
symmetric-key cryptosystems provide high-speed key
and communication but have the drawback that a common
{or session) key must be established for each pair of

participants. The process of exchanging the
cryptographic key is referred to as key distribution and
can be very difficult.

In the public-key protocols we have two associated
keys; one is kept private by the owner and used either for
decryption (confidentiality) or encryption (signature) of
messages. The other key is published in the public
domain (public-key server) to be used for the reverse
operation or decryption. Different public-key
cryptographic systems are used to provide public-key
security. Among these we can mention the RSAM,
Diffie-Hellman (DI, Digital Signature Algorithm
(DSA, ElGamal cryptosystem™® and in recent years the
Elliptic Curve Cryptography (ECC)™. These systems
provide these services by relying on the difficulty of
different classical mathematical problems, hence provide
the services in different ways. In this work we will
concentrate on elliptic curve cryptography focusing on
EC-ElGamal crypto-scheme.

Elliptic Curve Cryptosystem (ECC) is relatively new!”.
Elliptic curves are mathematical constructions from
number theory and algebraic geometry, which in recent
years have found numerous applications in cryptography.
The ECC was first introduced by Victor Miller™ and
independently by Koblitz”! in the mid 1980s. It is a new
branch in cryptography that uses an old, interesting and
difficult topic in mathematics or, particularly, algebra:
elliptic curves over finite fields. The elliptic curve
approach is a mathematically richer procedure than
traditional cryptosystems e.g., RSA, DH, ElGamal, DSA
etc. The ECC from the very beginning was proposed as an
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alternative to established public-key systems such as the
traditional cryptosystems. Tlis 1s because elliptic curves
do not mtroduce new cryptographic algorithms, but they
implement existing public-key algorithms using elliptic
curves. In this way, variants of existing schemes can be
devised that rely for thewr security on a different
underlying hard problem. Today it has evolved to a
mature public-key cryptosystem. The U.S. government!”
recently endorsed it as an alternative public key algorithm.

ECC ARTTHMETIC OVER FINITE FIELD

The use of elliptic curve groups over finite fields as a
basis for a cryptosystem was first suggested by Koblitz,
An elliptic curve can be defined over any field (e.g., real,
rational, complex). However, elliptic curves used in
cryptography are mainly defined over finite fields™ "',
Fmite fields, also called Galois fields, are fields consisting
of a fimte number of elements. The cost, speed and
feasibility of elliptic curve cryptosystems depend on the
finite field F,, where q = p”, on which it is implemented.
There are usually two finite fields to work on: prime finite
field F,(ie, m = 1) when p is a prime number >3 and
binary finite field GF(2%) orF ...

An elliptic curve E(F,) consists of elements (x, y) of
the form:

E: ¥ =x+axtb with x, v, 3, b e F,= {1,2.3,..., p-2, p-1} )]
together with a single element denoted by O called the
“point at infinity”. Abstractly a fimte field consists of a
finite set of objects called field elements together with the
description of two operations-addition, multiplication-that
can be performed on pairs of field elements. These
operations must possess certain properties. The addition
operation in an elliptic curve is the counterpart to modular
multiplication in common public-key cryptosystems and
multiple addition the counterpart to modular
exponentiation” ™. The order of a finite field is the
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number of elements in the field. There exists a finite field
of order q if and only 1if q 1s a prime power, then there are,
however, many efficient implementations of the field
arithmetic in hardware or in software!",

Now given a message, m, we must first choose a large
integer, k and a suitable elliptic curve, E(F,) defined as
above. We must then embed the message m onto a point,
P, on the curve. This is not as straightforward as it looks
and the use of quadratic residues
probabilistic algorithms. Tn the next sections we are going

involves and

to develop the methodology to achieve that task.
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Construction of the ECC arithmetic over finite field: The
core of the ECC is when it is used with Galois Field it
becomes a one way fumction 1e., the math’s needed to
compute the mverse 1s not known. Let an elliptic curve
group over the Galois Field E(a,b) where, p>3 and is
prime, be the set of solutions or points P = (x, y) such that
(x, y € E, (a,b)) that satisfy the equation: y° = x* + ax+
b(med p) for 0<x<p together with the extra pomt O called
the point at infinity. The constants a and b are non
negative integers smaller than the prime number p and
must satisfy the condition: 4a™+27b°#0 (mod p). For each
value of %, one needs to determine whether or not it 1s a
quadratic residue. If it is the case, then there are two
values in the elliptic group. If not, then the point is not in
the elliptic group E (a,b). The number of points on E (a,b)
1s denoted by #E(F,). Since 50% of integers mod p are
quadratic residues, the number of points will be roughly
ptl, counting the point at infinity. Exact number is
between #E(F,)<q+1-t where, |t| <2y/q. is called the trace
of B In fact, the general theory says that there will be
about p points (x, y) with error bounded by O (/P). The
order of the group is known to all parties; we can either
generate a curve at random and counts its order (Schoof
algorithm)”, choose an order and use a comstructive
algorithm to derive a curve (method of complex
multiplication is most common). In this work will use the
naive approach and also elliptic curve builder, a free open
source software””. Here we will design systems to use
prime order group (sub group) of points on the elliptic
curve.

Point addition algorithm: The basic condition for any
cryptosystem is that the system is closed, i.e., any
operation on an element of the system results in another
element of the system. In order to satisfy this condition
for Elliptic curves it 1s necessary to construct
nonstandard addition and multiplication operations.
Capitals tepresent points on the curve while lower case
represents integers. The addition of two points on an
elliptic curve 1s defined in order that the addition results
will be another point on the curve as presented in
Algorithm 1.

In either case, when P, = P, (doubling) and P, # P,
{(pomnt addition), major operations are field multiplication

Algorithm 1: Point Addition Equation
Input: Py = (%1, 1), Po = (%3, ¥2)
Output: P+P=P; = (xz, ¥3)
LIfP, =Py 3 = A%x -,
where, & = (3 3 +a) 2y,

2. Elseif Pi»Pyxs =  AMAtxitxpta,
where, A = 39/ (%%,

3. Return: (s, ¥5)

¥3 = ALG X
(Point doubling)
V3= AG Tty
(Point addition)
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and field inversion. {(Squaring and field addition are
enough ignorable because of its less computation time.)
From these formulas of Algorithm 1, we can determine the
number of field operations required for each kind of
elliptic curve operation. We see that in affine coordinates,
point addition step usually requires 6 addition/subtraction
operations, three modular multiplications and one
mversion. A  doubling step usually requires 7
addition/subtraction operations, four modular
multiplications, one squaring and one inversion. A
Negation step requires one addition.

Construction of an elliptic curve over F,: Let the
prime number p = 29 and consider an elliptic curve
E: ¥ = x’x+16 defined over F,,, with the constants a = -1
and b = 16, which have been checked to satisfy that E 1s
indeed an elliptic curve. We then determine the quadratic
residues Q,, from the reduced set of residue 7, {1, 2, 3,....,
27,28}, which 1s givenby Q,, = {1,4,5,6, 7.9, 13, 16, 20,
22,23, 24, 26, 28%. Which we use to determine the values
of E(-1,16), i.e.,:

04 (025 (L4 (125 (2.14)
(2,15) 5.7 (522) (69 (620)
B, (1, 160 (7.2)  (7.27) (10,7) (1022) (13,5)
(1324) (147 (1422) (16,6) (16.23)
(18,1) (1828) (21,11) (21,18) (22.12)
(22,17) (23.3) (2326) (284) (2825)

For a given point P = (x,, y,), %, and y, are called the
x and y coordinates of P, respectively. We now discuss
efficient algorithms to expedite implementation procedures
in elliptic curve cryptosystems.

ALGORITHMS FOR ELLIPTIC SCALAR
MULTIPLICATION

Tust as modular exponentiation determines the
efficiency of RSA cryptographic systems™, scalar
multiplication dominates the execution time of ECC
systems. Scalar multiplication is the operation to compute
kP, where, k is a random integer and P is an elliptic curve
generation point, say (%, y,) and it can be defined as the
combination of additions of two points on an elliptic
curve. That is, the calculations of the form: Q = kP
=P+P+P..+P (k-summands). Here P is a fixed point that
generates a large, prime subgroup of E(F), or P 1s an
arbitrary point in such a subgroup and, k is an integer in
the range of [1, n-1] where, n 15 the order of the elliptic
curve E. Elliptic curves have some properties that allow
optimization of scalar multiplications. The important
contributors to the run time are the multiplications and
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inversions™'*'¥ In all the protocols that are fundamental
implementation of ECC, say ECDH, ECElGamal, ECDSA,
ECAES etc., the most time consuming part of the
computations are scalar multiplications.

To test the algorithm, let P=(5, 7) € E,(-1, 16).
Then 2P = (x,, y5) 1s equal to: 2P =P + P= (x,, y ) H{x, y1) =
(28, ). Next, test addition of two different pomnts on the
curve, 12, Q = (1, 25) € Ex(-1.16) and R = (6, 20) ¢
E;5(-1,16). Then Q+R = (x,, y5) = (23, 26), which is also on
the curve. However, for real implementation of ECC, we
need to know the order of the elliptic curve group.

Letus now implement the scalar multiplication to form
a subgroup of points <P>, where, <P> is the finite cyclic
group <P>= {P, 2P, 3P, ..., nP}, with order n, by following
the same additive rules and a generator point P. For
example, let P = (5,7) ¢ E,.(-1, 16) be a generator point,
which we use through repeated addition of point to
generate all the point on the curve (Table 1).

Observe from above algorithms that the addition of
two elliptic curve points in E(I¥,) requires a few arithmetic
operations (addition, subtraction, multiplication and
inversion) m the underlymng field F,. The most basic
operation 13 adding two points or doubling a point on an
elliptic curve. Tt is more expensive computationally than a
basic operation in a symmetric-key cryptosystem (a block
encryption/decryption). But it is still much faster than a
basic modular multiplication over a cyclic group whose
order is of the same security level”. The methods, which
included subtractions, are more attractive than the
corresponding methods, which mcluded divisions in
calculating power in finite fields. The reason 1s division or
inversion in fimite fields is a more costly operation than
multiplication, while subtraction is just as costly as
addition in elliptic curve operations.

340 ElGamal elliptic curves cryptosystems: Taher
ElGamal was the first mathematician to propose a public-
key cryptosystem based on the Discrete Logarithm
problem (DLP)*'¥ He in fact proposed two distinct
cryptosystems: one for encryption and the other for
digital signature scheme in 1984, well before elliptic curves
were mtroduced m cryptography. Simce then, many
variations have been made on the digital signature system
to offer improved efficiency over the original system. The
ElGamal public-key encryption scheme can be viewed as
Diffie-Hellman key agreement protocol in key transfer
mode™. Its security is based on the intractability of the
Discrete Logarithm Problem (DLP) and the Diffie-Hellman
preblem!t,

Suppose two entities, the Bank (B) and the customer
Alice (A) wants to communicate between each other over
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Table 1: Point addition/scalar point multiplicative values of P (Note that: kP = Py, so that 31P = P, = [O] etc.).

1P=[5,7] 2P =[28, 4] 3p=[18, 1] 4P =[22,12] 5P =[6, 20] 6P =[13, 5]
7P =2, 14] 8P =[21, 11] 9p =23, 3] 108 =[10, 7] 11P=[14, 22] 12P =[16, 23]
13P=[7, 27] 14P =1, 4] 15P =10, 4] 16P =[0, 25] 17P=[1, 25] 18P =7, 2]
19P =[16, 6] 20P =[14, 7] 21P =[10, 22] 22P =[23, 26] 23P =21, 1§] 24P =[2, 15]
25P =[13, 24] 26P =6, 9] 27P =22, 17] 28P =[18, 28] 20P =28, 25] 30P =[5, 22]
31P =[0]

Algorithm 2: EC-ElGamal protocol

Key generation: (A)

1. 8elect a random integer k,, from [1, n-1].

2. Compute: A =k,P

3. A’s public key is kP or (E, P, A), A’s private key is k,

Encryption: (B)

1. 8elect a random integer kg from [1, n-1].

2. Compute B = kgP such that 8.5 = kn(k,P) = ko (keP) = (X5, ¥5)

3.1l =0 (mod p) and y,=0 (mod p) then go to step 2.

4. Compute: Cpy = xsM; and Cyy; =y5M;

(Noate the calculation are done, mod p)

5. Send (B, Cpy, Cy) to A

Decryption: (A)

A receives (B, Cyy, Cy) and does the following

1. Compute Sxp = ku(kpP) = (3, ¥5)

2. Compute M; = Cpy/% and M, = Cpfxp,

(Noate the calculation are done, mod p)

3. Recover the message M = (M, M,)

+  Note that in step 2 we can also compute hk,P and hkg P, which can resist
the attack on small subgroup. Where h is a co-factor defined in P1363.

an insecure communication network. Next let’s assume
that the two entities have decided to use the protocol of
EC-ElGamal to implement therr secure
communication. One basic pomnt to note 18 unhke ECDH
protocol™, this protocol does not create a common key,
but using EC-ElGamal protocol a message M = (M, M,),
a point on elliptic curve, can be sent from Bank to Alice
and vice versa, as per the Algorithm 2.

Performing the decryption, we reverse the embedding
process to produce the message, M, from the point P. Tt is
nettrivial to find a point M for the message. Note that the
difficulty in obtaining the private-key from the public-key
is based on the discrete log problem (DLP) for elliptic
curves. The DLP states that given a point Q £ Fy and base
point P, it 1s extremely difficult to find an nteger, k, such
that Q = kP. Interested readers can find detailed

discussion on DLP™,

protocol

Simple implementation of ElGamal cryptosystem for
elliptic curves: Let the prime number p = 29 and consider
an elliptic curve E: y¥'x’-x+16 mod 29 defined over F,,.
Here E(a, b) = E,(-1, 16) with the order n of the elliptic
curve as: #E(F,;) = n =31, which 1s prime order. The curve
has generator point given by G = P = (5,7) such that the
multiples kG of the generator point G are (for 1<k<n-1)
including point O located at infinity.

As  an example, suppose the Bank (B) chooses
public-key set: B = kG = 17 G = (1,25), where, the secret-
key k; = 17, giving rise to its public-key ring (E, G, A),
which is kept in the public-key server.
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Next let Alice selects a random secret-key k, =23
such that A =k,G = 23G = (21, 18) and computes:
Sue = ko(kpG) = 23(17G) =19 G = (16, 6) = (X, ¥s).

Encryption: She then selects a message point: M =
(M,, M) and computes: Cy, = %M, mod p = 16 (28) mod
29 =13 and Cy;, = x,M, mod p= 6(25) mod 29 = 5 and send
(A, Cy» Cyp) to the Bank (B).

Decryption: Bark receives the message (A, Cy,, Cy) =
(23G, 13, 5) and computes:
Sen =kl 3)=17(23G) = 19G = (16, 6) = (%, v;) which
it uses to recover M, 1.e.,
M, = Cy /%y mod p = (13/16) mod 29 = 28 and
M, = Cy/vs mod p = (3/16) mod 25 = 25
and recovers the original message chosen point M
(28, 25).

Digital signature scheme: In public-key cryptography,
commumecating entities can use their private keys to
encrypt a message and the resultant ciphertext can be
decrypted back to the original message using the
individual entity’s public key™. Evidently, the ciphertext
so created can play the role of a Manipulation Detection
Code (MDC) accompanying the encrypted message, i.e.,
provide data integrity protection for the message. Here,
the public key decryption process forms a step of
verification. Since, it is considered that only the owner of
the public key used for the MDC verification could have
created the MDC using the corresponding private key.
Thus, this usage of public key cryptosystem can model
the precisely the property of a signature, a digital
signature, for proving the authorship of the message!'™""!.

Diffie and Hellman were the first researchers to
envision the notion of digital signature scheme with their
invention of asymmetrnic key crypto-algorithm through use
of key distribution and shared keys!. This systems of key
distribution leading to shared keys under public key
crypto-algorithm, finally meant that only a single entity 1s
able to create a digital signature of a message which can
be verified by anybody, it is easy to settle dispute over
who has created the signature. This allows the provision
of a security called non-repudiation, which means no
denial of connection with message. Non-repudiation is a
necessary security requirement in electronic commerce
application!!.
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The ElGamal digital signature scheme: The ElGamal
signature algorithm'® is similar to the encryption algorithm
in that the public-key and private-key have the same form;
however, encryption is not the same as signature
verification, nor is decryption the same as signature
creation as in RSA.

Key generation: Entity A (Alice) selects a random integer
k, from the mterval [1, n-1] as her private key and

computes A = k, G as her public key, which she places in

the public-key server.

Signing scheme

1. Selects random integer k from the interval [1, n-1]

2. Computes R = kG = (X, vyy), where, 1 = x; mod
n; if r = 0 then goto step 1;

3. Compute e = h(M), where h is a hash function
{0,1}"-F,

4. Compute s = k™ '(e+rk,) mod n; if then goto step 1

(R, 8) 18 the signature message M.

Verifying scheme

1. Venfy thats 1s en mteger in[1, n-1]and R = (x5, yp) €
E(F,).

2. Compute V, =sR.

3. Compute V, = h(M)G+rA, where, 1 = X

4. Acceptifand only it V, =V,.

Consistency

V, =38R =skG {(h(M)+k,r) mod n}G, V,=h{M)G+rA =
[h(M)+1K ;]G. And because G’s order 1s n, kG = ]G where,
j=kmodn. Hence, V, = V,.

Simple implementation of EC ElGamal signature scheme:
Let the prime number p =29 and consider an elliptic curve
E: ¥ = x’-x+16 mod 29 defined over F,. Here E(a, b) =
E.(-1, 16) with the order n of the elliptic curve as: #E(F,,)
=n = 31, which is prime order. The curve has generator
point given by G = P = (5,7) such that the multiples kG of
the generator point G are (for 1 <k<n-1) including point O
located at infinity.

Let Alice selects a random secret-key k, = 23 such
that: A =k,G = 23G = (21,18). Next she chooses mteger k
m the mterval [1, n-1] and computes R = kG = 13G =
(7, 27) = (%, yp) and also computes r = x; mod n = 7 mod
31=17.

Suppose now Alice wants to send the message,
M = 33 = e, which lies in the mterval [1, n-1].

She next computes: s = k ~'(etk,r) mod n = (13)™"
(33+23*7) mod 31 = 3.

(R, 8)=(13 G, 3) is the signature of the message M.
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Verifying

1. Compute V, =sR=3R=3(13G)=8G=(21,11)

2. Compute V, =h(M)G+rA =33G +7(23G) =8G (21, 11),
where, r = x, mod 31 =7

3. Acceptsignature, since V, =V, =8G = (21, 11)

PRACTICAL APPLICATION OF EC ELGAMAL
(ECEG) ENCRYPTION

For this part let’s get real and simulate real
application.
www.bauxicat.com, a music content site that specializes in
selling downloadable online music. Now the question 18?7
How can we set up a public-key implementation of ECEG
to protect our site, so that only registered parties can
download music from the site? We start by setting up an
elliptic curve cryptographic system. Let’s take as an
example our usual communicating partners, Alice and
Bob. Alice and Bob love to swap music files stored in
their computers amongst themselves.

When Alice became a member of Bauxicat’s music
content rights management (BMRM), she was prompted
to download and mstall BMRM software on her computer.
Whle registering Alice and BMRM both exchanged their
public keys. Bauxicat’s public-key point is k,G = Py,
During installation session, the BMRM software sneakily
generated a private-key m and which it stealthily hid in
bits of files (e.g., blackhole.dll, m3ks.dla and PerBox key).
BMRM music point is mG =M. (For more details on data
hiding techniques™). In order for Alice to play the latest
Storm Boy’s music lovekills. wma, she must use her private
key to decrypt the file. Bauxicat created the license using
the ElGamal public-key cryptosystem using a predefined
elliptic curve group over the Galois Field E (a, b); Alice’s
license file can now be used to unlock lovekills. wia, but
only m her computer, since the license file i1s not
transferable and hence Bob’s computer has no access to
this file, since there is no shared key between Bob and
Bauxicat. So, whenever she shares her music files
including the license files etc. Bob gets very crossed
because he can’t play lovekills. wma. This is mainly
Bob’s  computer
computer’s private-key (Le., the integer m), therefore,
Bob’s computer can’t decrypt the license file to allow him
access and enjoy the music.

Assume we  have a  website:

because doesn’t know Alice’s

Implementation of practical application of ECEG
scheme: Here we simulate the real ECEG scheme in
practice. Let an elliptic curve group over the Galois Field
E, (a, b) where, p=3 and is prime, be the set of solutions or
points P = {(x,y) such that (x, y € E, (a, b)) that satisfy the
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equation: y° = x° + ax + b for O<x<p together with the extra
point O called the point at infinity. Here the curve E, (F,)
is cyclic and any point other than O is a generator of all
points on curve. For example, G = (X, y) is a generator
point such that the multiples kG of the generator point G
(for 1 <k<n-1), which is too huge to show here!

Alice-bob session: In order to commumnicate, both Alice
and Bob selects random integers k, and kg, as their
private-keys (kept secret). Next they compute A = k,G and
B = kG respectively, which are kept 1 the public-key
server, for access to anyone wishing to communicate with
them. Alice and Bob may both set up a common session
key ky(k.G) = k,(ksG) = 8,5 using say ECDH key
agreement scheme'. In order to send a message P, = wG
= (w,, w,) the, Alice and Bob decides to use EC ElGamal
crypto-scheme. Alice’s message encrypted code is:
(A, x,m,, y,m,), where, A is Alice’s public-key, x,m; and
v, are the encrypted message points, respectively

Alice-bauxicat session: Now let’s take a look at the
nteraction session between www Bauxicat.com and Alice.
Common session key between Alice and Bauxicat is
Sam = ku(k.3) = k(k,G) = (%5, y5). (Notice that there 13 no
common session key between Alice, Bob and Bauxicat.)
Alice license file contains the music file encrypted code:
(A, Cyp, Cup). where A is Alice’s public-key and; Cyy, = xy,
M, mod p and Cy,;, = vy M, mod p, are the encrypted music
file points, respectively.

The parameters for the elliptic curve featuring in
Alice-Bob and Alice-Bauxicat commumication are as
follows:

p= 12535652408840325788673275641 521177545581 73168
651037992019849

a = 6020607953390164841435493544741163435587145607
60195967177227

b= 42352398925875963961 91457666895971730749550273
9895755462837
WOrder U =N*S with R Prime

U = 12535652408849329788673275641 501 486928 25226906
046011151852392 W #E

N = 8217391477095095432847996795221681 564891374309
161846704797 '\ HE

5=136

G = (x, y) \generator point of order U or R #E, depending
on usage.

Where:

x = -30871342017120860028483901 0152791 75578418656
73490391 50579062

y = 4949521394109055220033225482676561220257557982
64866184081137

304

k, = 470805031139911051351752720769306045630021
705447312 “WA-priv-K

ky, = 586005031139911051351752720769306045630021
70544734323 \\Bob priv

k, = 635505031139911051351752720769306045630021

705447367787 \\Baux priv
m = 1366455345179092321 3896200051 4736668567834
1839524650183111 Y“WMusic pt

Using the above parameters, we get:

A=kG =
(61889004241193992908692887 7834362204
875363811736989177507829, 992634770636345
73797989154795240551 800857048361 4316391410
858)

Now Alice’s computer had sneakily loaded Bauxicat’s
license file private key m into memory which automatically
computes music point to allow her access to music
$©$5101L

M=mG = (M, M,) =
(3065814374813709620247500402471 7733388602
0789128683316005950, 1202969469472906489213
60530066891 241 4928236030055814778423171)

which is however scrambled (encrypted) using BMRM
public key Py, =k,,G and Alice’s public-key A=k, G intoa
music message point: (Py, Cyy, Cip). Where:

Cyi =%x:M, modp =
3515166532529504884451 9126609752104391 9886
058135924030748538

Cyp=y:M;modp =
74642931 2708440486640499671 0238353956361 14
019273204273304297

Next Alice’s computer automatically uses BMRM
public-key Py, to compute the session key which allows
her access to music file, 1.e..:

Sam =k (kyG) = ky(k,G) = (X5, ¥5)
=(95164343600447269385591399675429584026990452
2157034852848642,1159393856248092001 16266737012
9418457856536898166111537831211)

and then recovers (decrypts) the music point

M, = xy = (C/Xg) mod p =
306581437481 3709620247590402471773338860207891
28683316005950
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M; = yu = (Cyp/ys) mod p =
120296946947290648921 360530066891 241 49282360
30055814778423171

and which maps the music point M = (x,, vy, back
into the original point M. The crucial parameter here is the
x-coordinate, 1.¢.,:

Xy = 306581437481 370962024759040247177333886020789
128683316005950

which 1s the top secret BMRM magic “content key™ that
unlock lovekills.wma. Note that if Alice was aware of the
license file secret-key m that her computer stealthily
generated, she could easily compute the music point M
herself and hence unlock lovekills.wma which she could
now securely share with Bob.

NB: The number crunching done above 1s a game played
by Big Boys, so we need number crunching software to
crunch our computation undertaken above. The number
crunching here was done using PARI a Free, open source,
number cruncher™.

Signature verification: Before Alice’s computer can start
to interact with BMRM software she wants to make sure
that the music file is authentic before commencing music
playing session. The set of values (R, s), which is the
signature message for music point M deployed in Alice’s
computer was coded using the music-point private-key
m = h(M) as in the previous example of EC-ElGamal
signature algorithm performed earlier. To venfy the
authenticity of the music file she must do the following
operation using ElGamal signature algorithm:

She must first verify that s 13 an integer in [1, n-1] and R
= (X5 yp) € B(F,); where:

R =kG =Xz yx)
= (38779982752793450662257448084569229285
4828456171 775306847445,5562480564581 01 4
25960998450451 886854751 7238934866799795
73643)

and
s = 5479056201 6533606530399971645141 6188338180763
1283556703659

then her computer automatically computes:
V, =sR = s(kG)
= (97764938140687941188374931639341 8288235
757455473770256495338,971 8931750932544
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2877581365555121336023272006247861 364756
3976)

and

V,=mG =1k, G3)

= (97764938140687941 188374931 639341 8288235

757455473770256495338,9718931 7509325442
8775813655551213360232720062478613647563
976)

and verifies that: V| = V,. So her computer goes ahead and
commences the music playing session.

CONCLUSIONS AND FUTURE WORK

We have shown that elliptic curve ciphers require
less computational power, memory and communication
bandwidth giving it a clear edge over the traditional
crypto-algorithms. To date elliptic curve cryptography 1s
gaining wide acceptance, especially in wireless and hand-
held devices, when compared to the conventional
cryptosystems (DES, RSA, AES, etc.), which tend to be
power hungry. However, while the performance
advantages are impressive with ECC, the data security
industry need to ensure that the security system, using
elliptic curve algorithm has been studied extensively in
the public forum and, also specified by major standards
worldwide. But we think that elliptic curve cryptography
is here today and is without question the next generation
of public-key cryptography of choice. The ElGamal
cryptosystem, as we have already seen, requires a high
level of mathematical abstraction to implement. One
significant practical problem if this system is to be useful
18 how can 1t be packaged m a user-friendly way so that
developers can incorporate it into their applications with
minimal knowledge of its inner workings-and that is
subject of next work.
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