http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 4 (4): 367-376, 2005
ISSN 1812-5638
© 2005 Asian Network for Scientific Information

On Disk-based and Diskless Checkpointing for Parallel
and Distributed Systems: An Empirical Analysis

"Najib A. Kofahi, *Said Al-Bokhitan and *Ahmed Al-Nazer
"Department of Computer Sciences, Faculty of Information Technology and Computer Sciences,
Yarmouk University, Irbid, Jordan
"Hadeed, Jubail 31961, Saudi Arabia
*Saudi Aramco, Dhahran 31311, Saudi Arabia

Abstract: Checkpointing 1s the act of saving the state of a running program so that it may be reconstructed later

mn time. It 1s an important basic functionality n computing systems that paves the way for powerful tools
many fields of computer science. This study provides a comprehensive overview of two main checkpointing
approaches in parallel and distributed systems: Disk-based and diskless checkpointing approaches. The two
approaches are discussed and compared and an experimental study was conducted to lend support to the
arguments presented in the study. We found that each approach has advantages over the other and they are
not truly alternative to each other. We conclude that a combined approach of both will have the advantages

of the two approaches and therefore is a desirable option.

Key words: Checkpointing, disk-based checkpointing, diskless checkpointing, distributed systems, parallel

systems, fault-tolerance, rollback recovery

INTRODUCTION

Distributed systems consisting of a network of
workstations or personal computers are an attractive way
to speed up large computations. These systems have a
much higher performance-to-price ratio than large parallel
computers and they are also more widely available. The
computing nodes in a distributed system may fail. As
some applications may require hours to execute, it is
important to be able to continue computation in the
presence of node failure. Two main classes of solutions to
the problem of node failure are checkpoint-based and
log-based rollback-recovery schemes as suggested by
Bouteiller et al.l'. Recovery from failures becomes more
important for large systems, since the possibility of a
node failure increases with the number of computing
nodes. A rollback-recovery mechamsm consists of three
parts: checkpointing, fault detection and failure recovery.
During checkpomting the states of the participating
processes are periodically saved. The saved process state
is called a checkpoint. When a node failure occurs, the
recovery mechanism uses saved checkpoints to recover
the system to the consistent system state and continue
execution from that state. The number of processes that
have to be rolled back to the previous checkpoint varies,

24]

depending on the recovery algorithm™®. It may be
necessary for one, some, or all processes to rollback to
the previous checkpomt. Checkpointing 1s so important
that recent research™ includes investigating the
possibility of implementing an incremental checkpointing
system that 13 completely automatic and user transparent,
minimally mtrusive, scalable and feasible with current and
foreseeable I/O technology. They try in their study to
demonstrate that frequent, user-transparent, automatic
mcremental checkpointing is a viable technique. There are
several applications of checkpointing'™ includmg: rollback
recovery, playback debugging, process migration, job
swapping and load balancing™. In the next three
paragraphs we briefly discuss some of the issues to
consider with checkpointing!.

The first issue is the frequency of checkpointing. The
number of checkpoints initiated should be such that the
cost of mformation loss due to failure 1s small and the
overhead due to checkpomting is not sigmficant This
number depends on the failure probability and the
importance of the computation. For example, in a
transaction processing system where every transaction is
important and information loss 18 not permitted, a
checkpoint may be taken after every transaction,
increasing the checkpointing overhead significantly.

Corresponding Author:

Najib A. Kofahi, Associate Professor, Department of Computer Sciences,

Faculty of Information Technology and Computer Sciences, Yarmouk University, Itbid, Jordan

Tel: +962 2 7211111/2677

Fax: +962 2 7211128

Inform. Technol. J., 4 (4): 367-376, 2005

Sk |}
File info,
Signals, ... \
User
address< Heap
space _\
Globals
Code
RO
R1 v
Kernel
address PC \A
Memory Registers Checkpoint file

Fig. 1. Contents of a checkpoint

The second 1ssue 1s the contents of the checkpomt as
shown in Fig. 1. The minimal required information of the
state should be saved so that the process can be restarted
in case of an error.

The third 1ssue 1s the location of checkpointing. It s
either static or dynamic. While dynamic is determined at
run time, static is predefined in design time.

Finally, the last issue 15 the methodology used for
checkpomting. It depends on the architecture of the
system. Methods used in multiprocessor systems should
incorporate explicit coordination. For message-passing
systems!”, the messages should be monitered and if
necessary saved as part of the global context. The reason
is that the messages introduce dependencies among the
processors. On the other hand, a shared memory system
commuricates through shared variables which introduce
dependency among the nodes and thus, at the time of
checkpointing, the memory has to be in a consistent state
to obtain a set of concurrent checkpoints™.

RELATED WORK

Although the literature is full of proposals on
checkpointing appreaches, up to the knowledge of the
authors there 1s little has been done regarding the
comparative study between the two approaches (Table 1).

DISK-BASED APPROACH

Disk-Based checkpointing for parallel and distributed
applications™"* is the process of saving a global
application state during execution on a stable storage. In
case of a single system failure, the application could be

368

Table 1: Summary of related work listed by topic

Subject Reference
Application [6]

Diskless [15,16,19,20,22,23]
Disk-based [2,17]

DSM [2,11]

Message Passing [2,5,8,11,24]
Coordinated Ckpt [1,10-12,14,22]
Independent Ckpt [7.14,17]

Two level recovery [4,10,13]

Storage location [8]

Checkpointers [7.8,18,24,25,27]
Optimization [8,22]

Consistency [3,10,17,22]
Experiment [5.14,17,19,20,23,26]
Ckpt library [6]

Algorithm analysis [10,12]

brought back to a consistent state before the failure from
the last consistent checkpomnt taken on all nodes. A state
is consistent if no orphan messages are recorded in that
state. For example, if the receiving event of a message is
recorded in a state s, then the sending event of the
message is also given by Silva and Silva™.

The methodology used for checkpointing depends
on the architecture of the parallel and distributed systems,
which could be classified into two major categories':
Message Passing (PM) Systems!'” and Distributed Shared
Memory (DSM) Systems!,

A distributed system consists of several processes
executing on different nodes that commumcate with each
other via message passing”. For Message Passing
systems (MP), the major difference in checkpointing
algorithms is based on whether coordination is done at
runtime or at recovery time.

Coordinated approaches
and form a consistent state at runtume,
independent algorithms form a consistent state only at

L coordinate the nodes

whereas

recovery time. A third algorithm, which 1s a mix of the two
to avoid rollback propagation, was suggested by
Zambonelli'”, Kalaiselvi and Rajaraman' .

In the independent approach, application processes
are allowed to establish checkpoints in an independent
way and no synchronization is enforced between their
checkpoint operations. When there 1s a failure, the system
will search i stable storage and will try to find some set
of local checkpoints that, taken together, correspond to a
consistent state of the application. This requires each
process to keep several checkpomts n stable storage and
there 1s no certainty that a global consistent state can be
built. This approach has the following two main
advantages:

a. There is no need to exchange any protocol messages
during a checkpoint operation.

Inform. Technol. J., 4 (4): 367-376, 2005

If the execution of the processes is completely
asynchronous, the system can checkpoint one
process at a time and this may reduce the bandwidth
produced by the checkpoint I/O data.

The two main disadvantages of this approach are:

The possibility of occurrence of domino effect during
the rollback operation. That is the rolling-back of one
process causes another process to rollback, which in
turn causes another process to rollback and
ultimately rolling-back to the initial state of
computation.

The storage overhead, since several checkpoints
have to be maintained in stable storage™.

In the coordinated checkpointing approach, a global
checkpoint is taken periodically and the processes have
to synchronize between themselves to assure that their
set of local checkpoints corresponds to a consistent state
of the application. A consistent state is achieved during
run-time, while in the independent the
determination of a consistent recovery line was left to the
recovery phase, which could result m some rollback
propagation. In coordinated checkpointing the recovery
phase is simple and quite predictable since all the
processes rollback to their last committed checkpoints.
This approach presents a lower overhead in stable
storage. Some overhead is introduced during the
checkpoint operation due to the synchronization of
processes and some people argue that independent
checkpomting 18 much better than coordinated
checkpointing because of the overhead that is caused by
this synchronization.

In the mixed mndependent-coordinated checkpomting
approach (quasi-synchronous), a global checkpoint is
similar to the approach of coordinated checkpointing
while rollback propagation can be avoided by forcing
additional un-coordmnated local checkpomt
processes’'). In between two coordinated checkpoints,
messages are logged like the independent approach so
that the rollback recovery is restricted to just the faulty
processor. Periodically, checkpoints are imtiated to
maintain a consistent global state m stable storage at all
times. As in the coordinated approach, a consistent
recovery line is always maintained in stable storage by
selectively logging messages and imtiating checkpomts
when necessary. Instead of the usual garbage collection
techniques followed in independent approaches, this
algorithm always maintains the latest checkpoint and
makes sure that the rollback will not go beyond the latest
checkpoint of a node™".

schemes

369

Most available algorithms are based on Chandy and
Lamport'® algorithm. This algorithm uses
assumptions. One of these basic assumptions 1s that the
global state of the system includes the local states of the
processors and the state of the commumcation channels.
A general description of Chandy and Lamport!"? algorithm
1s given below.

In this algorithm, the global state 1s constructed by
coordinating all processors and logging the channel
states at the time of checkpointing. Special messages
called markers are used for coordmation and for
identifying the messages ongmating at different
checkpoint intervals. The algorithm is initiated by a
centralized node. The steps followed after a checkpoint
iitiation, however, are the same m all the nodes except
that a centralized node 1mtiates checkpoint on its own and
the other nodes initiate checkpoints as soon as they
receive a marker'”. The steps are as follows:

s0me

1. Save the local context in stable storage;

2. ForI =1 to all outgoing channels do send markers
along channel T;

3. Continue regular computation;

4. forI=1 toall incoming channels do save incoming

messages in channel T until a marker is received along
that channel.

A large mumber of algorithms have been published n
this area by relaxing some assumptions made in this
Chandy and Lamport algorithm and by extending it to
minimize the overheads of coordination and context
saving!'".

The main advantages of MP approach!! are:
simplicity, increasing the level of reliability, portability and
toleration of wholesale failure and little memory and
network overhead™.

The main disadvantages of MP approach™ are
performance bottleneck in writing checkpoint to disk and
increase of computation time of application.

Distributed Shared Memory (DSM) provides a shared
memory programming abstraction on a network of
machines for which it is generally considered easier to
write programs than for message passing models. If
several processes in a message passing system need to
share data, the programmer must explicitly send the data
to each process. Writing a program to efficiently
distribute the data among processes and keep each
process updated can be difficult and tedious. In a DSM
system, processes access shared data the same way they
access regular memory. Changes to shared data are
propagated to the processes that need them by the
DSME,

Inform. Technol. J., 4 (4): 367-376, 2005

Distributed Shared Memory systems have global
address space where the memory is distributed across all
the nodes. Tt is a software layer that provides the
appearance of a shared-memory system to the user and
mternally commurnicates through messages. Caches are
present to minimize latency m data access and the
programming paradigm 13 a shared-memory model. DSM
systems should concentrate on making the memory
consistent at the time of checkpointing. To tolerate node
failures, checkpoints should be maintained in stable
storage like MP systems!'".

The goal of checkpointing a distributed system is to
save a consistent global state from which the computation
can be restored in the event of a failure. For checkpointing
DSM systems, the meaning of a consistent global state
changes depending on the memory consistency model of
the system. As with message passing systems, the two
main approaches to checkpomnting DSM systems are
coordinated checkpointing and mdependent
checkpointing.

Coordinated checkpomting can be used for DSM m
a way similar to coordmated checkpomting for message
passing. All processes synchronize and record their
states as well as in transit messages. As with message
passing systems, only one checkpoint must be stored and
there is no extra overhead for logging messages. To
recover from a failure, all processes rollback to the most
checkpoint. This type of coordinated
checkpomnting can be mmproved by taking advantage of
the nature of DSM systems to reduce checkpointing
overhead. One of the overheads of checkpomting 1s the
time required to write data to stable storage. Rather than
storing the state of shared memory to stable storage,

recent

which can be time consuming, one coordinated
checkpointing scheme guarantees that each page is
replicated on at least two processors during a checkpoint.
If one processor fails, the pages stored on that processor
will have been replicated in at least one other processor’s
memeory. This technique will not handle more than one
processor failure at a time. Experimental results show that
as the number of processors m the system 1s increased,
the overhead due to replicating pages 1s decreased. In
some cases extra replication of a page can inprove an
application's performance because some pages will be
fetched before they are needed. However, this depends
on the program's behaviour. Unfortunately, as with
message passing systems, coordinating all of the
processors to take a checkpoint can incur considerable
overhead. For programs that frequently use barriers
all processors synchronization, the
checkpointing system can wait until a barrier to take a
checkpoint. While all processes are waiting at a barrier,

across for

370

but before any of them leave, the state of each process is
saved. The state of the system is guaranteed to be
consistent because all processes are waiting at the barrier.
Though this works well for programs that use barriers
regularly, not all programs use barriers and barriers are
expensive 1n large-scale systems.

Independent checkpointing techmques have the
advantage that no costly coordination is required. Given
that distributed shared memory systems are built on an
underlying message passing facility, one approach to
implement independent checkpointing for DSM systems
is to directly use one of the previously described message
passing checkpointing methods on the underlying
message passing. However, DSM systems tend to send
significantly more messages than message passing
systems and many of the messages do not cause
dependencies between processors. Recoverable DSM
systems have been developed that reduce the amount of
tracing by further reducing the number of messages that
constitute data dependencies. This
variation of the fixed distributed manager protocol, which
prevents request messages to the page manager and
messages from the page manager to the owner of a page
from becoming dependencies. Reducing the number of
dependencies reduces not only the amount of information
that needs to be tracked but also the probability of
rollback propagation. In message passing systems,
rollback propagation can be eliminated by logging
messages. During recovery, messages are replayed from
the message log when the program executes areceive call.
However, there are no explicit receive calls m a DSM
system. Page update and invalidate messages arrive at a
processor at unpredictable times. A straight-forward
solution to the problem of unpredictable updates or
invalidate message arrivals in a sequentially consistent
system is to checkpoint when any write to shared data is
available to another processor. No processor will see any
shared data, which 18 not stored in the most recent
checkpoint of the processor that wrote it.

Considering the facts mentioned above, a basic DSM
checkpointing algorithm 1s as follows:

system uses a

1. At the time of checkpointing, make the distributed
main memory consistent through the memory
managemerit protocols.

2. Save the process contexts in the memory.

3. Save the global state in secondary storage.

Techniques to overlap the context-saving process
with computation are possible to reduce the overhead of
storing context in stable storage. The advantage of DSM
approach is that it could overlap context saving with

Inform. Technol. J., 4 (4): 367-376, 2005

computation. On the other hand, the disadvantages of
DSM approach are large memory and network overhead
and the required system software support.

DISKLESS APPROACH

Checkpomting operates by saving all the mformation
needed to restart a process. Disk-based checkpointing
saves the mformation on stable storage like a disk. This
mnformation mcludes all variables, the environment,
control information and register values. So, it consumes
a lot of time and it is a performance bottleneck. The
problem has more effect in systems that have many more
processors than diskd!>*#

Disk-based checkpointing has high cost and this
limits the number of checkpoints that can be established.
Also, 1t has network and disk overhead and this makes a
computation take more time than the normal case. So, the
goal of diskless checkpomting 1s to make computation
faster, elimmate the overhead of saving on disk and finally
utilize the available memory™* ",

Diskless checkpointing 1s a techmque of
checkpointing that is based on main memory. Tt is based
on coordinated checkpointing, a collection of processors
with memories coordinate to have checkpoint of the
process state!' !,

There are two main memory checkpointing schemes
that can be wsed without any hardware changes:
neighbor-based checkpointing and parity-based
checkpointing. While the neighbor-based checkpoimting
scheme saves the checkpomts in the main memory of
other processors, parity-based checkpointing 1s based on
a parity approach!”.

The main advantages of diskless checkpointing are:
Tt has less checkpoint latency and recovery time; it
reduces the usage of shared resources; it uses and utilizes
the available memory to save checkpoints; it does not
require any additional hardware and it is faster than
the disk-based approach. Also, it provides a better
expected running time!™***3,

The main disadvantages of diskless checkpointing
are: 1t has encoding, memory, CPU and network overhead
and 1t cannot tolerate the occurrence of a global failure of
the machine. Rather, it can be mainly used to tolerate
single processor failure. So, it has less failure coverage
than checkpomting to stable disk, since none of the
components in a diskless checkpointing system can

survive a wholesale failure!>!*#],

Neighbor-based checkpointing: Tt is a checkpointing
scheme that avoids using disk to write checkpoint. Rather,
it uses the main memory of neighbor processors.

371

Processors are organized in a virtual ring. Each processor
saves its checkpoint into its physical memory, snapshot
area and into the neighbor processor that follows on the
ring. So, this scheme can tolerate single failures. Actually,
it can tolerate more than one failure provided that the
failures do not occur 1n adjacent processors of the virtual
ring!™,

Although this scheme s simple, there are some
scenarios that show that this scheme 1s not robust against
failures that occur during the checkpointing protocol!™™,

So, the old checkpoints should be kept in order to
tolerate the during the
checkpointing protocol. Hach processor has to allocate
two checkpoint areas in its physical memory: one to keep
its own checkpoint and another to maintain the
checkpoint of its preceding neighbor. The following steps
are required to have a good tolerance of failures: save the
checkpoint mnto the local snapshot area of each processor
and then send the checkpoint to the next processor of the
ring. Although the application process 1s blocked during
the first step, the second step can be done concurrently
with the computation. At the end of each checkpoint
operation, the system swaps the identity of the memory
areas. So, we can consider that this solution requires extra
memory twice the size of the application state!"”.

Neighbor-based checkpointing scheme should not be
used alone, since it 18 not able to recover from total
failures of the system. Thus, the system should take from
time to time a global checkpoint to disk. (Back to disk-
based). Also, it costs higher memory overhead although
it has lower overhead per checkpoint!®,

occurrence of failures

Parity-based checkpointing: The basic idea is to avoid
disk writing and maintain encugh redundant information
about the checkpoint data able to tolerate a single
processor failure. So, the application should be able to
checkpoint far more frequently than when checkpoints are
saved on disk!. It consists of two parts: locally
checkpointing by each processor to its memory and
encoding checkpoints and storing the encoding in
checkpoint processors dedicated for storing
checkpoints™.

The steps when the failure occurs are: the non-failed
application processors rollback to the checkpoint stored
m their memory. Thern, replacement processors are chosen
to replace the failed processors. Fmally, there comes the
rollback to the checkpoint calculated from the checkpoints
of non-failed processors and encoding in checkpoint
Processors.

After that, the application can restart. If there are not
enough spare processors left, checkpoint processors can
be used as replacement processors. It is assumed that the

Inform. Technol. J., 4 (4): 367-376, 2005

memeories in processors are disjoined and communication
is by message passing only. The application needs n
application processors and m extra processors are given
as checkpoint processors. When there are less than n
processors available, the application has to be
terminated®™. The components of parity-based
checkpomting include local checkpomting, encoding
checkpomts and integration of local and encoding
checkpointing.

a- Local checkpointing: Each processor only needs to
store its checkpoint in memory rather than on disk. There
are three methods:

Simple checkpointing: The simplest form is to have a
copy of the address space and registers. In its simplest
form diskless checkpomting requires an in-memory copy
of the address space and registers. If a rollback 1s
required, the contents of the address space and registers
are restored from the m-memory checkpomt.

Note that this checkpomt will not tolerate the failure
of the application processor itself. It simply enables the
processor to rollback to the most recent checkpoint if
another processor fails.

One drawback of simple diskless checkpointing is

memory usage. A complete copy of the application must
be retained in the memory of each application processor.
A solution to this problem is to use incremental
checkpointing!"****4,
Incremental checkpointing: Another method 13
mcremental diskless checkpomting. Virtual memory
protection bits of all pages are set to read-only and will be
set to read-write after page fault caused by a write by the
application. Then the checkpointing system stores a copy
of the faulty page. Thus, the processor’s checkpoint
consists of the read-only pages in the address space and
the stored faulty pages!>*.

Forked checkpointing: The last method is forked diskless
checkpointing. To checkpoint, the application clones
itself (with, for example, the fork() system call n Unix). The
clone 1s the diskless checkpoint. The checkpoint stored in
the memory 18 only for the non-failed processor to
rollback when another processor fails, but not for a failed
processor to recover, Le. it 1s not tolerant of the failure of
the application processor itself'">*1,

b- Encoding checkpoints: The m extra processors are used
for encoding the checkpoints from all application
processors and storing useful information so that the
checkpoints of the failed processors can be re-calculated.

372

There are a number of methods of encoding. The main
methods are parity, mirroring, one-dimensional parity,
two-dimensional parity and Reed-solomon.

Parity (RAID level 5): The simplest method 1s parity
(RAID level 5). Ounly one checkpoint processor 1s needed
to encode bitwise parity of all processors’ checkpoints.
The jth byte of the checkpomnt processor 1s the result of
exclusive-OR operation on all jth bytes of all application
processors. When a processor fails, the checkpomt of the
failed processor can be obtained from the exclusive-OR
operation on checkpoints stored in checkpoint processor
and non-failed application processors. This is the same
recovery method used in RAID level 5 in disk array

[15,22)

technology-**.

Mirroring: Another method 1s checkpoint mirroring. With
m=n extra checkpoint processors, the checkpoint of each
application processor 1s copled to a corresponding
checkpoint processor. Failure of an application processor
can be recovered by copying the checkpomnt stored in the
corresponding checkpomnt processor. This scheme can
tolerate n processor failures, but not failure of any pair of
application processor and its corresponding checkpoint

processort >,

One-dimensional parity: With one-dimensional parity,
there are 1<m<n checkpoint processors. The application
processors are partitoned inte m groups, gi...., g, of
roughly equal size. Checkpoint processor I then calculates
the parity of the checkpomts in group I. This increases
the failure coverage, because now one processor failure
per group may be tolerated. Moreover, the calculation of
the checkpomt encoding should be more efficient because
there is no longer a single bottleneck (the checkpoint
processor). Note that 1-dimensional parity reduces to

RAID level 5 when m=1 and to mirroring when m=n!"*",

Two-dimensional parity: Two-dimensional parity is an
parity. With two-
are

extension of one-dimensional
dimensional parity, the application processors
arranged logically in a two-dimensional grid and there is
a checkpoint processor for each row and column of the
grid. Each checkpoint processor calculates the parity
of the application processors in its row or column.
Two-dimensional parity requires m>2 Jn checkpoint
processors and can tolerate the failure of any one
processor in each row and column. This means that any

two processor failures may be tolerated!**".

Reed-solomon: Finally, the most general-purpose

encoding technique is Reed-solomon coding, which

Inform. Technol. J., 4 (4): 367-376, 2005

requires m checkpoint processors to use Galois Field
arithmetic to encode the checkpoints in such a way that
any m processor failure can be tolerated. This coding is
more complicated and the overhead is larger, but its failure
coverage per checkpoint processor is the largest!">™,

c- Integration of local and encoding checkpointing: One
of the most important things in checkpomting is
performance*”. The checkpoint overhead comes from
the sending and calculating of encoding. This subsection
considers how to reduce the overhead caused by inter-
network communication for the checkpointing system. In
some encoding schemes mentioned previously, there is a
bottleneck caused by the fact that checkpoint processors
are the destinations of all checkpoint messages and so
they have to receive the checkpoint information sent by
all processors. Besides, they have to do all the encoding
calculations. One solution 1s FAN-IN methed. Application
processors do the encoding in log n steps and send the
final result to the checkpoint processors. FAN-IN method
15 usually preferable except that the network supports
multicast (e.g. Ethemet).

Another approach the network
communication is to reduce the message size. Using an
approach similar to incremental checkpointing, only pages
are modified since the most recent checkpoint is sent to
checkpoint processors. The changes above are called as
diff, which is bitwise exclusive-OR (XOR) of the current
copy of the page and the copy of the page in the previous
checkpoint. The diff i1s sent to checkpomnt processor,
which XOR’s 1t mto its checkpomt. The message size can
be reduced further by compressing diff before sending
it

to reduce

RESULTS AND DISCUSSION

In present experimental study, compared the
performance of the coordinated disk-based checkpointing
algorithm with parity diskless checkpointing. Four PIT
machines tunning at 700 MHZ were used in the
experiment to implement the disk-based checkpomting
algorithm. Each machine has 256 MB RAM and 40 GB disk
space. The four machines are comnected to each other
through 100 MB Ethemnet network. A fifth identical
machine was used as diskless parity processor.

Several checkpointing packages do exist. Examples of
such systems include: MISTY, CLIP™, Dynamite™’,
MigThread™!, Fail-Safe PYM!” and CoCheck™*".

Dynamite™, a transparent checkpointing system, is
used for disk-based experiment and a modified version for
diskless checkpointing. Dynamite
checkpointing system. Tt is part of dynamic load-

i85 a user-level

373

balancing environment that provides support for parallel
processes running applications under parallel virtual
machine (PVM) and message passing interface (MPT). Tt
supports migration of tasks between nodes in a manner
transparent to both the programmer as well as the user. It
provides support for applications running under Solaris
and Intel Linux operating systems. In present experiment
we used Linux operating system environment. Dynamite
checkpointing system runs on top of PVM. It does not
require any re-compilation or re-linking of the application.
Dynamite consists of the following three main
components:

A scheduler to manage workload distribution.
A monitor to monitor the workload on workstations.
A checkpointing/migration mechanism.

Two parallel applications are used to test the
performance of the checkpointing systems™*. The first
application 1s called Nbody, which computes n-body
mteraction between particles in a system. 20,000 particles
and 20 mteractions were used. The second one 1s called
MAT that multiplies two square floating-point matrices.
A matrix size of 4096x4096 was used.

The experiment was carried out six times per
application for the two approaches. Table 2 shows the
latency in seconds along with the mean and standard
deviation.

Checkpomt latency is the time needed to save the
checkpoint. It observed that there 1s a big difference
between the latency m the two approaches. Diskless
approach 1s superior to disk-based m latency point of
view. We think this is due to the time of saving
checkpoints to the disk in disk-based approach.

Table 3 shows the overhead in seconds as well as the
mean and Standard Deviation. The results are for the
whole application.

Checkpoint overhead refers to the time required to
record the checkpoint. The two approaches
comparable overhead because it is independent of the
way of saving the checkpont. It 1s also mmportant noting
that the recovery time of diskless checkpointing is
roughly the same as its checkpoint latency.

Compared with disk-based approach, the overhead of
diskless checkpointing is comparable to that of disk-
based checkpointing, while its checkpoint latency and
recovery time iz much lower than disk-based
checkpointing. Tt is observed that disk-based checkpoint
latency and recovery time is much pgreater than its
counterpart diskless checkpointing. This is due to the
slow disk speed that limits the transfer rate of checkpoint
to the disk during checkpointing and from the disk during

have

Inform. Technol. J., 4 (4): 367-376, 2005

Table 2: TLatency (sec) when ninning the two applications under disk-based
and diskless approaches

Disk-based Diskless

Trial No. Nbody MAT Nbody MAT

1 1010.000 1950.00 14.00 25.00000
2 1092.000 1890.00 15.00 23.00000
3 1101.000 1972.00 13.00 24.00000
4 1005.000 1961.00 16.00 26.00000
5 1000.000 1890.00 12.00 25.00000
6 1015.000 1917.00 17.00 22.00000
Mean 1037.167 1930.00 14.50 24.17000
SD 46.32 36.04 01.87 1.47196

Table 3: Overhead (sec) when munning the two applications under disk-based
and diskless approaches

Overhead (sec)

Disk-based Diskless
Trial No. Nbody MAT Nbody MAT
1 26.00 20.00 20.00 25.00
2 25.00 21.00 21.00 27.00
3 23.00 20.00 23.00 26.00
4 27.00 19.00 22.00 28.00
5 30.00 21.00 21.00 24.00
V] 24.00 20.00 20.00 19.00
Mean 2583 20,17 21.17 24.83
SD 2.48 0.5 1.17 3.19

Table4: Comparison between disk-based and diskless checkpointing

systems
Parameter Disk-based Diskless
Latency time High Low
CPU overhead High High
Memory requirement Low High
Stable storage requirements High Low
Toleration of wholesale failure Yes No
Reliability High Low
Efficiency Low High
Addition hardware Not required Additional processors
Portability High Low

recovery. The expected running time of the application
depends heavily on the checkpoint overhead, latency and
recovery time. Thus, it is obvious that diskless
checkpointing has a much shorter expected runmng time.
Another disadvantage of the large checkpoint latency is
degradation of performance of shared resource.

In the case of disk-based checkpomting, the shared
resource generally refers to the shared disk, whereas it is
diskless checkpointing. In the
experimental results, the performance of the stable storage

the mnetwork for

degrades by 87%. With much less checkpomt latency,
diskless checkpointing gives slight degradation on
netwark performance®.

As aresult of several studies, a summary of the main
between the disk-based and diskless
checkpoimnting systems 13 shown m Table 4.

differences

CONCLUSIONS

Two approaches of checkpointing for parallel and
distributed applications are empirically studied and
analyzed. From the present study it may be concluded
that the latency of disk-based approach is a bottleneck
while the overhead of both approaches 13 comparable.

The use of optimization technicques, like main memory
checkpomting and checkpoint staggerng, reduces the
performance overhead of our coordinated algorithm
considerably. Whenever, possible the system should try
to perform the checkpoint concurrently with the
computation and use an ordering technique to reduce the
congestion on stable storage.

Choosing between the two approaches studied in this
research depends on whether one can sacrifice the
additional memory and processors to get better
performance and less reliable using diskless approach, or
sacrifice the performance to get reliable system n the case
of disk-based approach.

If more frequent checkpomts are required, then 1t is
more efficient to choose the diskless approach since it
takes less time to checkpoint. For high critical
applications, where the reliability 1s more important, the
disk-based approach is preferable since it saves the
checkpoints on a stable storage.

FUTURE WORK

In this research work, an experimental study is made
between coordinated disk-based and party diskless
checkpointing algorithms. As a future study it is possible
to extend this study to include independent disk-based
approach, mixed independent coordinated approach and
neighbor-based checkpointing.

Another future possibility 1s to take the advantages
of both approaches and use a two-level stable storage
approach. This approach combines the advantages of the
two approaches. It combines the reliability of the disk-
based approach with the efficiency of the diskless
approach. In the two-level stable storage approach, the
saving of the state of the application to a stable storage
can be overlapped with the process of checkpointing of
the application state to main memory. This scheme 1s
efficient and provides fast recovery. If there is a partial
failure in the system, the application can recover from the
main memory checkpoint. On the other hand, 1if there is a
total failure, the application is restarted from a checkpoint
saved on stable storage.

Inform. Technol. J., 4 (4):

ACKNOWLEDGMENT

The publication of this study was supported by

Yarmouk University Research Council.

10.

REFERENCES

Bouteiller, A., P. Lemarimier, G. Krawezik and
F. Cappello, 2003. Coordmated checkpoint versus
message log for fault tolerant MPI. IEEE International
Conference on Cluster Computing (CLUSTER'03),
Hong Kong, December 01-04, 2003, pp: 242-250.
Dieter, W.R. and I.E. Lumpp, 1997. Fault recovery for
distributed shared memory systems. Proceeding, 1997
TEEE-Aerospace Conference.

Helary, IM., R HB. Netzer and M. Raynal, 1999.
Consistency 1ssues mn distributed checkpomnts. IEEE
Trans. Software Eng., 25: 274-281.

Vaidya, N.H., 1998. A case for two-level recovery
schemes. TEEE Transactions on Computers, 47:
656-666.

Sancho, 1.C. et al., 2004, On the feasibility of
incremental checkpointing for scientific computing.
Proceeding International Parallel and Distributed
Processing Symposium TPDPS'04, Santa Fe, NM,
USA. http: /fwww .cs huji.ac.1l/~etcs/pubs/papers/
ipdps04.pdf

Wang, Y M. et al, 1995, Checkpointing and its
applications. IEEE Fault-tolerant Computing
Symposium, FTCS-25, Tune 1995, pp: 22-31.

Kofahi, N.A. and Q.A. Rahman, 2004, Empirical study
of Variable Granularity and Global Centralized Load
Balancing Algorithms.
Conference Parallel and Distributed Processing
Technicques and Applications (PDPTA'04), Las
Vegas, Nevada, USA, June 21-24, 2004, CSREA Press,
1: 283-288.

Pruyne, J. and M. Livny, 1996. Managing checkpomts
for parallel programs. Proceeding 2nd Workshop on

Proceeding International

Job Scheduling Strategies for Parallel Processing
(IPP3’66), LNCS, of Lecture Notes n Computer
Science, 1162: 140-154.

Casas, I. et al., 1995 MIST: PVM with transparent
migration and checkpointing. Tn: 3rd Annual PVM
Users’” Group Meeting, Pittsburgh, PA.

JGendelman, E., L F. Bic and M.B. Dillencourt, 1999.
An efficient checkpointing algorithm for distributed
systems 1mplementing reliable
chamnels. Proceeding of 18th TEEE Symposium
Reliable Distributed System, Switzerland, pp: 290-291.

communication

375

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21

22,

23

24.

367-376, 2005

Kalaiselvi, 5. and V. Rajaraman, 2000. A survey of
checkpointing algorithms for parallel and distributed
computers. In: SaAdhanak, 25: 489-510.

Neogy, 3., A. Sinha and P.K. Das, 2002. Distributed
checkpointing using synchronized clocks.
Proceeding 26th Annual Intemational Computer
Software and Applications Conference,
COMPSAC'02, pp: 199-206.

Silva, LM. and I.G. Silva, 1998. Using two-level stable
storage for efficient checkpointing. 1EE Proceeding
Software Engineering, Volume 145 No. 6, December
1998,

Silva, L.M. and I.G. Silva, 1999. The performance of
coordinated and independent checkpointing.
Proceeding 3rd International Parallel Processing
Symposium and 10th Symposium Parallel and
Distributed Processing. San Juan, Puerto Rico, April
12-16, pp: 280-284.

Plank, I.5., K. Li and M.A. Puening, 2001. Diskless
checkpointing. presentation, November 2001,
http: //www.cs.cornell.edu/Courses/cs717/
2001 fa/lectures/Diskless. ppt

Carothers, C.D. and B.K. Szymanski, 2002. Linux
support for transparent checkpointing of
multithreaded programs. http://www.cs.rpi.edw/
~szymansk/genesis/ch. pdf

Zambonelli, F., 1998 Distributed -checkpoint
algorithms to avoid roll-back propagation. 24th
Euromicro Conference Proceedings, 1: 403-410.
Chandy, K.M. and L. Lamport, 1985. Distributed
snapshots: Determining global states of distributed
systems. ACM Trans. Comp. Sys., 3: 63-75.

Silva, L.M. and I.G. Silva, 1998. An experimental
study about diskless checkpointing. 24th Euromicro
Conference Proceeding, August 25-27, 1998, 1:
395-402,

Plank, I.5., K. Li and M.A. Puening, 1998. Diskless
checkpointing. TEEE Trans. Parallel and Distributed
System, 9: 972-986.

Bowman, I[T., 1998 Diskless checkpointing,
presentation, CS756B. http://plg.uwaterloo.ca/
~itbowman/CS756B/P2/

Hung, E., 1998. Fault tolerance and checkpomting
schemes for clusters of workstations. ELEC6062
Scalable Parallel Computing, Project Report
http://www.cs . umd.edu/~ehung/research htm.
Chiueh, T. and P. Deng, 1996. Evaluation of
checkpoint mechanisms for massively parallel
machines. Proceeding of 26th Fault-Tolerance
Computer Symposium, FTCS-26, Tapan, pp: 370-379.
Chen,Y. et al., 1997. CLIP: A checkpomting tool for
message-passing parallel programs. In: SC97: High
Perf. Networking and Comp.

25.

26.

Inform. Technol. J., 4 (4): 367-376, 2005

Iskra, K.A. et al, 2000. The implementation of
Dynamite: An environment for migrating PVM tasks.
Association for computing machmery. Special
Interest Group on Operating Systems. Operating
Systems Review, 34: 40-55.

Hang, H. and V. Chaudhary, 2004. Process/Thread
Migration and checkpointing i heterogeneous
distributed systems. Proceeding of 37th Hawan
International ~ Conference System Sciences.
http://csdl. computer. org/comp/proceedings/hicss/
2004/2056/09/205690282b.pdf

27. Stellner, G., 1996. CoCheck: Checkpointing and

376

process migration for MPI. Tn: 10th International
Parallel Processing Symposium, pp: 526-531.

	ITJ.pdf
	Page 1

