http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 4 (1): 38-43, 2005
ISSN 1812-5638
© 2005 Asian Network for Scientific Information

Pattern-based Stemmer for Finding Arabic Roots

Rivad Alshalabi
Yarmouk University, Irbid, Jordan

Abstract: This study provides a technique for extracting the triliteral Arabic root for an unvocalized Arabic
corpus. It provides an efficient way to remove suffixes and prefixes from the inflected words. Then 1t matches
the resulting word with the available patterns to find the suitable one and then extracts the three letters of the
root by removing all infixes in that pattern. This technique does not use any dictionary to check the resulting
stem. We define some rules that help to decide if the letters belong to the root or not. This algorithm has been
tested on a corpus of 72 abstracts (10582 words) from the Saudi Arabian National Computer Conference, the

accuracy of this algorithm 1s about 92%.

Key words: Root, stem, morphology, pattern, prefix, suffix

INTRODUCTION

The Arabic language is a highly inflected language,
this increases the difficulty of the stemming process!'l.
Our methodology depends on reducing the mflected word
by removing all its suffixes and prefixes according to a
certain methodology. When this process is done
correctly; it becomes easy to find the pattern that matches
this word and extract the stem characters (Fig. 1). Aljlayl
and Frieder'! used this idea to develop a light stemmer for
information retrieval applications. Here we used this
general idea but with a different technique.

Removing all suffixes and prefixes from the word
helps in reducing the number of patterns. It facilities the
pattern matching process and enables more variations of

the stem to be conflated to the same pattern’”.

Arabic stemming: Arabic words demonstrate an intricate
morphology™. The Arabic language can be said to use
root-and-pattern morphotactics where a pattern can be

o —

|

o

Fig. 1: Extracting the stem of the word 8 from the
pattern JeW Arabic stemming

38

Arabic word English meaning
s the book
. like the book
oSl for the book
Al by the book
Sy and book

Fig. 2: Some prefixes attached to the word book

thought of as a template adhering to established
grammatical rules. Such patterns are applied by adding
affixes (prefixes, infixes or suffixes) to roots (which are
simple bare verbs that are three letters in length) to form
their parent root. Prefixes and suffixes can be further
added to Arabic stems to express common grammatical
usages such as the possessives, plurals, definite forms,
gender, etc™. For example, some of the additicnal forms of
the word (<88) “book™ are shown mn Fig. 2 Many
characters are attached to the word (&) while in
English these appear separate
forms.

Stemming can be defmed as the process of
normalizing word variations by removing prefixes and
suffixes to get the affix free word™. There are four kinds of

stemmers™:

additions as

1. Manually constructed dictionaries: These are easy to
use tables listing the roots and stems of words. The
only problem with these 1s that they may not be
exhaustive!.

Inform. Technol. J., 4 (1): 38-43, 2005

2. Light stemmers: These remove suffixes and prefixes
to discover the original stem and group words with
the same parent stem. They are usually referred to as
stem-based stemmers'.

3. Morphological analyzers: These algorithms attempt
to restore the original root of a word and group
words accordingly™. These are known as root-based
stemmers and are far more complex than light
stemmers. Because such stemmers group terms based
on their roots, terms that are not semantically related
may also be grouped inte an equivalence class.

4. Statistical stemmers: These stemmers attempt to
group word variants using clustering techniques®™.
The different techniques wvary from using letter
N-gram based retrieval to using co-occurrence
analysis. This process essentially involves a process
of repartitioning and regrouping terms into new
classes to correct the errors from earlier stemming
stages. A unique advantage that statistical stemmers
emjoy 1s that they are somewhat more language
independent.

Algorithm description: In our algorithm, we have the
following steps:

Step 1: Normalize corpus
Step 2: Remove the determiner “J1” (the) and its
combinations from the begmning of the word.
Step 3: Check for prefixes with duplicate letters and
remove the first one.

Step 4: IF the first letter 1s <, then:

* Remove all suffixes.

¢ TF CheckPrefix(*,”)=TRUE, then remove “,”, ELSE
go tostep 7

ELSE IF the first letter is “ " then

* Remove all suffixes.

s TF CheckPrefix(“_s")=TRUE, then remove “ 3" , EL.SE
go tostep 7

Step 5: IF the first letter 1s “«” or “J” or “<” then

* Remove all suffixes.

¢+ JF CheckPrefix(“d” or “3” or “u”)=TRUE, then
remove it , ELL.SE go to step 7.

Step 6: Reduce the word

* Remove non single letter prefixes.

¢+ Remove all suffixes.

*+ Remove single letter prefixes (" and “=”)

Step 7: Match with pattern.)

* IF no match then retuun the original word and EXIT.

Step 8: Normalize root.

Normalizing the corpus: The corpus is normalized as
follows:

1. Convert the first letter of the word 7 *, “] “, or *“T“
mto “1 .

Remove vowels (except the Shaddah symbol =)
Duplicate any letter that has the Shaddah symbol.
Remove punctuation.

Remove stop words.

Mok

Removing stop words: Before finding the stem of any
word, we check if the word is a stop word or not. To do
this we use a list that contains most of the Arabic stop
words.

Removing the deeterminer “J1” : The second step in the
algorithm is to remove the determiner “JI* and its
combmations (Fig. 3). All these characters must be
removed from the word, since these letters are the leftmost
prefixes that can appear in an Arabic word.

Before removing any prefix or suffix, the algorithm
checks the size of the word; the number of characters
remaing word length must be greater than or equal to 3.
For example, the prefix “ Ju ” will not be removed from
the word “ &% 7. Some words have these same characters
as root characters (e.g., © U™ "l 7 and “onds),
To stem such words correctly we check these patterns
before removing their prefixes. Using this rule the word
« ol ”, for example, will be reduced to the word
“ i 7 as we will explain later and then return the stem

173 :-] 22

Removing prefixes: The next step is to remove all
multiletter prefixes that have no duplicated. letters.
Figure 4 shows the duplicated letters. If these letters are
found then the first oneis considered a prefix and
will be removed. For example, the words <8< 7,
“ ol Pand “ gdss " will be reduced to ¢ S 7, a7
and “ g4y 7, respectively.

We check the multiletter prefixes shown in Fig. 5. In
this step we do not check the single letter prefixes (* 7
and “=") because these characters could be root letters
and not prefixes. For example, the letters “~™ and “ ;" in
the words “ i, 7and © +as 7, respectively both bélong
to the stem . So after removing the suffixes later, the
remaiung word will be retained as a stem since its length
15 3.

Removing suffixes: The word must be reduced to match
an appropriate pattern. When the inflected word enters
this step, the algorithm checks for the suffixes shown in
Fig. 6 working from the longest to the shortest one. As
mentioned above, the algorithm checks the length of the
word before removing any suffi; the length of the
remaiung word must be greater than 2.

Inform. Technol. J., 4 (1): 38-43, 2005

nd‘ " "d\a" ud@u

ndun udu_n

Fig. 3: The determiner “J! “ and its combinations

< - L3]

0K

Fig. 4: Duplicated prefix letters

- . -

E

e [ol | ot [

Fig. 5: The most frequent multiletter prefixes

V- S N I I R P

-

& g | |y

(=
-1

Wy

g
%

‘E, Nalll &
¢ k.

RPN

G|

&
£
c.

iy

Fig. 6: Most available suffixes

For example, let’s start with the word * <AaSall) iln
step 2 the eterminer “J1” is removed, returning “<LiSse
No prefixes are found in step 3. In step 4 the suffix
“=1” 1s removed, returning “ = (S

As another example the word “ Lealixaud ” enters step
4 and its suffixes are removed starting with the
longest “ Laa ” then the shorter “ 3 », finally
return “ aand ” as a suffix-free word.

Some conditions for suffix removal are illustrated later
in this study.

bR}

Removing “.3” and “,”: These two letters have the
meaning of (then) and (and) in English respectively, so
they written before any single letter prefix as “,”, which
indicates the present form of the verb, but in Arabic they
cannot be used together and still have the same meaning.
So, if both of them appear, the second letter will not be a
prefix. In this step we check one of them only. These
letters can sometimes be root letters not prefixes, for
example: ety 7 <Ll 7« J5d) ete. it is difficult to
distinguish these words without using a database
containing all Arabic stems. To resolve this ambiguity we
use some rules that depend on patterns. If the word
matches a certain pattern, then the letter will not be
removed, as will be explained later.

Although this technique resolves this problem
partially, it sometimes fails with some words, especially
when two words reduce to the same string. For example,
consider the pair of words “ J$s ”and “ %92 7, the
letter “,” is a prefix in the first word but not in the second
one.

40

Now in step 4 if the first letter of the inflected word is “”
or “,”, we remove all suffixes of the word. This helps us
to match this word with certain patterns. If the match
succeeds, then the character is considered to be a root
letter and will not be removed from the beginning of the

word.

Removing “d”, “4” and “o”: These letters are not used
as prefixes before the prefixes “,” or “”, so we check
them in the next step (step 5). Here we use the approach
illustrated above. In the next section we discuss the rules

used to check these prefixes.

Reducing the inflected word: In this step the inflected
word is completely stripped of all suffixes and prefixes,
this is done after dealing with all previous affixes, but here
more single letter prefixes are removed (“,” and "=”) if
they are considered as prefixes. As we described,
multiletter prefixes are removed first, then all suffixes
and finally single letter prefixes. For example the word
“ Lagh gadny (Lagd gallny) 7 will enter directly at step 6 and will
be reduced as follows:

1" o l i ‘I|
" ” l"
1" (‘_ucn
Pattern matching: After removing all prefixes and suffixes

of the inflected word we match it with all available
patterns. If a pattern is found then we can extract the

Inform. Technol. J., 4 (1): 38-43, 2005

letters that form the root, if no match found we return the
inflected word as it is.

Patterns: We tried to reduce the number of patterns by
increasing both the prefix and suffix lists. For example we
do not store any of these patterns:

RIS TF NSNS Y DL u-\'d "Jadid" | ote Instead, we

remove all these preflxes and suffixes before matching the
word with its pattern. This reduces the number of patterns
and makes it easy to find the correct pattern.

In addition, we grouped patterns according to their
length, so we have patterns of length 4 as ”
length 5 as < dadie ,length 6 as“ Jwelsh . The total
number of patterns with length 4 is 11, the total number of
patterns with length 5 is 25 and the total number of
patterns with length 6 1s 15.

We match any word with patterns according to its
length, by using a set of conditions to check the infix
letters in the word. For example, the word « & 9 >
has length6, so we search the patterns using the following
conditions:

Find a pattern with length 6 that has
e “,” asthird letter and

e 97 as fourth letter and

o “.7 as fifth letter.

These conditions match only the pattern Jietgd
Now we remove these letters and extract the stem
(L

The order of these rules and the conditions used for
matching are very important factors in guaranteeing a

correct matching.

Normalized roots: The final step in the algorithm is to
normalize the resulting stem. For example, the stem for the
word “ 933 ” is“ 333 . to normalize it we replace the
first letter by “i” and the root becomes “ 23 > Another
example is to convert “¢” in the beginning of the stem to
“f”. For example the 1nﬂected word “ 'Juaiid ” has the
root ¢ Jeai 7 After normalization it 1 becomes “ Jf 7.

Rules for removing single letter prefixes: After removing
all multiletter prefixes and all suffixes of the inflected word
we match the resulting word with certain patterns. If a
match 1s found, then we consider the checked letter as a
root letter. These patterns are not the same for each prefix
(as we will show).

We encountered problems with this technique,
because for some words ambiguity resolution is not
possible without using a database containing all Arabic
stems or alternatively using a vocalized corpus. This is

41

because both words contain the same consonant string
To solve this problem we selected the most [appropriate?
frequent?] usable word of the pair.

For example the pair of words “ Jié” and * m¢d”
have the same string, the letter “.s” is a prefix in the first
word but not in the second one. Here one of them must be
selected. The formal statement of the rule is: If a word that
starts with “.s “ has the pattern “ Ji® “ then remove it,
because here it 1s used with a verb, So, the prefix “” will
be removed from any word that has the pattern Jié .
We used this technique with all other single letter
prefixes. There are some patterns that do not have such
problems, for example the pattern Jeld .

Rules for the prefix “
CheckPrefix(_a)=FALSE IF the word matches one of the
following patterns:

1. "Jc_'u:" . uc:‘ an , n»u‘n s ,"u-“_)‘l-"“CtC.
2. vv‘..)hén EX d:‘:m" "L.)a‘)é", "")L.ﬁ"’ elc.
3. " d&an Ex L dmu u ' 'u’ th.

ELSE CheckPrefix(—s)=TRUE
Rules for prefix “,”

CheckPrefix()= FALSE IF the word matches with one of
the following patterns:

1‘ ud‘;ulr . EX: "A;\J" , ,“tﬂ'\J"etC.
2‘ "Qhﬁ” . Ex "QJAJ" "O‘)%J", “L’J:‘hJ", etc.
3" G Ex: " @yt kst ete.

ELSE CheckPrefix(,)=TRUE

Rules for prefix “d”
CheckPrefix(s)=FALSE IF the word matches one of the
following patterns:

lld‘:un . EX: ";.131.5" Yy u‘)“lsrv etc.
"d:uﬁ"_ EX "_)*\S"’ "_);GS", ete.

. " dL:.é" . EX: n (’)S" ’ngt‘s tH etc
"Qllj" . EX: "(.J.S"‘S", "O‘)MLS”, .. .etC
M Je Ex: Ml etc.

ELSE CheckPrefix(«)=TRUE
Notice that this prefix is not used with verbs, so more

patterns can be used and the number of problems
becomes smaller.

R

Rules for the prefix “.”

We used the same patterns that are used with the prefix
“s” above. but there are some problems. For example, the
word “ <=3~ is correctly reduced to “ ==¥ ” but
the word “ (Blu ” is also reduced, which is not
correct.

Inform. Technol. J., 4 (1): 38-43, 2005

Rules for the prefix “,.”

This prefix is used to talk about the future, so we
add "e~", "o=","" and "W to the prefix list, of strings to
be removed at the beginning of the algorithm (step 3).
For example"cabin” | "caalu,

Rules for the prefix “y”
CheckPrefix(J)=FALSE IF the word matches one of the
following patterns:

1 "deld | Bx: "
2. "C}h}‘" . EXI "Q.**‘"
3. " d&jn . EXZ " Cmu

ELSE CheckPrefix(J)=TRUE

Rules for the prefixes “~” and “”

These two letters are checked in step 5, so if the
remaining stringis of length 3 then we are guaranteed that
one of these two letters belongs to the root.
CheckPrefix(=)=FALSE IF the word matches one of the
following patterns:

1 udc_uu EX' uﬁt‘u
2 " d‘ at EX' " JB:‘H
ELSE CheckPrefix(<)=TRUE

Suffix removal constraints: Some suffixes cannot be
removed from the inflected word, because they are
considered to be part of the root, so we need to add some
exceptions to the rules for removing suffixes. For example,
the inflected word “ &< (according to the algorithm)
will be reduced to « L ”, which is wrong, because the
letter “” is a single letter suffix (as in S ”). To deal
with such problems we defined some constraints on such
suffixes:

1. Do not remove “ (33 ” from the pattern “ d_,un.ﬁ 7

T

Ex: "G Al " et etc,

»

Do not remove :\g ” from the pattern © aaie 7,

only remove " Ex: "4aas", which has the root

113 >

¥
3. Do not remove “»” from the pattern d;la-ﬁ:l Ex:
43> 9 ” which has the root 45 .

4. Do not remove “cl” from the pattern Judl > Ex:
“ ¢l3al 7 There are some problems such as in the
word “eld ” which has the stem « s .

5. Do not remove “;5° from the pattern

lld)"""' Ex: llo)a_“ll and "O":‘i‘ﬂ.

42

6. Do not remove “=” from the pattern
ud_‘ju EX' LA alld LAkt
7. Do not remove “y”° from the pattern

"LJ"-A;’" or " ! I"Iv. EX: "L'J _,l" and “i’J)?,)"‘”-

General problems: Problems may arise with some
inflected words, since an original letter(s) may be removed
or match a word with non-suitable pattern. These
problems arise as a result of the similarity of strings of
some words.

Examples

1. Words such as the inflected word “ a¢iy ~ Here the
last two letters will be removed, because the
algorithm recognizes “ @8 ” as a suffix.

The algorithm cannot distinguish between the two
words “ J sk 7 (that matches the pattern « J=di *)
and“ (i 7 (that matches the pattern «“ (Jgad »).
As we described above we match “ (J4ii” correctly

because it 1s more common.
3. The pair of words " 45" and "5S<". The letter
“s” belongs to the root in the first word but not in
the second one. The problem here lies with the first

LA L]

word "5 ke,

4. The pair of words "e4" and "o have the
same problem for pattern matching. The first word
must match the pattern J=43 7 while the second
word must match the pattern “ (Jlad”. The problem
lies with the word « aldad ”,

Examples

T e

The inflected word “ 2:5 ” enters the algorithm at step 6,
no multi character prefixes are found, so the suffix list will
be checked and the suffix will be removed, only a
three letter root will remain (“<23%*).

Also the word legdstaess > will enter at step 6 and the
suffix removal process will start as follows:

[T
i)

1. Osram
2. &2

I3t

Then the prefix “” will be removed (not a root character).
Now if we have the inflected word « W@ sy < it will
enter step 4:

1. remove suffix as follows:
W)l g then Gl

2. check(,) and remove it

Inform. Technol. J., 4 (1): 38-43, 2005

Enter step 5:

1. Remove suffix: no match.

2. Check(y) and remove it

Enter step 6: (reduce word):remove single letter prefix.
Enter step 7: match “ 3,8 ” with patterns and return the
root “ GA 7.

The inflected word ""<NWalwl" is stemmed as follows:
Enter step 6:

1. Remove prefix, resulting word is "<¥lai",

2. Remove suffixes, resulting word is "Jlat",

3. No single letter prefix found.

Enter step 7. match it againstthe pattern « J&é
and extract " al"

Enter step 8: convert () to (). (3=}).

Another example, the inflected word " &lsalaiyy o
Enter step 2: remove “Ji 5

Enter step 6 as follows:

1.l

2'@‘:\.“

3o

Enter step 7 and return g
The word sUash 3 can be stemmed as follows:

Lacly (step 4)
iy (step 4)
x5 (step7)

CONCLUSIONS

Morphological analysis is the first step in most
natural language processing applications. We have
developed a new algorithm that runs an order of
magnitude faster than other algorithms in the literature.
This study provides an efficient technique for extracting
the triliteral root for an unvocalized Arabic corpus. This
technique does not depend on searching, since we do not
store any Arabic stems. It depends on suffix removal,
prefix removal and pattern matching. The algorithm has
been implemented using Visual Basic 6.0. We tested our
algorithm using a corpus of 72 abstracts (10582 words)
from the Saudi Arabian National Computer Conference.,
The algorithm performs very well and the accuracy is
approximately 92%.

43

REFERENCES

Aljlayl, M. and O. Frieder, 2002. On arabic search:
Improving the retrieval effectiveness via a light
stemming approach. Proceedings of the ACM
Conference on Information and Knowledge
Management, November, 2002.

Al-Shalabi, R. and M. Evens, 1998. A computational
morphology system for Arabic. Proceedings of the
Workshop on Semitic Languages, COLING-ACL 98,
1998, pp: 58-65.

Al-Shalabi, R., G. Kanaan and H. Muaidi, 2003.
New approach for extracting arabic roots,
Proceedings of the International Arab Conference on
Information Technology. Alexandria, Egypt, 2003.
Nafees, O.M., 2003. Arabic Information Retrieval: A
Survey Unpublished Paper, School of Computer
Science, University of Waterloo, Waterloo, CA.
Rogati, M., S. McCarley and Y. Yang, 2003.
Unsupervised leaming of arabic stemming using a
parallel corpus. Proceedings of the Association for
Computational Linguistics, ACL'03, 2003, pp: 391-398.
Alsamara, K., 1996. An Arabic lexicon to support
information retrieval, parsing and text generation.
Unpublished Ph.D. Thesis, Illinois Institute of
Technology, Chicago, IL.

Khoja, S., 1999. Stemming Arabic Text. Lancaster,
U.K., Computing Department Lancaster University.
www.comp.lancs.uk/computing/users/
khoja/stemmer.ps.

Kebdani, D.M. Conjugaison des verbes arabes
http://noc-webserver.iam.net.ma/~kebdanil/
duali/duali_base .html.

De Roeck, A and W. Al-Fares, 2000. A
morphologically sensitive clustering algorithm for
identifying arabic roots. Proceedings of the
Association for Computational Linguistics, Hong
Kong, October, pp: 199-206.

	ITJ.pdf
	Page 1

