http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 4 (1): 53-62, 2005
ISSN 1812-5638
© 2005 Asian Network for Scientific Information

Experiments with the Successor Variety Algorithm Using the Cutoff and Entropy Methods

Rivad Al-Shalabi, Ghassan Kannan, Iyad Hilat, Ahmad Ababneh and Ahmad Al-Zubi
Yarmouk University, Irbid , Jordan

Abstract: In the present study a system have developed that uses the Successor Variety Stemming Algorithm
to find stems for Arabic words. A corpus of 242 abstracts have obtained from the Saudi Arabian National
Computer Conference. All of these abstracts involve computer science and information systems. The study
have set out to discover whether the Successor Variety Stemming Algorithm technique with the Cutoff Method
can be used for the Arabic Language or not. In addition, the Successor Variety Algorithm have compared with
the Cutoff and the Successor Variety with Entropy Method. Stemming is typically used in the hope of
improving the accuracy of the search reducing the size of the index. The results of present research show that
the Successor Variety Algorithm with the Cutoff Method is better than Successor Variety Algorithm with the
Entropy Method. We have achieved an 84% level of correctness using the Cutoff Method, but a 64% level of
correctness using the Entropy Method. These experiments were carried out using Visual Basic 6.0.

Key words: Successor, entropy, cutoff, stem, suffixes, prefixes

INTRODUCTION

Word stemming is an important feature supported by
present day indexing and search systems. The idea 13 to
improve recall by automatic handling of word endings by
reducing the words to their word roots, at the time of
indexing and searching. Stemming broadens our results to
include both word roots and word derivatives. Tt is
commonly accepted that removal of word-endings
(sometimes called suffix stripping) 1s a good 1dea; removal
of prefixes can be useful in some subject domains. A
stemming algorithm is an algorithm that converts a word
to a related form. One of the simplest such
transformations is the conversion of plurals to singulars.
One example is Porter’s Algorithm. The Porter Stemmer is
a conflation stemmer developed by Martin Porter at the
University of Cambridge in 1980. The Porter stemming
algorithm (or 'Porter stemmer') is a process for removing
the commoner morphological and mflexional endings from
words in English. Tt is the most effective and widely used.
stemmer for English Porter's Algorithm works based on
the number of vowel characters that are followed by a
consonant character in the stem. This number (the
Measure) must be greater than one for the rule to be
applied. One of the limitations of this algorithm 1s that it
can only be applied to text in the English Language.

Frequently, the user specifies a word in a query but
only a variant of this word is present in a relevant
document. This problem can be partially overcome with
the substitution of stems for the words. A stem is the
portion of a word that is left after the removal of its affixes

(i.e., prefixes and suffixes). Stems are thought to be useful
for improving retrieval performance, because they reduce
variants of the same root word to a common concept.
Furthermore, stemming has the secondary effect of
reducing the size of the indexing structure because the
number of distinct index terms is reduced. Many Web
search engines do not adopt any stemming algorithm
whatsoever. Frakes!" distinguishes four types of
stemming strategies: affix removal, table lookup,
successor varlety and n-grams. Table lookup consists
simply of looking for the stem of a word in a table. Since
such data is not readily available and might require
considerable storage space, this type of stemming
algorithm may not be practical. Successor variety
stemming is based on the determination of morpheme
boundaries, uses knowledge from structural linguistics
and is more complex than an affix removal-stemming
algorithm!.

The goal of this study was to experiment with
alternative stemming techmques using the successor
variety approach. We all agree that a word in any
language consists of a meaningful string of letters. An
index in any language consists of a number of words in
arelated domain. A word may have nonstem letters in the
beginning (prefix), in the middle (infix), or at the end
(postfix) of the word. From the information retrieval point
of view stemming is one techmique to provide ways of
finding morphological variants of search terms. It 1s used
to iunprove retrieval effectiveness and to reduce the size
of indexmg files (Fig. 1).

Corresponding Author: Dr. Rivad Al-Shalabi, Yarmouk University, Irbid, Jordan E-mail: shalabi@yu.edu.jo

Inform. Technol. J., 4 (1): 55-62, 2005

Conflation Methods
-/A-\-\-
Manual Automatic (stemmers)
Afix Successor Table n-gram
Removal Variety look up &
Longest Simple
match removal

Fig. 1: Taxonomy of stemming algorithms™

We set out to test the Successor Varlety Algorithm,
which determines word and morpheme boundaries based
on the distribution of phonemes in a large body of
utterances. The successor variety of a string is the
number of different characters that follow it in words in
some body of text.

Successor variety stemmers
structural linguistics, which attempts to determine word
and morpheme boundaries based on the distribution of
phenemes in a large body of utterances®™. A stemming
algorithm is a computational procedure that seeks to
reduce all words with the same stem to a common®l.
Several algorithms have been developed to handle stems
in English. Darwish!® presents a good technique with an
accuracy of 92.7% on 9,606 words. He stripped away the
prefix and suffix. Beeslay” presents a finite-state
morphological analyzer for Arabic, which displays the
root, pattern and prefixes/suffixes. The analyses are based
on manually acquired lexicons and rules. Although his
analyzer is comprehensive in the types of knowledge it
presents, it has been criticized for its extensive
development time and lack of robustness!™. Most
stemmers currently in use are iterative longest match
stemmers, a kind of affix removal stemmer first developed
by Lovins™. Increasing interest n the development of
stemming algorithms has appeared for languages such as
the Arabic language. The most notable of the efforts in
this context are those reported by many authors™*'4,
addition to Lovins™ | iterative longest match stemmers
have been reported by many authors!™'®,

There have been many experimental evaluations of
stemmers. Salton and Young™ examined the relative
retrieval performance of fully stemmed terms agamst terms
with only the suffix “s” removed Hafer and Weiss™
tested their stemmer against other stemming methods
using the ADI collection and the Carolina Population
Center (CPC) collection consisting of 75 documents and
five queries. Van Rijsbergen’™ tested their stemmer?

" are based on work in

In

against the stemmer described by Dawson™ using the

Cranfield-1 test collection. Katzer et al!') examined the
performance of stemmed title-abstract terms against six
other document representations. Karen et all'” did a
through review and study of stemming algorithms.
Harman™ used three stemmers-Porter, Lovins and S
removal-cn three databases-Cranfield 1400, Medlars and
CACM and found that none of them sigmficantly
improved retrieval effectiveness ina TR system called TRX
that ranks its output in order of relevance.

The latest natural language research focuses on
building systems for the Arabic language with high
performance and results relevant to the user needs. This
gave rise to the idea of our project, to develop a system
dealing with Arabic words. The system has been built
based on the Successor Variety Stemming Algorithm,
which determine the successor variety for a word, then
uses this information to segment the word. We use the
cutoff and entropy methods in our system to observe the
effects of the successor variety approach on text i the
Arabic Language and to discover whether it can be useful
for special purposes for Arabic language applications.

Successor variety algorithm: The successor variety of a
string is the number of different characters that follow it
in words in some body of text. The successor variety of
substrings of a term will decrease as more characters are
added until a segment boundary is reached™.

Successor variety stemmers” are based on work in
structural linguistics, which attempted to determine word
and morpheme boundaries based on the distribution of
phonemes in a large body of text. The stemming method
based on this work uses letters in place of phonemically
transcribed utterances.

When this process 1s carried out using a large body
of text, Hafer and Weiss™ report 2000 terms to be a stable
number), the successor variety of substrings of a term will
decrease as more characters are added until a segment
boundary 1s reached. At this point, the successor variety
will sharply increase. This mformation 1s used to find the
stem. When the successor varieties for a given word have
been derived, the information must be used to segment
the word. Hafer and Weiss™ discuss four ways of doing
this:

1. The cutoff method (this is the method we apply in
our work):

* Some cutoff value (Threshold) 1s selected for
successor varleties and a boundary 1s reached.

» The problem with this method 1s that if the threshold
value selected 1s too small, meorrect cuts will be
made; if 1t 1s too large, correct cuts will missed.

Inform. Technol. J., 4 (1): 55-62, 2005

2. Peak and plateau method.

¢ A segment break is made after a character whose
successor varlety exceeds that of the character
immmediately preceding it and the character
mmediately following it.

¢ This method does not suffer from the problem of the
cutoff method.

3. Complete word method

¢ A break is made after a segment if the segment is a
complete word in the corpus.

4. Entropy method: (this 1s the other method we use in
our experiments)

¢ Takes advantage of the distribution of successor
variety letters. The method works as follows:

* Let | D,| be the number of words in a text body
beginning with the i length sequence of letters .

¢ Let D, the number of words in |D,| with the
successor j computed in step one.

* The probability that a word has the successor j 1s
given by:

. f ‘ Do:ij ‘
The entropy of | Dai |is:
| Dy |
Hm:i 7|Dm]‘. Z‘ij‘
i=1 | Dm | ‘ Do:i |

» acutoff value 1s selected and a boundary 1s 1dentified
whenever the cutoff value reached

A set of the above measures for predecessors can
also be defined similarly.

In summary, the successor variety stemming process
has 3 parts:
1. Determine the successor varieties of a word.
2. Use this information to segment the word using one
of the methods above.
3. Belect one of the segments as a stem.
The aim of Hafer and Weiss"! was to develop a
stemmer that required little or no human processing.

Full English Example
Test Word: READABLE
Corpus: ABLE, APE, BEATABLE, FIXABLE, READ,
READABLE,
READING, READS, RED, ROPE, RTIPE
The successor variety stem process 1s shown mn
Table 1.

Cutoff method
* segment when successor variety >= threshold
» consider threshold = 2 RIE/AD|ABLE

Table 1: Successor variety stem process

Prefix Successor variety Letters

R 3 ELO
RE 2 A D
REA 1 D

READ 3 ALS
READA 1 B
READAB 1 L
READABL 1 E
READABLE 1 (Blank)

Peak and plateau method

¢ break at the character whose successor variety is
greater than both its preceding and following
character READ|ABLE

Complete word method
» break 1s made if the segment 13 a complete word in
the corpus (READ)

Entropy method
+ fori=2,a=RE, D=5
o forj="A"|D,| =4
» foryj="D 1D, =1
* Haif= -1/5%1og2 (1/5)- 4/5* log2 (4/5)= 0.46 + 0.26
=0.72
This value is low because “REA...

2

appears four
tumes!

Our methodology Steps: The mput data consists of a
corpus of words and a reverse of each word.

Step one: Determine the successor varieties for a word.
Take a word from the corpus and name it FWord and call
the reverse Revi¥ord.

1. (For Successor) Starting from =1 to length of the

FWord:

a. For the rightmost i letters in Fi¥ord.:

1. Count the number of letters in the corpus that
follow the first ith right most letters of FiWord.

1. Store the successor value from the above step in
a list called SucList.

2. (For Predecessor) Starting from j=length of the

ReviWord.

a. For the rightmost f letters n ReviVord.

i Count the number of letters in the Reversed
corpus that follow the first jth right most letters
of Revi¥ord.

1. Store the Predecessor value from the above step
in a list called Prdlist.

Step two: Use this information to segment the word using:
1. Cutoff method
a. Segmentation Process for Successor:

Inform. Technol. J., 4 (1): 55-62, 2005

i Seta variable named SegSuc of type string.
1. For each character at position & in the Fword
1. if the corresponding Successor value for & is
greater than or equal to the threshold
value (11) then add the contents of SegSuc
to the list SucSeglist and empty it.
2. else add the character at position k to SegSuc.
iii. If the length of SegSuc is greater than zero, then
add 1its contents to SucSeglist and empty it
Segmentation Process for Predecessor:
1. Set a variable named SegPre of type string.
ii. For each character at position f in the Revword
if the corresponding Successor value for f is
greater than or equal to the threshold value (16)
then add the contents of SegPre to the lst
PreSegl.ist and empty it.
else add the character at position f to SegPre.
If the length of SegPre is greater than zero, then
add its contents to PreSeglist and empty it.

11

v.

Entropy method:
1. for each word in the corpus we find the following
1. |Du| The number of words m a text body
beginning with the 7 length sequence of letters

¢ in FWord 1s computed and stored 1 step one.

i. |Dy| The number of words in Dai with the
successorj 18 computed 1 step one.
The probability that a word has the successor

J 1s given by

.

-Th T ‘ Dm] |
e entropy of | Do |is: |
[#2}
26 - .
| Daij | | Daij |
Hai = - -log 2
=2 Dai| 2D

1=1

The entropy value, calculated for each letter in the
weord, store the result in a list called SucE rtList

Repeat this step for predecessors and store the
resulting values m a list called PreEntList.
c. Segmentation Process for Entropy Successor:

1. Set a variable named SegSucEnt of type string.

ii. For each character at position m in the Fword

1. 1if the corresponding Successor value for m 1s

greater than or equal to the threshold
value (2.7) then add the contents of
SegSucEnt to the list SucEntSeglist and
empty it.
else add the character at position m to
SegSuclint.
If the length of SegSucEnt is greater than zero,
then add its contents to SucHntSeglist and

empty it

2.

.

58

d. Segmentation Process for Entropy Predecessor:

1. Set a variable named SegPPreEnt of type string.

ii. For each character at position # in the Revword
1. if the corresponding Successor value for n 1s

greater than or equal to the threshold

value (3.3) then add the contents of

SegPreEnt to the list PreEntSegl.ist and

empty it.

else add the character at position # to

SegPrelint.

If the length of SegPreEnt is greater than zero,

then add its contents to PreEntSeglList and

empty it.

2.

il

Step three: Select one of the segments as the stem.
For each segment in SucSegList do the followng:

1. TIf the segment occurs less than 16 times in
words 1n the corpus then add tlus segment to
the variable S1.

For each segment in PreSeglist do the following:

1. TIf the segment occurs less than 16 times in
words 1n the corpus then add tlus segment to
the variable S2.

For each segment in SucE ntSegl.ist do the following:

1. TIf the segment occurs less than 16 times in
words 1n the corpus then add tlus segment to
the variable S3.

For each segment in PreEntSeglist do the following:

1. TIf the segment occurs in less than 14 times in
words 1n the corpus then add tlus segment to
the variable S4.

Step Four: The first stem is the intersection of S1 and 52
and Store i variable FirstStem. The entropy stem is the
intersection of 83 and S4 and Store in variable
EntropyStem.

Step Five: Store the value of FirstStem in FWord and
repeat steps One-to- Four using the new FiWord, the
resulting word 1s called SecondStemn.

Step Six: If the length of the SecondSter 1s less than the
length of FirstStem

then take the SecondStem as the stem.

else select either of them as a stem.

Example: The word "cJL,u.uL-Jl“ is inserted in the text
box. When the button labeled find, mn the main form of cur
application, is pressed the program will perform the
following steps:

Step one: Determine ﬂlfilsuccessor v‘elirieties for this word:
FWord assigned to ;_v-_.[__’u_ulé_ll and reverse it as

Inform. Technol. J., 4 (1): 55-62, 2005

ReviVord = "}[:.L;.qﬁ"
1. (For Successor) Starting from =1 to length of the

FWord (8):

-At 1=1 the system searches the corpus and finds
that, there are 16 letters following the ith segment and this
1s the successor variety we look for.. The Table 2 shows
the successor variety for all ith segments:

Table 2: Successor variety for ith segments

! Segment Successor Lelters

1 | 16 {5}

2 all 26 TR e UGN Y
ST B S X R NN

3 it 6 { Lo,

4 Lall 1 {oa}

5 el 1 {=}

6 wislall 1 {1}

7 luula] 1 {=}

8 gl 1 {Blank}

Store the successor value from the above step in a list

called SuclList.

2. (For Predecessor) Starting from j=length of the
ReviWord (8):
For the rightmost j letters in Revi¥ord: Count the
number of letters in the Reversed corpus that follow
the first jth rightmost letters of ReviVord.

-At j=1 the system searches the reversed corpus and
finds that, there are 16 letters following the jth segment
and this is the predecessor variety we look for. The Table
3 below shows the predecessor variety for all jth
segments.

Table 3: Predecessor variety for all jth segments

I Segment Predecessor Tetters

1 & 16 {o a5 oo sl B o o st oo 21
2 & 17 {@nostomddhBoinfof e s irop o)
3 b 3 {@do}

4 wild 1 {1}

5 Linls 1 i)

V] tleals 1 o

7 Jabinls 1 {

8 P 1 {Blank}

Store the Predecessor value from the above stepm a
list called PrdList.

Step two: Use the information above to segment the word
using:
1. cutoff method
a. Segmentation Process for Successor:
w. Set a variable Named SegSuc of type string.
v. For each character at position k in the Fword
1. if the corresponding Successor value for & 1s
greater than or equal to the threshold value
(11) then add the contents of SegSuc to the
list SucSegl ist and empty it.

59

2.
vi. If the length of SegSuc 15 greater than zero, then
add its contents to SucSeglist and empty it

else add the character at position k to SegSuc.

The system will segment the word into three parts, the
SucSeglist looks like this:

Segment Successor
1 lo==11
J 26>=11
@lpata 6<11

b. Segmentation Process for Predecessor:

vil. Set a variable named SegPre of type string.
viii. For each character at position f in the Revword

x. 1if the corresponding Successor value for f 1s
greater than or equal to the threshold value (16)
then add the contents of SegPre to the list
PreSeglList and empty 1t.

x. else add the character at position f to SegPre.

x1. If the length of SegPPre 1s greater than zero, then

add its contents to PreSegl.ist and empty it.
The system will segment the word into three parts,
the PreSegList looks like this:

Segment Predecessor
o lo==10

1 17==11
Naluy 3<11

2. Entropy method: for each segment:

Find the frequency of each letter after the /th most
right segment in FWORD

- When i=1, find the frequency of each letter that
follow "I". Find the sum of all the letters., Here
the sum 1s 230.

- For each letter:

Table 4: Frequency of each letter after the ith most right segment in FFFORD

Letter Frequency FEnfropy, formmla Entropy, value
1 o 4 -1*(4/230)*10g,(4/230) -0.010166
2 C 2 -1#(2/230)*log,(2/230) -5.9526e-2
3 & 1 -1*#(1/230)*10g,(1/230) -3.411082e-2
4 J 2 -1#(2/230)*log,(2/230) -5.9526e-2
5 N 1 -1*#(1/230)*10g,(1/230) -3.411082e-2
6 " 8 -1*(8/230)*log,(8/230) -0.16850
7 U 2 -1#(2/230)*10g,(2/230) -5.9526e-2
8 ua 2 -1#(2/230)*log,(2/230) -5.9526e-2
9 ¢ 2 -1#(2/230)*10g,(2/230) -5.9526e-2
10 3 1 -1#(1/230)*log,(1/230) -3.411082e-2
11 g 189 -1*(189/230)*log,(189/230) -0.2327
12 . 3 -1*(3/230)*log,(3/230) -8.165%-2
13 4 5 -1*#(5/230)*10g,(5/230) -0.12007
14 1 -1#(1/230)*log,(1/230) -3.411082e-2
15 5 -1*(5/230)*log,(5/230) -0.12007
16 & 2 -1#(2/230)*log,(2/230) -5.9526e-2
Sum 230 1.318368

Inform. Technol. J., 4 (1): 55-62, 2005

When =2, find the frequency of each letter that
follows "JI". Find the sum of all the letters. Here the
sum is 189. For each letter.

When 1=3, find the frequency of each letter that
follows ”C‘“”' Find the sum of all the letters Here the

When j=4, find the frequency of each letter that
follows "ol " in reverse corpus. Find the sum of all
the letters (sum of all words with this segment). Here
the sum is 2.

sum 15 9. For each letter Letter Frequency Entropy, formula Entropy, value
. . RL e
¢ When i=4, find the frequency of each letter that éum ! ; 12 l0g(272) g
follows ”la." " Find the sum of all the letters. Here
the sum is 2. For each letter o When y=5, find the frequency of each letter that
T = ST — - 1 follows " LB " in the reverse corpus. Find the sum of
etter requ ency ntropy, formula ntropy, value .
1 P 2 Tr@DMon,@2) 0 all the letters. Here the sum is 2.
Sum 2 0
Lelter Frequency Entropy, formula Entropy, value
R e
¢ When i=5, find the frequency of each letter that éum c 3 1"@2 o (22) g
follows " w I". Find the sum of all the letters. Here
the sum is 2. For each letter ¢ When y=6, find the frequency of each letter that
follows " pLuyli " in the reverse corpus. Find the sum
Letter Frequency Entropy, fommila Entropy, value :
T . 5 Ry T — of all the letters. Here the sum 15 1.
Sum 2 0
Letter Frequency Entropy, formula Entropy, value
. . 1 1 -1#(1/1)*logy(1/1 0
¢ When i=6, find the frequency of each letter that sum 4 1 (/1)og: (1) 0
follows ”g_.l.wL\." " Find the sum of all the letters. Here
the sum is 1. For each letter » When j=7, find the frequency of each letter that
follows "Jabuuls ” in the reverse corpus. Find the
Letter Frequency Entropy, formula Entropy, value sum of all the letters. Here the sum is 1.
1 1 U D*og (1) 0
Sum 1 0
Letter Frequency Entropy, formula Entropy, value
¢ When i=7, find the frequency of each letter that éum ! } 1) log,(171) g
follows " LU-HL‘L" " Find the sum of all the letters Here
the sum is 1. For each letter ¢+ When =8, find the frequency of each letter that
follows " Maluyls " in the reverse corpus. Find the
Letter Frequency Entropy; formula Entropy; value sum of all the letters. Here the sum i1s 1
1 - 1 111)*logy(1/1) 0 : :
Sum 1 0
Letter Frequency Entropy, formula Entropy, value
- RL e
¢ When i=8, find the frequency of each letter that éum - } 1MUY log(17D) g

follows " < " Find the sum of all the letters. A
ssume that the sum is 1.

Find the frequency of each letter after the ith most right
segment m ReviVORD

When j=1, find the frequency of each letter that
follows "=" i the reverse corpus. Find the sum of all
the letters (sum of all words with this segment). Here
the sum 1s 74.

When j=2, find the frequency of each letter that
follews "by' in the reverse corpus. Find the sum of all
the letters (sum of all words with this segment). Here
the sum 1s 54.

When j=3, find the frequency of each letter that
follows " i " in the reverse corpus. Find the sum of
all the letters. Here the sum is 5.

60

Segmentation Process for Entropy Successor:

1.
1.

Set a variable named SegSucEnt of type string.

For each character at position m in the Fword

1. if the corresponding Successor value for m 1s
greater than or equal to the threshold value (2.7)
then add the contents of SegSucEnt to the list
SucEntSeglist and empty it.

else add the character at position m to
SegSucEnt.

The following table shows the SucEntSegl. ist:

Segment Successor entropy
1 I 4.0219:2.7
2 oliula 2.41938<2.7

Inform. Technol. J., 4 (1): 55-62, 2005

Segmentation Process for Entropy Predecessor:
1. Set a variable Named SegFreEnt of type string.
ii. For each character at position # in the Revword
1. if the corresponding Successor value for # is
greater than or equal to the threshold value

(3.3) then add the contents of SegPreFnt to

the list PreEntSegl.ist and empty it.

else add the character at position »n to

SegFPreEnt.

iii. If the length of SegPreEnt is greater than zero,
then add its contents to PrefntSeglist and
empty it The following table
FPreEntSegl.is:

2.

shows

Step three: now, we attempt to select one of the segments
as the stem:
1. For each segment in SucSegl.ist do the following:
If the segment occurs less than 16 times in words
in the corpus then add this segment to the
variable S1.
The comparison is shown:

Segment Occurs in Cormapison
1 1 230 230=16
2 J 50 50=106
3 gl 1 1<16

The value if 81 is " wilpull
2. For each segment in PreSegl.ist do the following:
If the segment occurs less than 16 times 1in words

in the reverse corpus then add this segment to
the variable S2.

Segment QOccurs in Comapison
1 & 74 TA=16
2 1 51 51=16
3 MLy 1 1<16

The value of 32 is reverse of " ¥ala " that ig " welaf®

3. For each segment in SucHntSegiist do the
following:

If the segment occurs less than 16 times in words in

the corpus then add this segment to the variable S3.

Segment Occurs in Cormapison
1 A 189 189=16
2 whiula 1 1<16

The value if 83 is " bl

4. For each segment m PreEntSegiist do the
following:

If the segment occurs less than 14 times in words in

the corpus then add this segment to the variable S4.

Segment. Occeurs in Comapison
1 [¥] 54 54 =16
2 Haboy 1 1<16

The value of 84 is reverse of " Malu that is" sl

61

Step four:

. The first stem i1s the intersection of S1 and S2 and
Store in variable FirstStem. S1 15 " olpds’ and S21s "
weladl " The infersection is " uufa”

. The first stem is the intersection of 83 and S4 and
Store in variable EntropyStem. S3 13 " alla” and 54
15 " wwlall". The mtersection is " ula " and this
1s the stem.

Step five:

Store the value of FirstStern="_uls" in Fl¥ord and
repeat steps One-to- Four using new Fi¥ord, the resulted
word called SecondStern =" sl The result will be the
same.

Step Six:

The length of the SecondStem(=4) is equal to the
length of FirstStem

Then we can select any one of them.

The stem produced as " uulal and this is correct.

The implementation:

We have implemented this algorithm using the well-
known programming language Visual Basic version 6.0.
The purpose behind using this programming language 1s
that 1t 1s easy to use, it facilitates the construction of an
attractive user interface for our system and there are many
manuals that describe the features of this language.

We focus mainly on the features dealing with the
Arabic Language, also the ability to write applications
that use an Arabic database. For our database, we used
Microseft Access 97 for storing and accessing the Arabic
corpus. It 1is a good database engine and easy to learn
and use.

Table 5: Computed stems for lists of words that share the same root

Computed stem Correct or Computed stem Correct or
Test word cutoff method not correct entropy method not correct
wuladl ol Correct ol Correct
wbiuat ot bua Correct oibiua Correct
whualall pisula Correct sl Correct
wluaall | PPE Correct wiboua Correct
Luaga Lt Correct o Correct
Jpustan wtiula CorTect il Correct
wlybiually [FPEN Correct. wiloua Correct
Yulaalty raula Correct walas Incorrect
whdal gt el ga Correct iasl g correct
e bt Correct lias Correct
R Crhpua Correct i Correct
il crila Incorrect opela Incorrect
Lisatad psula Correct Lola Incorrect
Lasalad Shala Incorrect [yaala Incorrect
Auala piala Correct wteiula Correct
Lpliaa whoua Correct «hous Correct
i o o gua Correct bl Correct
ottaalf whiala Correct [CTIP IS Incorrect
ulpaslad! vl Correct el Incorrect
agpulaall agpala Incorrect gl Incorrect

Inform. Technol. J., 4 (1): 55-62, 2005

EXPERIMENTS AND RESULTS

we describe experiments done to test the correctness
of our work. The results are shown in Table 5.

CONCLUSIONS

After applying these algorithms to 2000 Arabic
words, we conclude that we can apply the Successor
Varilety Algorithm with the Cutoff Method to the Arabic
Language since we have achieved an 80% level of
correctness. On the other hand, we have achieved a 75%
level of correctness by applying the Entropy Method.

Several advantages of the Successor Variety
Algonithm can be observed; the most important one 1s the
ability to find a stem without the need to use a dictionary.
Another advantage is that it can be used in several
domains; it is basically (domain independent).

REFERENCES

1. Frakes, W., 1992. Stemming Techmques. Chapter 6
in Frakes and Baeza-Yates, 1992,

2. Fox, C, 1992, Lexical Analysis and Stoplists. Chapter
5 in Frakes and Baeza-Yates, 1992.

3. Salton G. and C.3. Yang, 1980. Contribution to the
Theory of Indexing. American Elsevier, New York,
1980.

4. Hafer, MA. and SF. Weiss, 1974: Word
segmentation by letter successor varieties.
Information Storage and Retrieval, 10: 371-385.

5. Mustafa Suleiman and Qasem Ahmad Al-Radaideh,
2001. Arabic word stemming using letter successor
and Predecessor Variety, ACIT 2001.

6. Darwish, K., 2002. Building a shallow Arabic
morphological analyzer in one day. Proceedings of
the Workshop on Computational Approaches to
Semitic Languages. ACL, Philadelphia, pp: 47-54.

7. Beesley, K. and L. Karttunen, 2000. Fimte-state non-
concatenative morphotactics. Proceedings of the
ACL, Hong Kong, pp: 191-198.

8. Lovins, I, 1968. Development of a stemming
algorithm. Mechamecal Translation and
Computational Linguistics, 11: 22-31.

62

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Al-Fedaghi, S. and F. Al-Anzi, 1989. A new algorithm
to generate Arabic root-pattern forms. In Proceedings
of the 11th National Computer Conference and
Extubition, March, Dhahran, Saudi Arabia, pp: 04-07.
Al-Kharashi, I. and M.W. Evens, 1994. Words, stems
and roots in an Arabic information retrieval system.
I. American Soc. Inform. Sci., 45: 548-560.
Al-Shalabi, R. and MW. Evens, 1998. A
computational morphology system for Arabic
computational approaches to semitic languages.
Workshop, COLING 98, Montreal, Canada,
pp: 58-65.

Khoja, S., 1999. Stemming Arabic text. Lancaster,
UK., Computing Department, Lancaster University.
www.comp.lancs.uk/ computing/users/khoja/
stemmer.ps.

Paik, W., 1994. Chronological Information Extraction
System (CIES), Dagstuhl-Seminar-Report: 79 on
Summarizing Text for Intelligent Communication,
Endres-Niggemeyer, B., Hobbs, I. and Jones, K.S.
(Eds.), Wadern, Germany: IBFI

Porter, M.F., 1980. An algorithm for suffix stripping.
Program, 14: 130-137.

Salton, G., 1968. Automatic Information Organization
and Retrieval. New York, NY McGraw-Hill.
Dawsen, I.L., 1974, Suffix removal for word
conflation. Bulletin of the Association for Literary
and Linguistic Computing, 2: 33-46.

Van Rijsbergen, C.J., 1979. Information Retrieval.
London, UK: Butterworths.

Katzer, T., M.J. McGill, J.A. Tessier, W. Frakes and
P. Das-Gupta, 1982. A study of the overlap among
document representations. Information Technology:
Research and Development, 2: 261-274.

Karen, SJ., S. Walker, S.E. Robertson, 2000. A
probabilistic model of information retrieval: A
development and comparative experiments-Part 2. Tnf.
Process. Manage., 36: 809-840.

Harman, D., 1991. How effective 1s suffixing? J.
American Scc. Inform. Sci., 42: 7-15.

	ITJ.pdf
	Page 1

