http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (1): 1-6, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

The Shadow Protocol: A More Optimized Version of Gnutella

Muhammad Rashid and Khalid Rashid
Department of Computer Science, Faculty of Applied Sciences,
International Islamic University, Islamabad, Pakistan

Abstract: This study presents an analysis of the Shadow protocol, a type of peer-to-peer networking model
that currently provides decentralized file-sharing capabilities to its users. The shadow protocol has been
designed to be a more optimized version of the Gnutella protocol. Initially, the study explains the basics of the
peer-to-peer networking and then compares the two types of this networking standard: centralized and
decentralized. The shadow protocol 1s classified as a decentralized model. The Napster and Gnutella protocols
are briefly described as well. A detailed description of the Shadow protocol 1s presented. And a discussion 1s
provided which proves the Shadow protocol to be a more optimized version of the Gnutella protocol.

Key words: Shadow protocol, Gnutella protocol, peer-to-peer networking

INTRODUCTION

In early 1999, Shawn Fanning, an undergraduate
student at the Northeastern University in the Umted
States, started a phenomencn called Napster!. Fanning
envisioned Napster as a service that allows users of his
system to list the MP3-encoded music files that they are
willing to share and let other users download them
through the Napster network. The central computer would
then at all times have an up-to-date master list of files that
people are willing to share and the list would be updated
by the users’ software as they log on and off the system.

Fanming’s 1dea required a network infrastructure of
servers for the centralized peer-to-peer data access and
data storage and a corresponding bandwidth for
allowing a large number of user connections. After his
1dea 13 immplemented, Napster at one point attracted over
30 million users with over 800 thousand of them accessing
the network simultaneously!. The upper limit on the
number of users of Napster 15 only unposed by the
bandwidth, as the service itself never lacks popularity.

Unfortunately, due to violations of the copyright
laws and by the order of the Supreme Court of the Umted
States, Napster is forced to impose complex limitations on
the shared files thereby downgrading the quality of their
service. Fially, m July of 2001, Napster 15 forced to
shutdown its servers due to software-related problems
that occurred as a result of Napster’s developers trying to
ensure that these limitations are imposed throughout their
network.

Beside the copyright infringements, the reason why
the Napster network fails to provide Quality of Service
(Qo8) to its users is due to its centralized peer-to-peer

character. Since Napster has a single pomt of entry, the
network can completely collapse if its central pomt
becomes incapacitated. Tn addition, this central point has
a complete authority over the data distributed through the
network and i1s solely respomsible for its contents
(Napster’s legal problems stem from this fact). A solution
to providing QoS m the peer-to-peer environmertt s by
using a decentralized model instead and having multiple
access points, some of which if incapacitated would not
incapacitate the entire network. One such decentralized
peer-to-peer model 15 the Gnutella network based on the
Gnutella protocol™.

Gmutella 1s a decentralized P2P file-sharing model
developed in the early 2000 by Justin Frankel’s Nullsoft
(AOL subsidiary and the company that created the
WinAMP MP3 player)™. Gnutella’s development was
halted shortly after its results were made public and the
actual protocol was reverse engineered using the code
that was downloaded from the Nullsoft’s web site just
before its closure. Today there are numerous applications
(referred to as Gnutella clients) that employ the Gnutella
protocol m their own individual way and that allow their
users to access the Gnutella network.

To share files on the Gnutella network, a user
(node A for example) starts with a networked computer
that runs one of the Gnutella clients. Since this node will
work both as a server and a client, it is generally referred
to as a (Gnutella) servant (both a SERVer and a cliENT).
Node A will then connect to another Gnutella-enabled
networked computer (node B for example) and then A will
armounce existence to B. Node B will in tumn announce to
all its neighboring nodes (nodes C, D, E and F for
example) that A is alive. This pattern will continue

Corresponding Author: Muhammad Rashid, Department of Computer Science, Faculty of Applied Sciences,
International Islamic University, Islamabad, Pakistan

Inform. Techrol J., 5 (1): 1-6, 2006

recursively with each new level of nodes announcing to
its neighbors that node A is alive™. Once the node A has
announced its existence to the rest of the network, the
user at this node can now query the contents of the data
shared across the network. Figure 1 further clarifies thus
model.

This announcement broadcasting will end when the
Time-To-Live (TTL) packet mformation expires; that 1s, at
each level the TTL counter will be decreased by one from
some initial value until it reaches zero at which point its
broadcasting will stop. To prevent users from setting this
initial TTL value too high, the majority of the Gnutella
servants will refuse packets with excessively high TTL
value. However, from the user’s perspective, maximizing
the chances of finding the required file means using as
high as possible TTL value therefore creating a trade-off
pount for this network. Where low TTL means mimmizing
the usage of the network resources, high TTL value
means maximizing the QoS provided to the users of the
network.

The optimal TTL value would then (among others)
depend on the network topology and traffic
characteristics for a particular location and a particular
time of the day, respectively, when the query is done.

PEER-TO-PEER NETWORKING

Before analyzing the details of the Shadow protocol,
the reasons why peer-to-peer networking 1s important and
why people are considering peer-to-peer file sharing for
anything else but sharing of copyright-infringing music
and video files must be analyzed.

As mentioned before, Napster is a type of the peer-to-
peer networking model in which each party has the same
communicational capabilities and either party can initiate
a communication session. On the Internet, peer-to-peer
(P2P) is a type of networking that allows users with the
same networking program to connect with each other and
directly access each other’s files.

Business advantages of using peer-to-peer
networking are still being discovered™ and the key returns
are harnessed through

* Distnibuted processing, that 1s allowing users of the
network to schedule batch-jobs that are processed by
the computers on the network during their idle time
thereby decreasing the need for new computing
resources.

¢ File sharing, that is allowing users to exchange data
directly without storing files on a centralized server
thereby avoiding the need to establish a centralized
server and allowing two businesses to communicate

with each other directly.

Fig. 1: Guutella decentralized P2P model

2, Search response
include user2 info
Napster 3. File download
SETVET
1. Search query

Fig. 2: Centralized P2P model

The future potential for P2P lies in its ability to
change the structure of the Internet”. By allowing users
that are accessing data from a particular web site to
retrieve the cached copy of the data from a geographically
closest point to their location would mean a change from
the web-site centric to the purely distributed data
distribution model for the Internet.

When it comes to P2P file sharing specifically,
there are two models: centralized and decentralized
(Fig. 1 and 2). The centralized model, used by Napster,
uses a central system that directs traffic between
individual users. The central servers maintain directories
of the files shared by the users of the system. The servers
allow query of their database and provide results that
allow a user doing a query to establish a direct connection
(typically using HTTP) with a user who 15 sharing a
desired file. Figure 2 further clarifies this model.

The key advantages of the centralized model are as
follows!:

+ The existence of a central index that allows users to
search and find the desired files efficiently.

¢ The mandatory registration of all users of the system
thereby ensuring that each file query reaches all
users currently connected to the network.

Inform. Techrol J., 5 (1): 1-6, 2006

The key disadvantages of the centralized model are as
follows!:

* The single entry point that creates a possibility of the
entire network becoming incapacitated if this main
entry point is disabled (e.g., Napster’s failure under
legal pressures).

* The mvalid data in the database resulting from the
periodical, not real time, refreshes of the data in the
database.

The decentralized model respectively holds
advantages and disadvantages that are contrary to the
disadvantages and advantages of the centralized model.
For example, having multiple pomts of entry m the
distributed model prevents the scenario in which the
entire network is disabled due to one or more of its entry
points becoming incapacitated.

Another example 15 the lack of registration in the
decentralized network thereby decreasing the breadth of
data being queried and not providing the users with the
same QoS as in the centralized model (Fig. 2).

The decentralized P2P (Fig. 1) file-sharing model 1s
employed by the Gnutella protocol, so more details on this
model are presented as part of the Gnutella protocol
analysis.

SHADOW PROTOCOL SPECIFICATION

The Shadow protocol was developed by me
(Muhammad Rashid) under the supervision of
Prof. Dr. Khalid Rashid as a part of my thesis for my MS
(Computer Science) degree. The Shadow protocol is an
application layer protocol that passes one of several
message types between peers on the network. Although
1t 1s enwvisioned that the protocol will be run on top of TCP
and TP, this is not part of the specification. The protocol
is to be used in a pure peer-to-peer environment and has
been designed to be a more optimized version of the
Gnutella protocol. The message itself consists of two
parts. The first part is a fixed length header used mainly
for the routing of the message. The second part is
message body, a variable length field depending on the
type of message being passed. The message header 1s
shown in Fig. 3.

The first field in the header is the IP address of the
node that originally sends the message. The address 1s
stored m IPv4 dotted format, with each value between the
dots being stored in its own byte.

The UID field is a field when coupled with the TP
address umquely 1dentifies the message on the network.
Thus field 1s an & bit unsigned integer. It is up to the client

Bytes 0 1 2 3 4 5 6 7 8

e R Lk Bhb) Tt
| IP Address | up | TTL & | m"d |

e LT S TR EEE SEEY SRR EER e
Fig. 3: The main header of the resource sharing protocol

to specify how the UID 13 chosen. It may seem that 256
possibilities for the TUTD would make unique identification
impossible if a node is used for a long period of time, with
256 values being used witlhun a matter of minutes. This 1s
not the case however because the clients only remember
the values for a certain length of time before they timeout.
Because of this it is recommended that the clients repeat
the sequence of UIDs once they run out.

The third field is the TTL or time to live field. This
field is actually split into two sections. The first four bits
are an unsigned integer value for the original value of the
time to live. These four bits are never changed throughout
the life of the message. The last four bits are an unsigned
integer representing the actual time to live of the message.
These four bits are decremented at every node. This
means that for a tume to live of 4, the TTL will look as
follows:

0100 0100 time to live = 4
0100 0011 time to live = 3
0100 0010 time to live = 2
0100 0001 time to live =1
0100 0000 time to live = 4

The reason for this split value for the time to live 1s to
save space in the header whilst ensuring that any
response being sent to a message will only have a horizon
up to the sending node. Suppose the second node in the
above example has a response to send, it will subtract the
second 4 bits of the TTL field from the first four bits to set
the response TTL to an appropriate value. This is shown
below:

0100 0011

0100
-0011

0001
Reply = 0001 0001 time tolive=1

Original message = time to live=3

It may seem that for a file sharing application a
horizon of 16 is rather low, considering many nodes may
only have a small number of peers. This 18 a valid
argument when looking at a file sharing application, but
this protocol is designed to be used for many different
types of resource sharing. The reason why this makes a
difference is due to the way people will share resources.

Inform. Techrol J., 5 (1): 1-6, 2006

Table1: Showing how the number of nodes increases with horizon
(each node having 3 peers)

Horizon distance No. of nodes
0 0
1 3
2 9
3 21
4 45
5 93
6 189
7 381
8 765
9 1533
10 3069
11 6141
12 12285
13 24573
14 49149
15 98301
16 196605

If a company 1s sharing processor cycles, it will most
likely only want to share them within the company. This
can be done by limiting the peers that are connected. All
that then needs to be done is connect all the nodes within
a company. Suppose each node comects to three other
nodes and these nodes comnected to a further three
nodes. We can see how the network size increases with
horizon distance in Table 1.

We can see, the problem of having a horizon of
16 can be solved using sensible peer selection. The next
field is the nextHeader field. This is an unsigned integer
that represents the message type that follows this header.
The final field 1s the payload length field. This 15 16 bit
unsigned integer that represents the number of bytes that
follow this header. This means that it 1s possible to have
a message up to 65545 bytes long (2'° payload bytes + 9
header bytes).

QUERY MESSAGE

This message has the nextHeader value of 1
(00000001) m the mam header. Its format 1s shown in
Fig. 4.

The query message has a very simple format. The first
byte 15 an unsigned mteger specifying the query type.
Currently the only cquery specified is query type 1
(00000001), the file query. The file query’s query field is an
ASCTI string containing the elements of the file name to
search for.

Tt is envisioned that a queries for other resources
(such as spare CPU cycles) will use this message with a
separate query type. Having the queries specified m such
a way means that we can have up to 256 different query
types, satisfying the extendibility requirement.

Bytes 0 1 2 3 4 5
R N s
| Destination IP address | UD | Rewmlt.
S

Fig. 5. The query hit message
QUERY HIT MESSAGE

The query hit message 1s sent m response to the
query message. It has the next header value of
2 (00000010) 1n the main header. Its format is shown
mFig. 5.

The first two fields of the query hit message are the
same as the first two fields of the main header that
contained the original query. They are included so that
nodes can check to see if the message 15 destined for
them. The next field is the result field. The format of this
field is dependent on the original query that was made.
Again, the only specified result field 1s for file queries. Its
format is as follows:

1st Filename

1st File size (in bytes)
IP address of file owner
2nd Filename

2nd File size (in bytes)
IP address of file owner
|

nth Filename

nth File size (in bytes)

IP address of file owner

Each of these fields 1s ASCII strings, separated by the
new line (‘\n) character. As you can see the TP address of
the owner is repeated for every file result. Tlis at first
appears to be a waste of bandwidth, but there is a reason
for it. Suppose a remote node caches every query lut
message it sees. It will soon have a long list of file names/
sizes and the TP addresses of the machines they reside on.
If someone then queries this machine it can search the list
of cached responses to return results faster, or possibly
return results that due to horizon size would not have
been returned.

Inform. Techrol J., 5 (1): 1-6, 2006

When looking at the query hit message it is a valid
question to ask why there is not a query hit type field
similar to the query type field. The reason for this is to
keep the message short and simple. The client should
remember all queries it sends using the TP address/ UID
combination and from that remember what type of query
was 1ssued.

ADMIN MESSAGE

This message has the nextHeader value of
0 (00000000) mn the main header. Its format 1s similar to the
query message (I'ig. 4) with a one byte unsigned integer
field to specify the type of network admin message
follows. Two such messages have been specified. The
first 1s message type 1 (0000001) the peer query message.

The peer query message does not contain a body. Tt
is simple the main header followed by the admin type field.
When a node sees this field it knows that the query
originator 13 requesting a list of all peers that are
comnected to this node. To reply there are two methods.
First (if supported), the node can make a separate
comnection to the query origmnator and send an ASCII
string of the nodes IP address followed by a space
separated list of its peers.

The second method is to send a response along the
peer-to-peer network in a similar fashion to a query hit
message. The entire admin message has the format shown
in Fig. 6.

The admin message type for a peer query response is
256 (11111111). The destination IP address 1s the address
of the node that sent the peer query. Finally, the results
are sent as an ASCII string in the format mentioned
above.

Out of the two response types, the first 1s favored
more because it keeps the load off the peer-to-peer
network. The inclusion of the peer query response along
the peer-to-peer network is to respond to users behind a
firewall, or those who are limited by the mumber of
connections that can be made.

Now we have the message formats we can discuss
how messages are passed When a node receives a
message 1t checks to see 1if it has ever seen the message
before. It does this by storing the IP address and UID
fields of every message processed and checking all
subsequent messages against this list. This list needs to
be dynamic, with new message ID’s being added and old
ones timing out after a few seconds. If the message has
been seen before it means that there is a loop in the
network. Rather than process the message again it is just
dropped. If the message hasn’t been seen before, a copy
1s made for the node to process, while the TTL of the

Bytes 0 1 2 3 4 5
I e anEEt EECE EEEE EEEY EEEE CE
| Type | Destination IP address | | Result..
I Rtl EETE EEEE EEEY EEEE CEp

Fig. 6: The admin message for a peer query response

onginal 18 decremented. If the TTL 15 greater than zero, the
message is forwarded. Tf not, the message is dropped.

Forwarding a message depends on the message type.
If the message 13 a query, each node floods the message
along all connections to all peers except the mcoming
comnection. If the message is a query hit, the client can
either flood the response along all network connections,
or the more preferred method 15 for the client to forward
the query it along the connection that the original query
came down.

ADVANTAGES OF SHADOW PROTOCOL

In February of 2001 Jordan Ritter published a paper
by the name of Why Gnutella Can’t Scale. No, Really™!.
This 13 a mathematical research paper in which Jordan
Ritter has determined the amount of bandwidth that 1s
generated by a Gnutella network. Suppose the Gnutella
network is orgamzed in such a way that it is well balanced
and each node 1s commect to 8 other nedes and the query
message has a TTL of 8 for all nodes then the amount of
traffic that will be generated for one node to issue a query
of 18 bytes is approximately 6.3 GB. Now if the node is
performing 10 queries per second which 1s the average
query per second during rush hour then the Gnutella
network will need to transfer data at a rate of 507.2 GBps
(63.4 GBps).

Since the Shadow protocol 1s an optimized version of
the Gnutella protocol Jordan Ritter formula for calculating
bandwidth can also be applied to the Shadow protocol
with slight modification. Now if the Shadow network is
arranged m the same way as the Guutella network
described previously and one node issues a query of
18 bytes then approximately 5.2 GB traffic is generated. If
the node performs 10 queries per second then the
bandwidth required will be 420 GBps (52.5 GBps). Which
means that the Shadow network incurred approximately
89.6 GBps (11.2 GBps) less overhead then Gnutella
performing the same query under same circumstances.

The structure of the Shadow network 1s decentralized,
which has the advantage that there is no one pomt of
failure. This makes the Shadow network very stable. Also
when performing a search in the Shadow network it is not
possible to determine exactly which node imtiated the
query. Therefore the shadow network 1s anonymous. The

Inform. Techrol J., 5 (1): 1-6, 2006

Shadow protocol currently supports file sharing but has
the capability to be extended to other forms of peer-to-
peer computing.

CONCLUSIONS

There 1s doubt that the Shadow protocol is a more
optimized version of the Gnutella protocol. The shadow
protocol has almost all the features of the Gnutella
protocol including some new features, which makes the
Shadow protocol much better then the Gnutella protocol.
But more work still need to be done. For example time can
be spent specifying further message types to allow for the
sharing of such resources as disk space and CP1J cycles.
Also, messages could be developed to request the
‘pushing’ of files from behind firewall mn the same way
that the Napster and Gnutella protocols feature.

REFERENCES

http://judiciary senate.gov/testimony.cfm?1d=199&
wit_1d=273 [Last Accessed 1 March 2005]
http://www9.limewire.com/developer/gnutella_prot
ocol 0.4.pdf [Last Accessed 1 March 2003]
http://www.zdnet.com/zdnn/stories/news/0,4586,27
6623400 html [Last Accessed 1 March 2005]
http:/fwww. zdnet.com/zdnn/stories/news/0,4586,27
04598,00 html [Last Accessed 1 March 2005]
http://www limewire. com/english/content/p2p.shtml
[Last Accessed 1 March 2005]
http://www.darkridge.com/~jpr5/doc/gnutella.html
[Last Accessed 1 March 2005]

	ITJ.pdf
	Page 1

