http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (6): 1043-1047, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

An Efficient Frequent Temporal Pattern Mining Algorithm

'B. Sivaselvan and “N.P. Gopalan
'Department of Computer Science and Engineering, *Department of Computer Applications,
National Institute of Technology, Tiruchirapalli, India 620 015

Abstract: Frequent item-set generation, a key step in association mining, is the process of generating item-sets
that satisfy a minimum support threshold. EFTP, a new frequent temporal pattern mining algorithm proposed
1n this study, requires lesser number of repeated scans of original input in comparison to apriori principle based
algorithms. Experimental results demonstrate the significant betterment in execution time due to reduced number
of input scans and support independence of the proposed algorithm as compared to existing Aprior principle

based algorithms.

Key words: Apriori principle, association mining, frequent pattern mining, multimedia data mining, temporal
support
INTRODUCTION Existing frequent pattern mining algorithms in

Data Mining, an active research field since the 90°s
has been exhaustively explored with respect to
transactional and relational databases. With the growth of
internet and massive accumulation of multimedia data
(non-transactional), there is an imminent need to extract
useful information from them. One such emerging trend 1s
Multimedia Data Mining (MDM) (Zaiane et al., 2002a;
1998, 1999). Multimedia data such as audio and video are
bound by temporal properties that distinguish them from
conventional data. Conventional data mining algorithms
lacking these properties are not suited for MDM and there
1s a research requirement for efficient algorithms m such
data domains.

Association mining, classification, clustering and
prediction (Han et al, 2001), a few of the existing
data mining techniques find immediate application in
the domain of multimedia data. Images and videos could
be subject to classification and clustering to determine
their appropriate class or cluster (Zaiane et al, 2002b;
Wiesekara et of., 2000). Association mining could be
employed to discover relationship between entities of
images or video inputs and hence in classification
and prediction (Zhu et al., 2003a, b; Tesic et al., 2003;
Zalane et al., 2002a; 1999). Association Mimng, though
exhaustively explored with respect to conventional
data, 1s relatively new m multmedia data domam. A
key step of association mining, frequent item-set
construction, has been a major research area over the
years. Frequent set construction in temporal data
domain, an emerging research trend 1s the focus of
this study.

temporal domain are all based on Aprion’s
(Agrawal et al, 1994) candidate generation logic and
hence suffer from repeated input scans setback
PrefixSpan (Han et af., 2004), a variant of FP-Growth
(Frequent Pattern) (Han et a«l, 2000b), proposed for
efficient sequential pattern mining requires input to be in
the form of transactions or records and does not
maintain temporal continuity across transactions. As a
result PrefixSpan and other algorithms such as SPADE
(Zaki, 2001), do not suit the frequent temporal pattern
mining problem discussed. This study proposes an
alternate efficient frequent temporal pattern methodology
that requires only |L,| number of repeated scans of original
mnput.

ASSOCIATION RULES

Association Rules were first proposed by
(Agrawal et al, 1994) as a means of identifying
frequently related items in a market basket database
consisting of several transactions. An Association Rule
15 basically an expression of the form X-Y, where X
and Y are item-sets. Two statistical measures of
significance for association mimng are support and
confidence (Han et af., 2001). Traditionally association
mining is viewed as a two step process namely (i)
Frequent item-set construction and (1) Rules
generation. The second step 1s relatively less complex
and straightforward in comparison to the first step.
Frequent item-set construction aims at generating all
possible item-sets that satisfy the mimmum support
threshold condition. Various algorithms that have evolved

Corresponding Author:
Tiruchirapalli, India 620 015

B. Sivaselvan, Department of Computer Science and Engineering, National Institute of Technology,

1043

Inform. Technol J., 5 (6): 1043-1047, 2006

over the years differ in the number of scans required, data
structures employed and the methodology used in the
construction of frequent item-sets.

Apriori, one of the first algorithms to be proposed 1s
based on a candidate set generation logic. Tt is based on
the anti-monotonic property of set theory which states
that “Every subset of a frequent item-set 1s also frequent™.
It 15 a level wise algorithm and first generates frequent 1
item-set or L, from candidate 1 item-set or C, subject to
the support factor. Then it generates higher level
candidate item-set from previous level frequent item-set.
That 1s C, 13 generated from L,. This process 1s repeated
until no further new candidate sets can be generated.
Though this approach has an inherent pruning
advantage, it suffers from the setback of repeated scans
of origmmal mput in the process of frequent item-set
construction. Tt requires one overall scan of the original
input to decide if a candidate set is frequent or infrequent.
Expressing mathematically, it requires %, | C, | scans, where
1ranges from 1 to maximum length of frequent item-sets
possible and | C;| represents the cardinality of a candidate
item-set at level i. Thus the number of scans with respect
to the entire frequent item-set construction process
becomes huge and has been a major area of research.

FP-Growth is a major improvement proposed to
overcome the repeated scan limitation of Apriori. It is
a pattern growth based approach and requires only
two overall scans of the original mput for the frequent
item-set construction process. Dynamic Ttem-set counting
(Brin et al, 1997), another algorithm proposed to
overcome the repeated scan limitation also reduces the
number of scans by constructing frequent item-sets n a
simultaneous fashion. Both these algorithms and other
algorithms discussed by Goethals (2003) inherently lack
the temporal aspect in them. They are suited to
transactional database mining that 13 not bound by
temporal properties. Frequent temporal pattern mining
requires ordered item-sets or patterns to be generated, a
property lacking in the algorithms discussed so far. That
1s 1t differentiates a pattern AB from BA.

PROBLEM DEFINITION - FREQUENT
TEMPORAL PATTERN MINING

Here we discuss the problem of mining frequent
temporal patterns and the existing algorithms for the same.
As discussed earlier, the variants of Aprior are not suited
for FTP mining as they lack the temporal property and
cannot be incorporated in the existing version. The
problem is to mine all possible frequent temporal patterns
or sequences from an mnput sequence. Let S be an input
sequence consisting of items ranging from 1, to 1,. The

task is to generate the counts of various possible patterns
from this input sequence that satisfy the support
threshold.

The problem differs from its non-temporal counterpart
m two key factors namely; temporal support and temporal
distance threshold (Zhu et af., 2003a). An application of
this problem is in (Zhu et al., 2003a, b, 2005), which
proposes a video association mining technique involving
two phases of (i) Transformation and (ii) Mining. The
transformation phase transforms the nput video to a
sequence database, which is basically a collection of
clusters of the various shots that constitute the video.
Once this sequence is generated, the problem is to mine
all possible frequent sequences. Sequence generation as
said earlier 1s governed by temporal support and distance
factors.

Apriori can be easily incorporated for the above
problem but as explained earlier and shown m Table 1 it
requires repeated scans of the input. Let us assume that
the input sequence Sis ABCBCDCACBCABDA
B C D B E and the temporal support threshold is 3. Here
we are not interested in repeated items or clusters within
a pattern. But the algorithms, Apriori and proposed can
incorporate this if required. Table 1 shows the various
stages of the Aprion execution, with the temporal support
counts of the patterns mentioned in parenthesis.

It can be observed that the problem can be viewed
as a sequential pattern mining process. PrefixSpan
(Han et al, 2004), an efficient algorithm based on
pattern growth 1s a variant of FP Growth and FreeSpan
(Han et af, 2000a) for constructing frequent sequences
avoiding the repeated scans setback of Apriori. It is based
on generating projected databases and constructing only
locally frequent items. It offers considerable improvement
over Apriori i terms of reducing the number of scans. But
however it does require limited repeated scans as a result
of the projection logic, which when compared to Apriori
15 significantly small. PrefixSpan, FreeSpan and other
algorithms for sequential pattern miming require the input
to be in transactional or records format and does not
maintain temporal continuity across transactions. Thus in
our problem, if the entire sequence 1s viewed as a single
transaction, these algorithms consider the occurrence of
any specific pattern within a transaction only once and
thus our objective is not met.

The proposed algorithm 1s similar to PrefixSpan in the
fact that it requires limited number of repeated scans but
differs from the projected database logic that also adds up
to the number of scans required. EFTP requires only |L,|
repeated scans of the mput sequence for the entire
frequent temporal pattern mining process.

1044

Inform. Technol J., 5 (6): 1043-1047, 2006

Table 1: Level wise execution of apriori algorithm

Sequence Ly [0} Ly C La Cy La
ABC(3)
ABD(3)
AB(4) ACB(3)
AC(3) ACD(3)
ABCRC Al AD(3) AB() ADB(2)
DCACB B(6) BA(3) AC(3) ADC(2) ABC(3) ABCD(3)
CABDA C(e) BC#) AD(3) BAC(2) ABD(3) ABDC(2)
BCDBE D(3) BD(3) BA(3) BAD(1) ACB(3) ACBD(2) ABCD(3)
CA(2) BC#) BCA(2) ACD(3) ACDB(2)
CBh) BD(3) BCD(3) BCD(3) BCDA(2)
CD(3) CB) BDA2) CDR(3) CDRA(1)
DA(2) CD{3) BDC(2)
DB(2) CBA(2)
DC(2) CBD(2)
CDA(2)
CDR(3)

PROPOSED EFFICIENT FREQUENT TEMPORAL
PATTERN MINING ALGORITHM

EFTP 1s similar to FP-Growth algorithm m the fact that
1t constructs a pattern tree. [t requires number of frequent
1 items + 1 scans of the original input sequence. The first
scan identifies the frequent and infrequent 1 items. The
input sequence is then scanned once for every member of
the 1., set. The algorithm then constructs |L,| pattern
tree’s, one for each member of L,, having the respective
member of L, as the root of the tree. Figure 1 details the
algorithm and the illustraton for the nput sequence
considered is provided in Fig. 2.

¢ Scan the original input sequence to
frequent 1 items that constitutes the set L,.

* Forevery member of L;, now construct a pattern tree
as follows:

identify

s Make the element of T, the root of the tree.

* Start scanming the original mput sequence from
the poimt where the comnsidered element
appears.

» Add paths from the root of the tree to the item
encountered in the sequence in a cumulative
fashion updating both the item count as well as
the path count. This is done till the considered
element appears again in the input. If an element
that has already been added as a node to the
tree appears again then, maintain suitable
reverse links as well.

*» Repeat the earlier step for other sequences
that commence with the considered
element, for which either traverse the
existing paths updating the counters suitably or
add new paths from the root of the tree
depending on the items encountered in the
sequence.

Fig. 1: Proposed Efficient Frequent Temporal Pattern
Mimng (EFTP) algorithm

¢ From each of the pattern tree’s constructed, temporal
patterns and hence frequent temporal patterns are
generated as follows:

* Traverse the tree from the root retrieving
patterns whose temporal count is the path
count.

*+ Once a branch 18 traversed, suitably
decrement the path count as well as the item
count to reflect that the pattern has been
counted once.

. To generate patterns that do not appear as a
branch m the tree, consider pending nodes that
appear to the right of some specific node in the
tree as either destination or intermediate items in
the pattern.

* Integrate such patterns that match with the tree
branch pattern to generate the net temporal
pattern set.

+ From each of the pattern tree’s temporal pattern set,
retain only those patterns that satisfy the temporal
support threshold specified.

The that are
constructed from the pattern tree for A in Fig. 2 1s as
follows:

various temporal patterns

Pattern Count Pattern Count
A 4 AB 403+1)
AC 32+1) AD 3(2+1)
ABC 3(2+1) ACB 3(1+2)
ACD 32+ ADC 2(1+1)
ADB 2(1+1) ABD 3(1+2)
ABCD 3(2+1) ABDC 2(1+1)
ADBC 2(1+1) ADCB 2(1+1)
ACBD 2(1+1) ACDB 2(1+1)

1045

Inform. Technol J., 5 (6): 1043-1047, 2006

Similarly pattern trees can be constructed for the
remaining frequent 1 items and hence the final temporal
pattern set and frequent temporal patterns that satisfy the
support threshold can be generated. Tt can be verified that
the frequent temporal patterns generated by our algorithm
and Apriori based algorithm is the same.

Fig. 2: Pattern tree for item A
RESULTS AND DISCUSSION

This section deals with performance analysis of the
proposed algorithm in comparison to Apriori based
algorithm. All the experiments have been carried out on an
8GB RAM system supporting LINUX 9 under a multi-user
setup. The entire performance analysis 1s concentrated on
the execution times of the algorithms. The algorithms are
analyzed for the effect of input sequence length and
support factor.

Figure 3 depicts the performance improvement of the
proposed algorithm due to reduced number of repeated
input scans. Results for varied input sequences establish
a similar qualitative but different quantitative growth. The
overall average improvement in performance of the
proposed algorithm in relation to Apriori algorithm 1s
88.08%.

Having demonstrated the significant performance
mnprovement achieved by the proposed algorithm, we
shall now establish the support factor independence.
With respect to Apriori, execution time is inversely
proportional to support factor. This 18 a result of the level
wise principle of Apriori, wherein as a result of the
lowered support values, more patterns become frequent
at a particular level and hence the candidate set
generation in the next level and the subsequent frequent
set construction in the same level consumes more time.

Our algorithm requires the support value only
during the initial scan to decide on frequent 1 patterns
and finally to generate frequent patterns of all lengths.
The effect of support value over the performance of
proposed and apriori principle based algorithm can be

0 1 T
0 50 100 150 200 250

Sequence length
Fig. 3: Effect of sequence length

150

1307 - Proposed

90 E

Time (sec)

= |
(=3

0 10 20 30 40 50 60 70 80 90 100
Support (%)
Fig. 4 Effect of support

observed from Fig. 4. Experimental results for varied input
sequences establish a similar qualitative but different
quantitative pattern of growth. Apriori’s execution time
varies sigmficantly with varied support factor values,
whereas execution time of the proposed algorithm remains
stable.

Variation n execution times of Aprion algorithm is
due to the increased or decreased number of candidate
and frequent sets as a result of support variation. This
variation in execution time is quite significant and is a
result of Apriori’s support dependent logic. Fig. 4 shows
that there are slight variations in execution time of the
proposed algorithm at varied support values due to run
time resource allocation constraints. Thus neglecting the
run time variations, our algorithm’s performance is
completely support independent and hence can be
uniformly applied over all situations, whereas Apriori is
entirely support dependent, thereby favoring less number
of frequent patterns situations. Apriorn algorithm’s
performance deteriorates drastically with reduced support
values when the number of frequent patterns will be more
as opposed to higher support values, wherein the number
of frequent patterns will be less.

CONCLUSIONS

We have explored the research area of frequent
pattern generation in temporal data domain, coming up
with a new and scan efficient frequent temporal pattern

1046

Inform. Technol J., 5 (6): 1043-1047, 2006

mining algorithm. This algorithm evolved from the need
for an efficient techmque for frequent set construction
during the association mining phase for generating video
associations. Frequent pattern generation in temporal
domain 1s entirely different from its non temporal
counterpart. Though the algorithm reduces the number of
scans considerably, we feel there is still some overhead as
a result of the limited repeated scans of the orignal mput
and the traversal of the tree. Further research will
concentrate in this direction and results will be reported
in the future.

REFERENCES

Agrawal, R. and R. Srikant, 1994. Fast algorithms for
mining association rules. Proceedings of VLDB,
pp: 487-499.

Brin, 8., J. Rajeev Motwam, D. Ullmann and S. Tsur, 1997.
Dynamic Ttemset Counting. Proceedings of ACM
SIGMOD Conference, pp: 255-264.

Goethals, B., 2003. Survey on frequent pattern mining.
HelSiniki, 2004: 43,

Han, J.J., B. Pei, Mortazavi-Asl, Q. Chen, U. Dayal and
M.C. Hsu, 2000a. FreeSpan: Frequent pattern-
projected sequential pattern mining. Proceedings of
ACM SIGKDD International Conference on
Knowledge Discovery in Databases, pp: 355-359.

Han, T., I. Pei and Y. Yin, 2000b. Mining frequent patterns
without candidate generation. Proceedngs of ACM
SIGMOD., pp: 1-12.

Han, T. and M. Kamber, 2001 . Data Mining: Concepts and
Techniques. Morgan Kauffmamn Publishers, Ch. 6-8.

Han, I.J, B. Pei, J. Mortazavi-Asl, H. Wang, Pinto,
Q. Chen, U. Dayal and M-C. Hsu, 2004, Mining
sequential patterns by pattern growth: The prefixspan
approach. TEEE Transactions of Knowledge and Data
Engineering, 16: 11.

Tesic, I., S. Newsam and B.S. Mamjunath, 2003, Miung
image datasets using perceptual association rules.
Proceedings of STAM 6th International Workshop on
Mining Scientific and Engineering Datasets in
conjunction with 3rd STAM International Conference
on SDM., pp: 71-77.

Wijesekara D. and D. Barbara, 2000. Mining cinematic
knowledge-work in progress. Proceedings of
International Workshop on MDM/KDD, pp: 98-103.

Zaiane, O.R. T. Han, 7Z. Li and J. Hou, 1998. Mining
multimedia data. Proceedings of CASCON,
pp: 83-96.

Zaiane, O.R., 1999. Resource and knowledge discovery
from the mternet multimedia repositories. PhD
Thesis, School of Computing Science, Simon Fraser
University.

Zalane, O.R., J. Han and H. Zhu, 2000. Mimng recurrent
items in multimedia with progressive resolution
refinement. Proceedings of ICDE., pp: 461-470.

Zalane, OR, J. Han, Z. L1 and J. Chiang, 2002a.
Multimedia miner- a system prototype for multimedia
data mining. Proceedings of ACM SIGMOD,
pp: 581-583.

Zaiane, O.R., ML. Antonmie and A. Coman, 2002b.
Mammography classification by an association rule
based classifier. Proceedings of International
Workshop on MDM with ACM SIGKDD., pp: 62-69.

Zaki, M., 2001. SPADE: An efficient algorithm for mining
frequent sequences. Proceedings of Machme
Learning, 40: 31-60.

Zhu X, and X. Wu, 2003a. Mining video associations for
efficient database management Proceedings of
18th ITCAL, pp: 1422-1432.

Zhu X and X. Wu, 2003b. Sequential association mining
for video summarization. Proceedings of ICME,
BRaltimore, pp: 333-336.

Zhu, X, X. Wu, A K. Elmagarmid, 7. Feng and L.. Wu,
2005. Video data mining: Semantic mdexing and event
detection from the association perspective. TEEE
Transactions on Knowledge and Data Engineering,
17: No. 5.

1047

	ITJ.pdf
	Page 1

