http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (6): 1093-1097, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Modified Turing Machine for Distributed Computing

Saeed ur Rahman Khan and Malik Sikander Hayat Khiyal
Department of Computer Science, International Islamic University, Islamabad, Pakistan

Abstract: Turing machine 1s model for general-purpose computing device. There are many implementation of
Turing Machine. Khan and Khiyal (2006) presented a determimistic Turing model that simulates distributed
processing. In current study we enhanced the model for complex tasks and enable to sclve equation with

several
function execution.

operands on the right hand, to perform nested conditional blocks, nested loop and updated the

Key words: Turing machine, physical machine, computing model, simulations

INTRODUCTION

Turing Machine 1s a mathematical model of
computing device. Turing Machine, as defined by Alan
Turing (1936) in his historical paper, is a 7 tuple as
following:

T™M={Q, %, 1,5, 85, B, {}

Where, the symbols are sequentially the set of states, the
mput symbols, the tape symbols, the set of transition
functions, the starting state and the blank symbol and
finally the set of final states.

There are many simulations of computer using Turing
Machine and simulation of Turng Machine using
computer to prove them equivalent (Hopscroft et i,
2000; Guetta, 2003; Khiyal, 2004). Here, we elaborate them.
This study describes a computing model having many
addressable identities as basic umit, Turing Machine.
Then the complete Turing Machine makes it possible to
make communications among these models.

Thus in future, we shall use only TM as the formal
representation of what can be computed by any kind of
computing device (Khiyal, 2004).

The model developed by Khan and Khiyal (2006) is
a compound Turing Machine of many simple Turing
Machines. The model does not work for complex tasks.
For this purpose we enhance the model discussed in later
section. This model enables to solve equation with
several operands on the right hand side. Enhance the
conditional blocks to perform nested if else, nested loops
and updated the function calling to support recursive
function.

We now describe systematically the characteristics
of our enhanced model.

MODEL IN BRIEF

The proposed model of Khan and Khiyal (2006) 1s as
follows:

™™= {Q"L,I.8,5, B, {}

States: Q" The states are compound states of the states
of its sub Turing Machines. So we may say states are of
the following types:

d, s q-..q, Where geQ.
¥ is set of input alphabets.

I' 1s set of tape alphabets.

d is set of moves. The moves are also compound
moves of the following formats:

8 (py, [(a, my), wi, x,]) (q;, (b, m)), v, 2], [D, D, D],
6 (Pz: [(aZ= mz): WZ: XZ]) (qz: (b2= mZ): Yz: ZZ]: [D= D: D])Z
6 (Pz: [(aE= m:i): WE: XE]) (Cb: (b3= mB): Yz: ZB]: [D= D: D])S

3 (p.. [(a, m,), w,, x.]) (.. (b, m,), y,, z]. [D, D, D])..
wherea,b,m,w,x, v, zel,q, ... 4. € Q, D e {L, R, N}

3 18 the starting state for all sub Turing Machines of the
compound Turing Machine.

B is the blank symbol.

f 13 the final accepting state. But when the entire sub
Turing Machines goes to accepting state then the final
Turing Machine is assumed to be at the final state. So the
final state of the whole Turing Machine is f, f, f; ... f,. The
features and functionalities are discussed m the study of
Khan and Khiyal (2006).

Corresponding Author: Malik Sikander Hayat Khival, Department of Computer Science, International Islamic University,

Islamabad, Pakistan

1093

Inform. Technol. J., 5 (6): 1093-1097, 2006

DESCRIPTION OF OUR TM

Turing Machine described by Khan and Khiyal (2006)
consists of components as stated before. This portion
describes one component in detail.

Tape: There are three tapes in this TM. They are the
follows:

Program tape: This tape contains variable declarations,
program and input. When the input instruction is called,
the mput value 15 stored in places reserved for mput in
this tape. This tape has two tracks. One for program and
variable and another read only track contains sequence
number of boxes of the former track. Point to be noted that
the tape has one head with which it read both the track
and write only on the first track second one is read only.
In another way, we may also describe this tape as only
one track having the boxes as tuple, which the TM head
read. It writes only on the first part of the tuple, second
part of the tuple contains the box number and this part is
read only.

Postfix tape/Buffer tape: The arithmetic expressions are
converted into postfix form before execution The postfix
equation is stored in this tape. At the beginning, this tape
is empty. During the functionality, this tape can also be
used for other purpose as well such as buffer while
sending a buffer over a network. After fimshing work, it is

empty.

Stack tape: This tape acts as stack for this TM. At the
begimning, this tape 1s empty. The functionality 1s same
like the other tape but it 13 called stack tape as it 1s used as
stack. Tts way of functionality varies in the following way.

*+ When a value 13 pushed the tape head moves right
and write the value or sometimes it writes and then
moves when the current block is already empty.

* When a value 1s popped, the head erases the current
value and moves left or it moves left and then erases
the value if the current box is empty.

¢ Atany time to read the top value just read the current
box under the head or sometimes when the current
box 13 empty it moves left and read the value.

¢ Even then, this is a tape so it can be used for other
purpose as tape. Sometimes the push pop is merged
with other moves.

As default the second and third tape head is kept
over a blank box beside a filled box. When there is a value
on either of these tapes that to be read constantly then
that tapes head is kept on that box contaiming value.

Moves: Moves of a single component are of the following
form: 3 (q;, [(a, m), w, x]) (q. (b, m), y, z]. [D, D, D])
where
a,bmwxyzel q,q,€Q De {L, R N}

Tape symbols: There are tape symbols for each
instruction and each reserve words and each value with
which the program 1s written on the tape. No defined name
such as variable name or function name can be repeated.
So at same time a name cannot be used as variable name
and function. Let alone overniding/overloading etc. Tape
symbols can be categorized in the following categories:

*+ Value

» Reserve words/key words

s Instruction symbols/state symbols: Note that there is
a tape symbol for some of the states if not for all.

» Brackets of different types e.g. {, }. (,).

s Operators: +-*/=> <=

WORKING OF TM AND MOVES

The workings of the following points are same as
Khan and Khiyal (2006).

» Varable defimtion/storage retrieval.

Variable definition at function parameter or variable
as reference to another variable.

* Varable reading.

*» Variable updating

. Assignment statement

» Read variable from user/write output.

. Send receive expression to another Turing Machine
¢+ Converting expression to postfix expression

In varniable reading part two moves are changed as
follows:
The move:

6 (vm [(6’ m)’ B’ X]) (vr—m (6’ m)’ B’ B]’ [R’ N’ R])
1s replaced by the move,

6 (Vﬂ> [(67 m)? B’ X’]) (Vf-rP (67 m)? B’ X’]’ [R3 N? R])
The move:

& (v . [(a, m), B, x]) (v, (a, m), B, x], [R, R, N])
1s replaced by the move.

d (v, [(a, m), B, x]) (v (8, m), B, x], [R,N, NJ])
In send to other Turing Machine part the move:

8 (s, [(A, m), B, B]) (e, (A, m), B, R], [R,], R])
is replaced by the move.

8 (s, [(A, m), B, B]) (e, (A, m), B, B], [R, N, N])
The moves n the following points:

egr> [

» EBvaluating postfix
» Conditional block.

1094

Inform. Technol. J., 5 (6): 1093-1097, 2006

¢« Loops.
* Function defimtion/calling

Are mostly changed and complete new moves are as
below.

Evaluating postfix equation: We have enhanced the
evaluating postfix equation part to evaluate long
equations. Previous moves could only perform bmary
operations. After modifying the machine it can now
perform equation evaluation of any length.

To evaluate a postfix expression, we will again need
to use the stack. However, the stack will contain numeric
values instead of operators.

When a numeric value 1s encounter, the value 1s
pushed on the stack.

When an operator (other than ;) 1s encountered, two
values are popped from the stack the operation i1s
performed on these two values and the result is pushed
onto the stack.

When the no operand 1s encountered, there should
only be one value on the stack above the °;”. This value

1s the result of the expression
L]

d (e, [;, m), n, BD] (e, [, m), B, n], [N, R, R])

B (e, [, m), o, B]) (e, [(;, m), B, B], [N, N, L])
o€ {+,-, * / < > = lin=numeric value

B (e [m), B.n])] (e [(5, m). 0, BL [N, N, L])
B (e [m), 1, D] (e, [(; . m), Bnjon], [N, R, R])
B (e,, [, m), B, BD)] (e..., [(; , m), B, B]. [R, N, L])
d (e, [(a. m), B, n])] (e, [(, m), n, m], [T, R, R])
B (e, [(a, m), B, B])] (e, [(a, m), B,W], [L, N, R])
B (e, [(a, m), B, B (e,., [(a, m), B, B], [L, N, NJ)
d (e, [(;, m), B, B])] (e.y, [(;, m), B, B], [L, N, NJ)
d (e, [(M, m), B, B (v, [(m, m), B.B], [L, N, NJ)

The next moves from here are discussed in the
variable part. For every expression we first push °;” as we
told before, then convert the expression nto postfix then
evaluate, then pop*;’.

Conditional blocks: We have enhanced the conditional
blocks part to perform nested if else. Tt was not supported
in model developed by Khan and Khiyal (2006).

Conditional blocks are of two types

Block like if else statements in C: when 1t reads an «, 1t
goes to expression state. Tn expression if it reads a P} then
it evaluates and the Boolean result is in the third tape
(stack) it also goes to the condition state. If the condition
1s false it goes to false state and do nothing until it goes
to a normal state (*s”) n false state it only moves right but
when reads an « it just push an ¢ and when 1t finds € 1t
just pops the «. If it finds € in false state and the stack-

top is false then it pops the false and goes to normal state.
If it reads y then it goes to else part so if before it was
false (there was false at the top) then it goes to true state
else 1t goes to false state. The moves are as follows:

0 (s, [(«, m), B, B])] (e, [(, m), B,;], [R, N, R])

3 (e, [(B, m), B, BDI(ey,. [(B, m), B, BL. [N, N, L])
3 (e, [(B, m), B, BD] (e, [(B, m), B, BL [R. N, L])
3 (c, [(a, m). B, F] (s [(a, m). B, F], [N, N, N])
B (s, [(a, m), B, w)] (55 [(a, m), B, w], [R, N, NJ)
we {Fat

B (s [(a, m), B, F)] (s, [(2, m), B, F], [R, N, R])
B (sg, [(a, m), B, B])] (s; [(a, m), Bae]. [R, N, NJ)
0 (sg [(e. m), B,a])] (55 [(e. m), B, B], [R, N, L)
0 (sg [(e. m), BF] (5, [(e, m), B, BL [R, N, N])
0 (c, [(a. m), B,T]] (s, [(a, m), B, B, [N, N, N])
0 (s, [(. m), B, BD)] (s¢ [(%, m), B, F], [R, N, N])
0 (sp, [(%, m), B, FD] (s, [(x. m), B, BL, [R, N, N])
3 (s, [(e. m), B, BD] (s, [(e, m), B, B], [R, N, N])

Block like switch statements in C: For some simplicity
reason of this design this part 1s not covered.

Loops: We have enhanced the loops part to perform
nested loop. Tt was not supported in model developed by
Khan and Khiyal (2006).

When there is an instruction symbol for loop. Tt push
the program tape number as return point. Then it checks
the condition. Depending on the result of the check it
goes to either true or false state and remains there till it
gets end loop symbol. At end if it gets the end symbol
while false state it pops the top (return point) else 1f 1t
was 1n true state while reading the end loop symbol it
goes back to the old pomt to check the condition again.
The moves are as follows:

0 (s, [(IL. m), B, B])] (eyy,. [(IL, m), B, m], [R, N, R])
0 (84 [(a. m), B, B])] (e, [(a, m), B, ;] [N, N, R])

0 (e, [T[. m), B. BD)] (e, [([[. m), B, BL [N, N, L])
8 (e, [(II, m). B, BD] (c;, [(IL, m), B, B], [R, N, L])
0 (¢, [(a, m), B, F]] (s [(2, m), B, F], [N. N, N])

O (55 [(a, m), B, x])] (51 [(a, m), B, x|, [R, N, N])

B (s, [(€2, m), B, F)] (85, [(€2 m), B, B], [R, N, L])
B (s, [(a, m), B, x])] (s, [(a, m), B, B], [N, N, N])

B (s [([[, m), B, xD)] (s, [([[, m), B, x], [R, N, R])
B (s, [(a, m), B, BD] (s [(a, m), B, [[]. [R, N, N])
B (s, [(€2, m), B, [[D] (852, [(€2, m), B, B], [R, N, L])
B (8, [(a, m), B, x]] (85 [(2, m), B, B], [N, N, L])

0 (¢, [(a, m), B, TD] (s. [(a, m), B, B], [N, N, N])

8 (s, [(2 m), B, B])] (5. [(€2, m), B, B], [, N, L])

0 (s.. [(a, m), B, x])] (s, [(a, m), B, x]. [, N, N])

d (s, [(a, m), B, m]) (s, [(a, m), B, B], [L, N, N])

1095

Inform. Technol. J., 5 (6): 1093-1097, 2006

Function definition/calling: We have enhanced the
function calling part to support recursive function. It
was not supported 1 model developed by Khan and
Khiyal (2006).

Function 1s defined before the main program starts.
Unlike the variable defimtion, there i1s no move for
function definition area. It is covered at 3 state before
reading # and going to s state. Function is defined as
follows:

YyFOAVDIV Y, AV.OIV 1, 0 {Body

block again coded as the main program is coded. }£

The parameter variables are all by reference whether
going in or out. That 1s there format is A V. @ &V, n U
Where

* v, the left end symbol of definition,

+ F, is afunction name,

* @ symbol used as separator between function name
and parameters,

. A V@ 3V 1 | is a variable referenced by value
details of which 1s already discussed at variable part,

o 0, the left point of definition before the body.

¢+ Then comes the body of function as sequences of
code.

e £, the last point of body.

Each occupies one block of tape, as all of these are
tokens.
Function is used as follows:

AF, BV n,dV,n..)0
Where

. A, the left end symbol of definition,

. F,is a function name,

e OV, nis the variable call that is already discussed at
variable part.

+ g, the left point of function call.

When TM read a Function call it goes to function call
state and then it reach to the end of the call point “o°, then
push the current program pomt (block number of program
tape), the box address as return point then 1t start moving
left and push the parameters from the left side, at last
push the Function name then it starts moving left going
to state finding functon When it finds it, read a @
followed by the matched name. Point to be noted that
when it read @ it comes to know that there 1s a function
name at left, so it check the left box and if left box match
the top-stack the definition is found). Tt starts moving
rnight two boxes and then parameters are starting
there. It first then push #then goes to the last part

of definition and start coming back and pushing the
whole function body until the starting of function. Then
it goes to the end of the tape, starts popping the whole
function. When it pop # it assumes the next is parameters
so 1t places parameters in appropriate places. Then it
goes to the s state and start executing body. At the end
{when it read £2) it again goes to the return point from
where 1t was called.

We have told mn the variable part that global variables
using inside a function body must be defined before the
function defimition so there is no problem in global
variable retrieval process.

Moves

3 (s, [(A, m), B, B)] (.. [(A,m), B,B], [R, N, N]
O (£ [(a, m). B, B)] (..o [(2, m), B, B], [R, N, N])
& (£, [(o, m), B, B)] (£, [(o,m), B, B], [R. N. N])
8 (£, [(a, m), B, B)] (f,. [(a, m), B, m], [L,N,R])
o (f,, [(a, m). B, B)] (f,. [(a, m), B, e, [L. N, R])
B (fy, [(x, m), B, B)] (£, [(x. m), B, BL, [L, N, NJ)
x€[d, m, 0]

B (£, [(4, m), B, B)] (s [(A, m), B, B], [L, N, L])
3 (f [(a. m), B, x)] (fs [(a, m), B, x], [L. N, N])

3 (fs [(d. m), B, x)] (fe [(b. m), B, x], [L, N, N])
8 (fg, [(a. m), B, x)] (fy, [(a, m), B, x], [L, N, N])

8 (fe, [(x, m), B, x)] (£, [(x, m), B, #]. [R, N, R])

d (£, [(a, m), B, B)] (f,, [(a, m), B, B], [R. N, N])

3 (£, [(§ m), B. B) (f5 [(€. m), B, BL, [N, N, N])

8 (£ [(a. m), B, B)] (£ [(a, m), B, a], [L, N, R])

B (Lg [(y, m), B, B)] (£, [(y, m), Byl [R, N, N])
o (f,. [(a, m), B, x) (£, [(a, m), B, x], [R, N, NJ])

B (£, [(B, m), B, x)] (£ [(x, m), B, BL, [R. N, L])
B (f;s [(B, m), B, x)] (f;5 [m). B, BL, [R.N, L])
B (£ [(B, m), B, #)] (£, [(B, m), B, B [L, N, L])
o (f,. [(a, m), B, x)] (f,, [(a. m), B, x], [L, N, N])

B (£ [(v, m), B, x)] (£, [(v, m), B, x], [R, N, N])
& (£,. [(a, m). B, x)] (£,. [(a, m), B, x], [R, N, N])

B (£, [(d, m), B, x)] (L, [(#, m), B, x]. [R, N, N])

B (f, [(A, m), B, x)] (£, [(A. m), B, x]. [R, N, N])
O (f.1, [(2, m), B, ©)] (f;4, [(2. m), B, x], [R, N, N])
8 (£, [0, m), B, x)] (£, [(d, m), B, x], [R, N, N])
8 (£2, [(a, m), B, x)] (£;4, [(x, m), B, B], [R, N, L])
B (£, [(6, m), B, x)] (s, [(6, m). B, x]. [R, N, R])

B (£ [(8, m), B.x)] (s, [(6, m), B, x]. [R, N, R])

8 (s, [(€. m), B, B)] (£, [(B, m), B, B], [L, N, N])

8 (£, [(a, m), B, B)] (f,, [(B, m), B, B], [L, N, N])

B (f, [(y, m). B, B)] 5, [(B,m), B, B], [L.N. L])

P2

CONCLUSIONS

Khan and Khiyal (2006)have described one component of
our whole Turing machine such components communicate

109¢

Inform. Technol. J., 5 (6): 1093-1097, 2006

among themselves by the moves described in the send
receive section. This way the whole Turing Machine
works as a model of distributed computing.

In this study we have enhanced the above mentioned
model and enabled it to solve equation with several
operands on the right hand, also to perform nested
conditional blocks, nested loop and updated moves of
function execution. The new model has been tested using
MS visual C++.

As future work we may include more complex tasks
such as object oriented structure etc.

REFERENCES

Guetta, D., 2003. Turing Machine development
enviromment. 19 Church Mount, London, N2 ORW,
England.

Hopscroft, I.E., R. Motwani and I.D. Ullman, 2000.
Introduction to Automata Theory, Languages and
Computation. 2nd Edn., Addison Wesley CO, USA.

Khan, S.R. and M.S.H. Khiyal, 2006. Turing Model for
distributed computing. Information Technol. T,
5:305-313.

Khiyal, M.S.H., 2004, Theory of Automata and
Computation, National Book Foundation, Islamabad,
Pakistan.

Turing, AM., 1936. On Computable numbers with an
application to the Entscheidung sproblem
{decision problem). Proceed. London Mathematical
Soc., 42: 230-265.

1097

	ITJ.pdf
	Page 1

