http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (1): 138-143, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Web Service Based Software Implemented FFault Injection

Mohammod Shamim Hossain
School of Science and Technology, Bangladesh Open University, Gazipur 1705, Bangladesh

Abstract: Toady’s mformation society, offering fully automated dependable software for critical online and
offline system 1s a challenging task. There is a great need for automated Software Implemented Fault Injection
(SWTFT) tools to assist programmers and system designers with performance and dependability evaluation. This
study presents a review of related research on Software Implemented Fault Injection. Based on some of the
review, a web service based Software Implemented Fault Imection (SWIFI) framework is proposed. The
proposed framework will support portability and leverage extended facilities of existing SWIFI tools.

Key words: Software implemented fault injection, web service, dependability, SOAP, UDDI

INTRODUCTION

The increasing demand for critical applications in
aerospace, industry, business, defense, education and
real time telecommumnication, introduce a new challenge to
the software mdustry in terms of dependability. Software
Implemented Fault Injection (SWIFT) is a well proven
technique for assessing dependability validation process:
fault removal and fault forecasting. Other use of SWIFI
mcludes assessing goodness of a design, finding defects
in software; COTS validation or determining failure
modes; safety verification, security assessment and
software testability analysis. Recently, many emerging
SWIFI tools such as FTAPE, xception, Ferrari etc. have
been developed. Now attentions are paid on how to
design and develop portable fully automated SWIFI tools
for heterogeneous model, environment and fault types. If
web-services technologies are considered in developing
SWIFI systems, it is possible to fulfill the ambitious
attention of portability. A lot of research have been done
m the area of fault injection in general. Very little research
has been done regarding testing web services or
middleware™”. There have been no research yet
conducted on how to design and develop a web services
based framework for SWIFI tools. This study will focus
on a basic architecture of a web SWIFI.

A web service is a software application, accessible on
the web through an URT. that is accessed by clients using
XML-based protocols, such as Simple Object Access
Protocol (SOAP) sent over accepted Internet protocols,
such as HTTP. Clients access a web service application
through its interfaces and bindings, which are defined
using XML artifacts, such as a Web Service Definition
Language (WSDL) file™. Web services are built with a
wide variety of platforms like NET, Sun I2EE and Apache.

138

They are compatible with the protocol SOAP. How SWIFL
task can be managed with this vast range of existing
available web services is a great challenging task now.
Therefore, a generic framework for Software Implemented
Fault Injection using current web services technology 1s
important.

SURVEY OF SOFTWARE
IMPLEMENTED FAULT INJECTION

In Software Tmplemented Fault Tnjection (SWIFT),
software is used to mimic hardware or software faults ina
prototype. It basically consists of mjecting faults mto a
system usmg a specific piece of software. In this
approach, all locations in hardware and software that are
accessible to machine instructions can be chosen by the
user, as the point at which to inject errors/faults: errors
corresponding to hardware faults are emulated through
the implementation of incorrect instructions and access of
incorrect data and errors corresponding to software faults
(such as incorrect imtialization of a variable, failure to
check a boundary condition) are emulated by an
appropriate code change.

SWTFT emulate transient, intermittent and permanent
faults: transient faults are simple to emulate, since
incorrect data/instructions can be corrected, as for
example, faulty bits in memory or CPU registers can be
overwritten by subsequent instructions; permanent and
mtermittent faults are emulated by repeatedly mjecting the
same fault for its duration, as for example, to emulate a
permanent stuck-at-0 fault at a particular bit in a memory
word, the bit is changed to 0 after every write operation to
the word.

The target of fault mjecton can be the user
application, the operating system, or both. In case of user

Inform. Technol. J., 5 (1): 138-143, 2000

application, the fault injector is inserted into the user
application or can be an extra layer of software between
the user application and the operating system. On the
other hand, for the operating system, the fault injector
must be embedded in the operating system, because it is
difficult to add a layer of software between the system
hardware and the operating system.

SWIFI is complementary to hardware implemented
injection. Because:

Hardware-implemented fault injection provides better
control of time accuracy during mjection, but 18 more
time-consuming than the SWIFI.
Hardware-implemented fault injection is more precise
1n the specified faults that can be inyjected (especially
for fault mjection with contact), but the flexibility of
SWTFT is greater.

Among the several techniques available to inject
faults, SWIFI 1s commonly recognized as the best one.
SWTFT tools can emulate a much larger set of hardware
fault types such as faults in the address bus, arithmetic
unit, memory and other functional units. Because,
software has full control of the processor and memory
functions, access to most of the hardware components
and a capable of manipulating the information that it
processes.

SWIFL approaches have
compared to other approaches:

several advantages

It has lower complexity because no dedicated
hardware or very detailed models are required

Tt has increased portability

It allows faults or errors to be mnjected at location and
time under software control with no additional
hardware support.

Tt is less expensive in terms of time and effort, than
hardware implemented fault injection.

It can be used to target applications and operating
systems, which 1s difficult to do with hardware one.
Though SWIFI is cost-effective, flexible and
attractive, however, it has some shortcomings™ which
include:

Faults cannot be injected to locations that are not
accessible to software. Approximately one-third of
the errors produced by logic-level fault imection
cannot be emulated through SWTFT.

139

The software instrumentation may perturb the system
being studied, biasing fault injection results.
The lower time resolution of SWIFI relative to

Hardware one may perturb the results obtained. A
hybrid technique, using a hardware monitor, can be used
to overcome tme resolution problem. The hybrnd
technique combines the versatility of SWIFI with the
accuracy obtained through hardware monitoring. Tt is
well-suited for measuring extremely short latencies.

Categorization of software implemented fault injection:
SWITIT can be categorized mainly in two ways based on
the types of systems being studied: stand-alone systems
and network or distributed systems. Stand-alone systems
can further be divided n two ways: Compile-time and run-
timet".

Stand-alone systems: Stand-alone systems can be
categorized on basis of when faults are inected:
During Compile-time injection and run-time Tnjection:
Compile-Time Injection is an injection technique where
source cede 15 modified to imect simulated faults
mto a system. Run-time mjection techmiques use a
software trigger mechanism to inject a fault into a running
system.

Network or distributed systems: Most concepts
introduced for stand-alone systems are thus still valid for
networks or distributed systems. Networks/distributed
systems inject the same faults as those m stand-alone
systems. It iyect faults specifically related to
commumcation in the network/distributed system. It
coordinates the imjection based on certain information
about shared state of different hosts m the distributed
system. To iyject realistic faults m networks or distributed
systems, one must have the ability to inject faults based
on the state of the system. This knowledge about state
can come from: the local portion of the application;
information transmitted between portions of the
application on different hosts and explicit information
passed between nodes of the fault injector itself, to
obtain system state information. However, there are two
main problems: a) the mjection of the fault in the night
state and b) the verification that the fault was correctly
injected. Because of the added complexity of injecting
faults in distributed systems, fewer tools have been
developed for networks/distributed systems than for
stand-alone systems.

Inform. Technol. J., 5 (1): 138-143, 2000

SOFTWARE IMPLEMENTED
FAULT INJECTION (SWIFI) TOOLS

A large number SWIFI tools have been developed
and going to develop by different organizations. Let’s see
some of these:

Tools for stand-alone systems: A review of some of
theses tools for stand-alone systems are as follows:

JIFT® (JPL’s Implementation of a Fault Injector)
developed at Jet Propulsion Laboratory (JPL) of Califorma
Institute of Technology. JIFI 1s used with appropriate
fault medel in order to evaluate both software and
hardware fault tolerance; to measure the effectiveness of
fault detection, 1solation and recovery strategies. JIFI is
used to wyect fault into user specified CPU registers and
memory location. Memory fault locations are of two types:
user area and operating systems kernel area. JIFT is an
application level software implemented fault injection
tools which allows fault iyection campaigns and
statistical data analysis along with verifiers, classifiers
and run scripts. Tt can inject time triggered random faults
and location triggered targeted faults.

FERRARI™ (Fault and Error Automatic Real-Time
Injection) provides software-implemented fault injection
of standalone systems. This system was developed at the
University of Texas at Austin. FERRARI consists of four
modules: the imtializer and activator, the user mformation
specifier, the fault and error injector and the collector and
analyzer. The four modules are controlled by the manager
module, which coordinates the operation of the four
modules.

The fault Tolerance and Performance Evaluator
(FTAPE)" is a fault injector for stand-alone systems that
mtegrates the injection of faults and the activity
necessary to propagate the errors generated by the faults.
This system was developed at the University of Illinois.
A version of FTAPE intended for network systems, called
NFTAPE which supports multiple platforms. The system
activity 1s specified as a mixture of CPU, memory and/or
T/O activity. Faults can be injected into the CPU, the
memory and the /O devices. The CPU fault models are:
single/multiple bit-flip faults in CPU registers and value
faults in CPU registers. The memory fault models are:
single/multiple bit-flip faults in memory and value faults in
memory. The /O fault models are: Change the value in a
register of the disk controller.

Xception™ is a software fault inmjection and
monitoring environment that uses counters and timers
that exist in most modern processors to inject faults and
to monitor the activation of the faults and their impact on
the system. The system was first developed at the

140

University of Coimbra in Portugal, which had the
advantage of the advanced debugging and performance
monitoring features present in many modern processors
to mject more realistic faults. This approach allows
injection of faults without modification of the target
application; no software traps are inserted, injection of
faults with mimimum mterference; definition of many fault
triggers such as triggers related to the mampulation of
data; monitoring of the activation of latent faults (such as
faults specific memory cell) by
programming the hardware to cause an exception when
the corrupted memory cell 13 addressed. Fault iyjection
can be dene in any process running on the target system,
including the operating system; applications for which the
source code 18 not available and the processor, memory
and data/address buses. In order to trigger fault ijection,
it uses a processor’s built-in hardware exception triggers.
The fault injector is implemented as an exception handler
and modification of the mterrupt handler vector 1s
required. Based on access to specific addresses, its faults
are triggered, so the experiments are reproducible.

introduced in a

Tools for network or distributed systems: The followings
are some of the review of the tools for network or
distributed systems:

The DOCTORY (integrated software fault injection
environment) first developed at the Umversity Michgan,
can inject three types of fault memory faults, CPU faults
and communication faults. The user can select any
combination of these three types to induce appropriate
abnormal conditions. Memory faults can be ijected as a
single bit, two bit for compensating, whole byte or burst
of multiple bytes error. The content of the memory at the
selected address are partially or totally set, reset or
toggled. CPU faults may occur in data registers, address
registers, comtrol registers, ALU and so on. The
commumcation faults in DOCTOR can cause messages to
be lost, changed, duplicated or delayed. Each three types
of fault may be permanent, transient and intermittent.
Fault imyject plan can be a probabilistic formulation or
based on the past event history. DOCTOR supports:
generating synthetic workloads under which system
dependability 18 evaluated, imjecting various types of
faults with different options and collecting performance
and dependability data. Tt uses three triggering methods:
time-out, trap and code insertion for triggering fault
ijection.

Orchestra” developed at the University of Michigan,
is a fault injection tool for testing dependability and
timing properties of distributed system protocol
implementations. The objectives of orchestra are the
portability to different platforms and the ability to insert

Inform. Technol. J., 5 (1): 138-143, 2000

the fault injection probe into a protocol stack. This
tool is based on a simple but powerful framework called
script-driven probing and fault injections for the
evaluation and validation of the fault tolerance and timing
characteristics of distributed protocols. Another feature
of this tool is to address the intrusiveness of fault
mjection on a target distributed systems. This system can
employed in studymg the three aspects of a target
protocol by detecting design or implementations error;
identifying violations of protocol specifications and
obtamning 1nsights into the design decisions of the
implementers. The tool was imtially developed on the
Real-Time Mach operating system and later ported to
other platforms such as Selaris and SunOS. This tool have
used to conduct experiments on commercial and research
systems meluding TCP communication protocol, a primary
backup replication protocol, distributed group
membership service, real time audio conferencing
application and so on.

DEFINEM™ (Distributed Fault Injection and
Monitoring Environment) developed at the University of
Tllinois to evaluate system dependability, investigate fault
propagation and validate fault-tolerant mechanism. This
tool can myject both hardware-induced software errors and
software faults in any process running in distributed
systems either in user mode or supervisor mode. These
faults can be correlated or independent. DEFINE is
extended from its antecedent FINE"Y, with additional
distributed capability and injection mechamsm. DEFINE
uses two fault injection techniques: (1) using hardware
clock interrupts to control the time of fault iyection and
activation which allows injecting intermittent CPU/bus
faults in order to ensure their activation (2) using software
traps to mject faults and momtor fault activation in order
to assist monitor whether the faults are activated and
when they are activated. Experiments are conducted on
SUN NFS-distributed file systems.

Loki'? is a state driven fault Injector for Distributed
Systems. Fault injection 1s performed based on the global
state of a distributed system. It has the ability to check
whether the faults are correctly injected. The concept of
state i3 elementary to loki. The execution of a component
of the distributed system under study can be regarded as
a state machine. The global state of the system denotes
the vector of the local states. Tt is enough to keep track
partial view of the global state and its selection for the
mjection of the required faults. The global state may be
either online or offline. An on-line partial global state is
based on a) the partial global state is tracked at local
components by the loki run-time, b) state changes can be
caused by local events or remote events c¢) the on-line
view of the global state 1s approximate and its accuracy

141

must be determined after the fault injection campaign. An
off-line determination of the partial global state
correctness 1s based on a) a bound analysis to determine
time uncertainty of each event and b) the selection of
injections that occurred correctly with respect to global
state. In loki, the distributed system under study is
separated mto basic units from which state information is
collected and into which faults are injected. The basic unit
along with the loki run time attached to it is called a node.
The loki run-time only uses the necessary state change
notifications between nodes m order to keep track of the
partial view of the global state. It records state changes
and fault injection occurrences. There could be an
incorrect fault injections and incorrect measures. To
overcome the problems, loki performs a post-runtime
check on every fault myjection.

The evaluation of any system using loki consists of
the following steps!'™:

An mitial synchronization-message-passing phase,
A fault injection and observation collection phase,

A second synchronization-message-passing phase,
Determination of experiments with properly injected
faults and

Computation of measures using these experiments.
PROPOSED FRAMEWORK FOR SWIFI

Inspite of all the research done for Software
implemented fault injection; there are several limitations
with the current existing tools. Some of these are follows:

There is no SWIFI tool which allows more than two
platforms except Orchestra. It supports two platforms
mach and solaris,

There 1s no SWIFI tool which allows more than one
type of fault injection except FERRARI,

There 1s a few SWIFT tools which allows more than
two types of fault models,

There 1s no SWIFI tool which allows more than one
trigger method except FTAPE.

Because of these himitations, no tool 15 applicable if
the target system has the following properties: multi-
platform (heterogeneous) support; several fault model or
injection methods, fault injection under different trigger
conditions; using the same control and configuration
process for each type of analysis. Only NFTAPE!' solve
some of the problems mentioned above. There is no
SWIFT tool or system that uses web service. There
appears very little research!! in the field of testing web
services by applying network level fault mjection to

Inform. Technol. J., 5 (1): 138-143, 2000

Local fault
injection service

Fig. 1: Proposed web service based SWIFI system

Fault injection
P Controller system
Fan orklo
(li)v library
Fault Workload . Data controller
il].jEEtDl.' 0 genm H Monitor Dataanalyzer
I Y 3
¥
I
7| Target
system
Fig. 2: Basic components of a fault injection
environment™

SOAP RPC based system. However, there is no SWIFI
tool using web service technology.

The proposed SWIFI system consists of local fault
iyection service, target systems and a foreign fault
njection service. This framework may help to use most of
the existing SWIFT tools such as xception, NFTAPE ete.
using web services 1.e. foreign service call them when
necessary. Once the system receives a specific request, it
compiles the response according to the user request. If a
specific fault imection service 1s not available in the local
system, a web services request will be made to a specific
UDDI server requesting an appropriate injection service.
If a service is found we make use of its capabilities,
otherwise we try to find a bridge to solve the request.
This request 1s done through SOAP message. Let’s see its
block diagram of the proposed system shown in Fig. 1.

Information about a different foreign fault injection
service is given by the UDDI registry whenever any fault
mjection requested by the user is not found m the local
service. Then SOAP message 1s sent to UDDI server and
utilizes its registry to find the appropriate host such as
SWTFT tools provider which could deliver the requested
service for the desired platform, fault type etc. to the
target system. The local Fault Imyjection service does the
basic fault injection function by leveraging the
architecture given by researcher™.

Figure 2 shows a local fault injection service
environment, which consists of the target system, a fault

142

injector, fault library, workload generator, workload
library, controller, monitor, data collector and data
analyzer.

The fault injector iyects faults into the target system
and executes commands from the workload. Here, fault
iyjector refers to the SWIFI which allows different fault
types, fault locations, fault times and software or
hardware properties from fault library. The monitor tracks
the execution of the commands and imtiates data
collection. The data collector performs online data
collection. The data analyzer'” performs offline data
processing and analysis. The controller controls the
overall experiment.

CONCLUSIONS

Emerging Software Implementation Fault Injection
(SWIFI) tools has been developing now a day. But there
15 no such SWIFI tool which introduced web service
technologies. Web service based SWIFI system wall
support automated fault mjection facilities; accommodate
a variety of fault injection techniques; emulate different
classes of faults; portability of different platforms; both
online and offline target systems; language independency
and leveraging existing facilities of most the SWTFT tools.
The proposed framework for implementing web service
based SWIFT systems is a result of brainstorming. More
study and research i1s required to implement this web
service based system.

REFERENCES

Looker, N. and J Xu 2003. Assessing the
dependability of SOAP-PC-based web services by
fault injection. TEEE Workshop on Object-oriented
Real-time Dependable System, pp: 163-170.

Looker, N., M. Munre and J. Xu, 2004. Testing web
services. In Proceeding 16th TFIP Intl. Conf. On
Testing of Communicating Systems, Oxford, pp: 1-5.
http://www.dur.ac.uk/
testcom2004. pdf

Web Services Architecture, 2004. W3C Working
Group Note. http://www w3c.org/TR/ws-arch/#whatis
Hsueh, M.C.,, TK. Tsai and RK. Iyer, 1997. Fault
mjection techniques and tools. IEEE Computer,
3: 75-82.

Some, RR., W.S. Kim, G. Khanovan, L. Callum,
A. Agrawal and J.J. Beahan, 2001. A softwaren
implemented fault injection methodology for design
and validation of system fault tolerance. Proc. IEEE
DSN’01, pp: 501-506.

n.e.looker/papers/

Inform. Technol. J., 5 (1)

Kanawati, G.A., N.A. Kanawati and J.A. Abraham,
1995 FERRARI: A flexible software-based fault and
error injection system. IEEE Trans. Computers, 44:
248-260.

Tsai, T.K., RK. Iyer and D. Jewitt, 1996. An approach
towards benchmarking of fault-tolerant commercial
systems. Proc. FTC-96, pp: 314-323.

Carreira, I., H. Madeira and J.G. Silva, 1998. Xception:
A technique for the evaluation of dependability
inmodemn Computers. [EEE Trans. Software Eng.,
24: 1-25. http://'www xception.org/files/I[EEET SES8.
pdf

Han S, K.G. Shin and H.A. Rosenberg, 1995.
DOCTOR: An integrated software fault imjection
environment for distributed real-time systems. Proc.
CPD’95, pp: 204-213.

143

10.

11

12.

13.

14.

:138-143, 2006

Dawson, S., F. Jahanian, T. Mitton, T.L.. Tung, 1996.
Testing of fault-tolerant and real-time distributed
systems via protocol fault injection. Proc. FTCS '96,
pp: 404-414.

Kao, W.L. and R K Iyer, 1994. DEFINE: A distributed
fault injection and monitoring environment. Proc.
IEEE-FTPDS 94, pp: 252-259.

Kao, WIL.,RK Tyerand D. Tang, 1993. FINE: A fault
mjection and monitoring environment. IEEE Tarns.
Software Eng., 19: 1105-1118.

Chandra, R., R M Lefever, M. Cukier and W.H.
Sanders, 2000. Loki: A state-driven fault imjector for
distributed systems. Proc.DSN-2000, pp: 237-242.
Tsai, TK., RK. Iyer and D. Jewitt, 2002. NFTAPE:
Networked fault tolerance and performance evaluator.
Proc. DSN’02, pp: 542-543.

	ITJ.pdf
	Page 1

