http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (1): 144-148, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

SYMTC: An Efficient Symbolic Model Checker for Embedded Systems

R. Boudour, M.T. Laskri and M. T. Kimour
Department of Computer Science, University of Annaba, Bp. 12, Annaba, Algeria

Abstract: In this study, we aimed at improving the performances of state space construction by using an
efficient method to avoid state explosion problem in model checking through the use of-DBM (Difference
Bounded Matrices) and on the fly strategy. This approach requires at any time, only the needed states to be
mn memory and allows for checking several properties, especially, safety, bounded liveness and temporal
correctness, which are the most important ones in reactive systems. The specifications are expressed m timed
automata and TCTL for the system and properties, respectively. The effectiveness of our approach has been
demonstrated on many academic examples. The results obtained demonstrate that it is able to verify several
properties that could not be checked by other state-of-the-art tools.

Key words: Model checking, timed automata, DBM, on the fly strategy, TCTL

INTRODUCTION

Model checking is emerging as a practical tool for
automated debugging of complex embedded systems. It
15 the most successful approach that's emerged for
verifying requirements!”. A model-checking tool accepts
system requirements or design (called models) and a
property (called specification) that the final system is
expected to satisfy. In model checking, a high-level
description of a system 1s compared agamnst a logical
correctness requirement to discover inconsistencies. The
model checker will either terminate with the answer true,
indicating that the model satisfies the specification, or
false, indicating that the model does not satisfy the
property and provides a counter example execution that
shows an execution trace that violates the claim. Counter
examples are one of the most useful features of model
checking, as they allow users to quickly understand why
a claim is not satisfied.

In this field, researchers are mainly faced with
application complexity especially in the embedded
systems domain. Among these 1s the state space
explosion problem. The latter 1s the subject of most model
checking research®”. Usually, this problem results from
the fact that the size of the state space is exponential in
the number of variables and concurrent umts in the
system.

In this study, we provide an approach to reduce state
space complexity and run time. It consists of an
appropriate exploration on the fly, which s based on a
data structure called DBM™®. We model the system by
timed automata and express requirements by TCTL (Timed
Computation tree Logic)**!.

Preliminaries and state of the art: Here, we present the
basic notions used in our approach.

Timed automata: Since their introduction by Alur et al™,
timed automata were studied under multiple facets, both
on the theory languages level and temporized models for
specification and checking. Indeed, problems such as
non-determinism, minimizing, the expressive power of
clocks, and logical characterization of timed languages!",
were studied. This model was used successfully in the
specification and the checking of timed systems, a large
presentation was done by Dill™. Timed automata are
Kripke structures with variables called clocks. Clocks are
variables that evolve in time, all at the same speed, except
the one that represents the umversal time which 1s never
set to zero. This general clock is often implicit.

Formally, a Kripke structure is a transition system
M=<S,R, L, A>. S consists of the set of possible states,
I 18 the set of initial states I = S, R a set of transitions,
R < Sx S, L is a set of labels and 4 an application of S in
2*F which associates with each state an element of AP
(AP: a set of atomic propositions).

A path m the Kripke model 1s an infinite sequence
0=8.,8,5%,.. €5, sl and (5, 5., € R. A state s is
reachable in M if there is a path from s.

TCTL: A temporal logic with timing: TCTL is the
quantitative extension of CTL where, temporal modalities
are subscripted with constraints on duration™'”. Formulae
are mnterpreted over Timed Transition System (TTS).

TCTL formulae: These formulae are given by the
following grammar:

Corresponding Author: R. Boudour, Department of Computer Science, University of Annaba, Bp. 12, Annaba, Algeria

Inform. Tecnol. J., 5 (1): 144-148, 2006

. =PLIP2[...|~¢|@A Y| E@U.c
Ap Ucey

Where, ~ can be any comparator n {<,<,=,2,>}, ¢ any

natural number and Pi € AP.

Standard abbreviations: include T, L, @V U, =1, ...
aswellas EF @ (forETU_ @), AF @(for AT U_ @),
EG_. ¢ (for —~AF_, —~ @) and AG._, @ (for ~EF_, —). Further,
the medalities U, F and G without subscripts are
shorthand for U ;, F ; and G,; . The size | ¢ | of a formula
¢ 13 defined in the standard way, with constants written
in binary notation.

Semantics of TCTL: The following clauses define when
a state s of some TTS T = (8, s,,.~, 1) satisfies a TCTL
formula @, written s [= ¢, by induction over the structure
of @ (semantics of boolean operators 1s omitted).

s|=EQU_.
ands s’s.t.
Time(s—=> 8")~c, 8" [=) and V" <, 8", 3" [= ¢
s = A@U_, y, iff ¥p e Hxec(s), Jo € Pref(p),
sts—= s §°,
Time(s—=— 8"} ~c,s" [=f and ¥s” < 8", 87 |= @

iff 9p € Exec(s) with p=o0-p’

Thus, in BE@U_, 1, the classical until is extended by
requiring that be satisfied within a duration (from the
current state) verifying the constraint __ .

Givena TA, A =<Q, C, g =4 lnv,, L,> anda TCTL
formula @, we write A |= @ when s, [= ¢.

Decision algorithm: One of the criteria of development
for the model-checking is its decidability, i.e. it is possible
to develop algorithms which calculate if the model of the
systemn checks or not the property specification. There are
varieties of algorithms according to the formalism used to
model systemn' as well as the type of property and its
specification language. The main criteria of development
of these algorithms are mainly the effectiveness and the
facility of implementation. Of course, the effectiveness is
strongly related to the theoretical complexity of the
problem of model-checking, but it is not equivalent.
Moreover, the development of the algorithms goes with
the importance of data structures for their implementation.
These structures must be relatively compact.

Zone: In practice, verification tools for timed automata
use regions, zones or BDD™? for exploring the state
space. A zone 1s a set of clock valuations definable by a
conjunction of constraints on the form x ~corx-y ~c,
where x andy are clocks, ¢ 13 a constant, and ~ 1s one
of the relational operators in {<;<,>;>}. A zone describes

145

a union of several regions, and is thus a coarser
representation of the state space. If we restrict the set of
guards and invariants by disallowing negations, then we
can easily restate the semantics of a timed automaton n
terms of zones rather than clock valuations: A symbolic
state 18 a pair (1; Z), where 1 13 a location and Z 1s a zone.
When computing the successor of a symbolic state, we
first compute the effect of an edge by applying the guard
of the edge and then projecting the zone according to the
updates on the edge. Second we compute the future of
the zone, i.e., the set of states which can be reached by
delaying, and apply the mvariant of the target location.
Using zones, we obtain a countable representation of the
state space. Here 1t becomes important to distinguish
between diagonal-free and non-diagonal-free timed
automata. The first class 1s the subset of timed automata
where guards and invariants are limited to conjunctions of
the form x ~c, where, ~ € {<;<;2;>}. Shaw!™ has proven
that for diagonal-free timed automata, we can construct
abstractions and do all the operations effectively
appearing in the algorithm.

Usaually the model-checker users simplify the model
which they analyze, until being able to control it. That
involves more distance between the model and the real
system. Tt is difficult to manage this compromise.
Currently, many theoretical researches seek to automate
certain aspects of this simplification step.

The main problem of the algorithms of model-
checking was the explosion of the number of states. This
explosion occurs each time one decides to emumerate and
to explicitly represent in memory all the states of the
automaton exammed. To surmount this obstacle, many
techniques are used such as, the symbolic model-
checking calling upon the zones to represent the sets
of states.

SYMBOLIC MODEL CHECKING

In short, model checking is a collection of techniques
for automated formal verification of finite-state concurrent
systems. We start off with a bird’s eye view of the
process (Fig. 1) and proceed to refine it in the following
paragraphs*'*.

Given a model (an abstraction of the system) and a
specification of the properties that are required to hold
(relating to absence of deadlocks, liveness, mvariants
etc.), the model checker verifies whether the former
satisfies the latter. A counter example 1s produced upon
discovery of a viclation.

This approach uses an algorithm of symbolic model
checking which calculates the unit characteristic of a
formula TCTL 1.e., the entire configurations 1 checked by
this formula. The main problem of the symbolic approach

Inform. Tecnol. J., 5 (1): 144-148, 2006

Design Specification

I I

Timed antomata TCTL formula
N/
Zone
I
Model checker
\
Ok No, her's why...

Fig. 1. Model checking: a high level view

relates to the procedure of decision. Indeed, to decide if
a set of states 15 included in another, we decide if a
predicate implies another. In order to solve this problem,
we propose a representation of the sets characteristic of
the formulas which 1s at the base of a decision procedure
implemented efficiently. The algorithm of symbolic model
checking comprises four steps: 1) to represent the
predicates of states, 2) to represent the temporal
constraints in form matrix, 3) to calculate the operator=4)
to evaluate symbolically the formulas of TCTL .

Being given a formula ¢ of TCTL and a timed
automaton, the symbolic algorithm consists in calculating
for ¢ the set S (¢) of symbolic states which represents the
characteristic set of ¢. Either A = (S, H, E, S, 8, P) an
timed automaton and ¢ 1s a formula of TCTL, S (@) 1s built
by induction on the structure of @ such the following
way:

S(p) =D{prSEnc)=D(xmc)
SE-yne)=D(x-yme), Sx@)=8(p)[x=0]
S (=) =3 () ; S (@A) =S{p)A S (@)

stEp, Up)= \/X,
keN

Where: X; = S (@) and X, = X,V S (@) VX,

SAaq)= \/X
keN

Where: 3; =8 (¢,) et X,

and Yk:\/j eN Y

=XV~ (Y [z = 0]

Table 1: Model checking tools

Operationnel Declarative Model

modeling specification inspection

language langage algorithm Tools

Biicki Automata PLTL Check & SPIN
Ag@A,

Kripke structure CTL Check that SMV
sae Sat(d)

Timed automata TCTL Check that Uppaal
[so].e8atf (D)

Timed automata TCTL Back. forward Kronos
reacheabilty

with Y= ({-3(@)r=X) v S(z=]
and Y,=Y' v-X >V

In order to implement this algorithm, a data structure
15 needed to represent zones and this data structure
allows testing inclusion of zones and computing easily
the different operations used in the algorithm, that 1s the
intersection of two zones, the future of a zone, the image
of a zone by a reset and the k-approximation of a zone. By
using the automata theoretic approach to model checking,
it 18 possible 1 many cases to avoid comstruction the
entire state space of the modelled system. This is because
the states of the automaton are generated only when
needed, while checking the emptiness of its intersection
with the property automaton. This tactic 15 called on-the-
fly model checking! %",

Remark: This algorithm is implemented in some tools
such as Knenos!"'¥ and Uppaal™.

Table 1 shows the main tools and their basic
compoenents as models (timed automata, ...), specification
language (PLTL: propositional linear temporal logic,
TCTL, ...) and exploration algorithms for reacheability
analysis and specification checlcing™".

EXPERIMENTAL RESULTS

To validate our tool, we chose three examples of
embedded systems, the Mouse with only one button!?,
temperature controller’™, train-gate controller and an
abstract example!”. To facilitate the comprehension and
comparison, we have chosen often used examples in the

literature.

TCTL properties: We have not only focused on safety
properties that constitute the majority of properties
required to verify systems, but also on other important
ones such as the bounded liveness and temporal
correctness properties. Bounded liveness property
guarantees that something will take place with giving the
deadline information. Temporal correctness property
avoids deadlock situations.

Inform. Tecnol. J., 5 (1): 144-148, 2006

Temporal correctness property: It is stated as follows:
¢ = (EFw = constant > 0, tested on the example 1.

The temporal correctness property is used to check
that the system is well modeled i.e. one cannot reach a
state of deadlock. This deadlock might occur when the
temporal constraints are not expressed correctly. For
example, an invariant of state 0 is x<3, the condition of
transition from the state O to the state 1 isx <3 In
the state 0, the system can remain no later than 5 time
umits. If the system remains in the state 0 more than 3 time
units, it cannot fire the transition between states O and 1.
This situation is a deadlock. It must be corrected. An
example of such situation is given here.

Bounded liveness property: For the mouse, we wish to
check the following property: if the button in a hurry and
were slackened once then inevitably before a time equal
with t.t t.4, the system detects a simple click or a double
click. This property is expressed in TCTL by the formula:

e=pPlATIAx=0)-AF<5(csV cd).

Safety property: The specification of the controller is
established for reasons of safety. If the controller does
not receive a new order of refrigeration before a time t_,
since the last order received, then it must also refrigerate.
This property is expressed by the following formula:

e=1r-— E-bUTA z>35),

This means that it is not possible to reach a state
which satisfies r in a time more than 35 time units, starting
from a state which satisfies r without passing by a state
which satisfies b.

Bounded liveness and safety properties are likely
applied on the train-gate controller exemple.

Results

The results given by SYMTC are synthesized on
Table 2. We can deduce that the complexity of the model-

Table 2: Recapitulative table of the results obtained by the SYMTC Checker

checking is a function of the parameters such as the
number of model states, the number of clocks and the
type of the property to be checked. We show here three
examples, which exhibit different characteristics (in terms
of number of states, number of clocks). For the mouse
model, the obtained results (satisfied property or not) for
the bounded liveness property is the same as those
shown Yovine"! and Shaw!d For the temperature
controller’s model, the positive result of safety property
is identical to that obtained Jaffe et ol while the other
obtained results are specific to our tool and can be used
as a basis of comparison in research works.

Table 3 shows the comparison between the regions
and symbolic approaches. It is worth noting that the gain
on the memory space is very important; it goes from 20 to
8547 times less.

Compared to the region’s method, our approach
reduces at a large extent, both the required memory size
and the execution time. Firstly, we explore all the model
states by saving the state invariants in a matrix, next, we
execute the algorithm at every matrix entry consultation to
recover the data. This will allow us to avoid exploration of
the whole graph. Secondly, to reduce the memory size, we
use the characteristic set concept or zone.

On the other hand, in contrast to other similar
extensions, we have used TCTL that has two main
advantages: it is based on traditional structures of kripke
[Kripke] and the model checking is done in polynomial
time. In addition to its similarity with Kronos!"”, SYMTC
has a graphic interface of timed models and a simulation
module, but it is not limited in reachability property, like
UPPAAL™. Furthermore, our approach allows more
properties to be checked such as the safety, bounded
liveness, and correctness ones, etc.

CONCLUSIONS AND FUTURE WORK

In this study, we proposed an approach to handle the
memory explosion problem in symbolic model checking
through the use of timed automata for embedded systems
model. The approach allows for checking various
important properties like safety, bounded liveness, and
temporal correctness. To this end, we used DBM

Example Property Checking result Numbers visits A number of bytes
Mouse Efy =5 Ratistied 103 857
PlATIAX=0) 5 AF<5(caV cd) Ratistied 131 429
Pl 5 ~E—-csUrl Ay=5) Not satisfied 47 349
Temperature Efz =10 Ratistied 83 1997
controller r "E-bU{Az>35 Ratistied 69 563
rtAbAx=0) SAP<35(rv b) Not satisfied 30 62
Abstract example EFw=1 Not satisfied 34 2632
Train AF<90(81) Ratistied 27 120
AG(Ar -~ AG(T = 120) not Su) Ratistied 36 210
Gate AF<38(8b) Not satisfied 75 390
AG(Ar- AG(B < 45)Bs) Satisfied 55 230

147

Inform. Tecnol. J., 5 (1)

Table 3: A comparison between regions and symbolic approach
Complexity (bytes)

Examples Regions” approach!! Symbolic approach
Mouse 8956 429
Controller temp erature 4 812 000 563
Example standard 824 000 2632

representation that brings a significant advantage due to
its ability to control the memory required. This approach
18 based on the fly invariant checking and checking TCTL
formulas expressible as least fix point. Another distinctive
feature of our approach relies in the use of dynamic cache
that brings more state space exploration speedups.

Compared to state of the art techniques, experimental
results of our approach, show that it scales very well, and
reduces the memory required without affecting results
quality and performance.

Future work would focus on varied verification
application domains, where state of the art model checkers
are not very efficient. We also plan to extend the
technique to verify more varied and complex properties.
There are a number of other ways that model checkers can
be improved to make them easier to use by engineers. One
problem with current systems is how to make the
specification language more expressive and easier to use.
Some type of timing diagram notation may be more natural
for engineers than TCTL. One trend for research is to
develop even more concise techmiques for representing
Boolean functions. When better representations are
developed, they can easily be incorporated into model-
checking algorithms. Other direction is 1in investigation
Model Checking techniques combined with very different
styles of reasoning into a single framework. The problem
15 how to combine and can smoothly mtegrate the results
obtained by each.

REFERENCES

1. Abadi, M. and L. Lamport, 1993. Composing
specifications. ACM Trans. Prog. Lang. Syst., 15:
73-132.

Abadir, M., K. Albin, J. Havlicek, N. Krishnamurthy
and A. Martin, 2003. Formal verification successes at
motorola. Formal Methods Syst. Des., 22: 117-123.
3. Alur, R., C. Courcoubetis and D. Dill.,, 1993. Model-
checking m dense real-time. Inform. Comp., 104: 2-34.
Dill, DL. 1994, A theory of timed automata.
Theoretical Computer Science, 126: 183-235.
Berard, B., B. Bidoit , A. Finkel, L. Laroussinie and
A. Petit et al, 2001. Systems and Software
Verification: Model-Checking Techniques and Tools,
Berlin-Heidelberg, Springer Verlag.

148

5.

10.

11

12

13.

14.

15.

16.

17.

18.

19.
20.

:144-148, 2006

Bouyer, P., 2002. Models and algorithms for timed
automata verificattion. Ph. D Thesis, High School
ENS-Cachan.

Clarke, EM. and I.M. Wing, 1996. Formal methods:
State of the art and future dmections. ACM
Computing Surveys, 28: 626-643.

Laroussinie, F., P. Schnoebelen and M. Turuani,
2000. On the expressive and complexity of
quantitative branching-time temporal logics. Comp.
Sci., 1776: 437-446.

Jaffe, M., N. Leveson, M. Heimdahl and B. Melhart,
1991. Software requirements analysis for real-time
process-control systems. IEEE Transaction Software
Eng.,17: 241-258.

Bryant, RE., 1986. Graph based algorithms for
boolean function mampulation. TEEE Trans. Comp.,
35: 677-691.

Wilke, T., 1994, Specifying timed state sequences in
powerful decidable logics and timed automata. Comp.
Sci., 863: 694-715.

Yovine, S., 1992. Méthodes et outils pour la
vérification symbolique de systémes temporisés,
thesis; Grenoble.

Pnwueli, A., 1997. The temporal logic of programs. 18th
TEEE Symposium on Foundations of Computer
Science (FOCS77), pp: 46-57.

Shaw, A., 1992, Communicating real-time state
machines. TEEE Trans. Software Eng., 18: 805-816.
Bryant, R.E., 1992. Symbolic boolean mampulation
with ordered bimary-decision diagrams. ACM
Computing Surveys, 32: 293-318.

Yovine, 3., 1998. Model-Checking Timed Automata.
In School on Embedded Systems. 1494, Computer
Science. Springer-Verlag,.

D’Orso, 1., 2003. New Directions in Symbolic Model
Checking. Ph.D Thesis Uppsala umversity.

Larsen, K.G., P. Pettersson and W. Y1, 1997. UPPAAL
in nutshell, J. Software Tools for Technol. Transfer,
1:134-152.

Anonymous, 2005, http//www.verimag. Imag.fr/
TEMPORISE/krenos/, 07/05.

Anonymous, 2005. http://www .uppaal.com/, 07/05.
Lutje Spelberg, R.F. and W.J. Totoenel, 2002.
Splitting Trees and Partiion Refinement 1in Real-
Timemoedel Checking. Proceeding of the 35th Hawau
International Conference on Systems Sciences.

	ITJ.pdf
	Page 1

