http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (1) 159-165, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Non-blocking Disk-tape Join Algorithm for Data on Tertiary Storage Systemns

Baoliang Liu and Jianzhong Li
School of Computer Science and Technology, Harbin Institute of Technology, China

Abstract: The Non-blocking Disk-tape join (NDT) presented in this study was the first disk-tape join algorithm
designed with the goal of producing join results as early as possible. It has three phases: the hashing phase,
the merging phase and the probing phase. Jomn results can be proeduced in each phase. Tuples of disk resident
relation and tape resident relation was read simultaneously into memory and be joined in the hashing phase.
The merging phase joins those tuples that flushed onto disk during the hashing phase. After the first two
phases, disk resident relation has been partitioned and then joined with remaming tape resident relation i the
probing phase. Experimental results showed that NDT can produce jomn results much earlier than the-state-of-art
CDT-GH and the performance of NDT was about the same with that of CDT-GH.

Key words: Non-blocking disk tape, algorithm, tertiary storage system, CDT-NB, CDT-GH, NDT

INTRODUCTION

New applications that need to manage massive data
have emerged in business environments as well as in
scientific areas. For example, the data warehouse system
of China Mobile at Heilongjiang province has to deal with
the data amount of several terabytes (TB) a year. All the
historical phene call records have to be saved in case of
further data analysis requirements, which has to resort to
tertiary storage like tape libraries to accommodate such a
vast amount of data. In scientific area the data amount
generated by sensors are even larger. For example, the
data amount returned by the Earth Observation System!"
one day was more than 1TB and it was required that the
data should be saved for at least 15 years! In order to
make full use of these gold mine, tools of data analysis
and data mining need to be developed. In these
applications, it is often required that a tertiary resident
relation to be jomned with a disk resident relation. For
example, in data warehouse system, fact table consists of
many detailed records whose data amount 1s too large to
fit in disk, but the dimension table, whose data amount
isn't too large, can be stored on disk. Such join operations
will take a long time to complete. Tt is desirable to deliver
at least a few result tuples as fast as possible. The reason
may be that all results need further processing, which
should start as early as possible. This behavior 1s lughly
desired for operations such as online aggregation, or
when a quick visual inspection of first results is desired,
in order to decide whether the join operation should
continue or be aborted. The purpose of this research was
to study disk-tape join method that can produce join
results as early and fast as possible.

Many researchers have been done to study disk-tape
join methods™™. The joins presented in these works could
be classified into two kinds: nested loop joins and
hash-based joins. The emphases of these works were to
parallelize the disk I/O and tape /O to reduce the total /O
cost which determined the join performance. The first
work that studied disk-tape join methods is presented by
Myllymaki and Livny'?, its main purpose was to study the
resource (main memory, disk) requirements of different
disk-tape join methods. In Myllymaki and Livny™ the
methods of migrating disk join into tertiary join were
studied. And the performances of different tertiary join
were compared. It was showed that CDT-GH™ is the
candidate to join disk resident relation with tape resident
relation. So we only compare NDT with CDT-GH m our
experiments. Kraiss et al™ proposed a detailed cost model
for nested block join under resource competition and he
also studied how to improve the performance of nested
block join methods. All the join algorithms presented
above are all blocking algorithms that users need to wait
quite a long time to see the first result. Because in these
algorithms disk resident relation has to be loaded into
memory, hashed and written back onto disk (this process
1s also called partiioning phase i1 some papers). No join
results can be delivered until partitioning phase is over.

This study presents NDT which is a non-blocking
jom algorithm that join results can be produced as well as
partittioning the disk resident relattion. NDT 1s designed
with two goals in mind: (1) Jein result should be produced
as early as possible. (2) The join performance shouldn't
deteriorate much than the state-of-the-art disk tape join
algorithms like CDT-GH. The execution of NDT can be

Corresponding Author: Baoliang Liu, School of Computer Science and Technology, Harbin Institute of Technology, China

Tel: 86 21 50270900/215

Inform. Technol. J., 5 (1): 159-165, 2006

divided into three phases: the hashing phase, the merging
phase and the probing phase. The hashing phase 1s
similar with the partitioning phase of CDT-GH but differ in
that tuples of both R and S are read into in-memory hash
buckets simultaneously based on their hash values. Then
tuples m the corresponding buckets are joined together
and the early join results are output. Once the memory
gets filled, some bucket pair of relation R and S are chosen
to be flushed onto disk. After relation R is finished
hashing, the merging phase takes control and tuples that
are previously flushed to disk are joined together. The
probing phase s similar with that of CDT-GH since
relation R has been partitioned. Chunks of relation S are
loaded into remamming disk buffer space, hashed and
joined with the corresponding partition of R. The probing
phase 1s iterated until relation S 1s exhausted.

RELATED WORK

Disk-tape Join methods: Disk-tape joins can be classified
into two kinds: nested loop joins™? and hash-based
joins®?. The two kinds of disk-tape joins are
described below:

Disk-tape Nested Loop join (DT-NB) is simple but
not very efficient. Tt is the first join that studies the join
between disk resident relation and tape resident relation.
Tt reads a chunk of S into buffers and joins it with R. For
each chunk of relation S, R needs to be scanned once.
CDT-NB is the concurrent version of DT-NR, in which
double buffering technology™ is used to parallelize disk
T/O and tape I/O. When chunk of S is read from tape into
one buffer, chunk of S 1n another buffer which was read in
the previous cycle is simultaneously joined with R. Then
the two buffers are switched their roles. Memory or disk
can both be used as buffers. Technologies are proposed
that one physical buffer 1s used to implement two logical
buffers”. According to the buffers used, CDT-NB has
the memory buffer version (CDT-NB/MB) and the disk
buffer version (CDT-NB/DB).

Disk-tape Hybrid Hash join (DT-HED® is a
modification of classic Hybrid Hash Join'™. It operates
exactly as the classic one except that Phase I where both
relations are hash partitioned on disk is modified to
read relation S from tapes. Disk-tape Grace Hash jomn (DT-
GH)™ is similar with Grace Hash join ' except that S are
read from tapes. CDT-GH™ is the concurrent version of
DT-GH. CDT-GH is the candidate to join disk resident
relation and tape resident relation™. So we only compare
NDT with CDT-GH in the present experiments. We briefly
describe the working procedure of CDT-GH below:

* In Step 1, relation R 1s partiioned and it 1s required
that each partition can be loaded into memory in full.

160

Step 2 is iterated until S is exhausted. In each
tteration (12 0), |3] =|D| - R| blocks of S data are read
from tape, hashed and written into disk partitions
(S 18 partitioned by the same method with partitioning
R). A join process then reads each partition of R into
memory and joins it with the corresponding partition
of 8. Simultaneously a hash process reads data from
S and produces the hash partitions needed m the
next iteration.

Non-blocking Join methods: The blocking behavior has
been noticed by the database research community
recently and several disk non-blocking join methods have
been proposed. Examples are Symmetric Hash Join
(SHINY, XJoin"™, Hash Merge Join (HMI) ™ and
Progressive Merge Join (PMI)!'™,

SHT is the first non-blocking join method. In SHT, two
hash tables are built simultaneously in memory. When a
tuple arrives, it firstly inserted into its corresponding hash
table and then probes against the other. SHJ requires that
both relations can fit n memory at the same time. XJoin 1s
multi-thread extension of SHJI. In XJoin, when memory
gets filled, the largest bucket of the two hash table is
flushed onto disk. The flushed buckets are then joined in
the last phase of XJoin. HMT consists of hashing phase
and merging phase. In the hashing phase, tuples of the
two data resources are joined i memory which 1s similar
with SHJ. Once the memory becomes full, a bucket pair
with the same hash value is flushed onto disk. In the
merging phase, buckets that previously flushed are
joined. The hashing phase and the merging phase can
execute alternatively. The merging phase 1s only executed
when the two data sources get blocked or the hashing
phase 1s over. PMI is the non-blocking version of
traditional sort-merge join. One chunk of R and one chunk
of S are read simultaneously into memory, sorted and
merged. Then they are written back onto disk. Finally the
sorted chunks on disk are joined. Care must be taken that
no duplicated results are produced.

COST MODEL

In this study we employed a transfer-only T/0 cost
model""'?, that is to say, I/0 cost is the main factor that
determines the performance of join algorithms and the
CPU processing time is ignored. In tertiary storage
systems, we consider not only disk I/O but also tape 1/O.
Note that disk /O may be overlapped with tape /O
because the data loading from disk and tape drives can be
parallelized.

We assume that all disk accesses are multi-page /0O
requests. The cost of a disk access is therefore derived by
the amount of the data transferred. The seek cost and

rotational latency are ignored. As shown by Hagman™?,

Inform. Technol. J., 5 (1): 159-165, 2006

Table 1: Cost model parameters

Parameter Description

R Disk resident relation

K} Tape resident relation

R] MNumber of blocks in relation R

T First chunk of relation §

Siiz1) Chunks of relation S except the first chunk
Xp Data transfer rate of disk

Xr Data transfer rate of tape

disk seeks and rotational latency play a relatively minor
role compared to the transfer cost when disk requests are
at least moderately large. NDT scans relation S
sequentially and doesn't randomly access data until it 1s
migrated onto disk. So the tape positioning time is ignored
too. Typically the analyses of join algorithms!'~? do
not take mto account the output cost of join results
because they are deemed the same for all join algorithms.
Tt is also ignored in this study. Table 1 shows the cost
model parameters.

NON-BLOCKING DISK-TAPE JOIN

The basic idea behind NDT is to read tape resident
relation S as well as we partition R and join them as early
as possible. NDT has three phases: the hashing phase,
the merging phase and the probing phase. The hashing
phase is first executed and after the hashing phase is
finished, the merging phase and the probing phase are
executed concurrently to parallelize disk /0 and tape /0.
Join results can be produced in each phase. To describe
the algorithms clearly, we refer to the first chunk of S that
is loaded onto disk from tape as T and the following
chunk of S as 5,(i = 1). We describe each phase in detail
below.

HASHING PHASE

Tn the hashing phase, tuples of R and T are read from
disk and tape simultaneously, hashed into their in-memory
hash table, respectively. The two hash tables are built
with the same hash function, hence they have the same
number of buckets, denoted by Ryand T, (i =1, ..., N),
respectively. Tuples m R, and T, have the same hash
value. Once a new tuple t arrives, it is first hashed to its
destination buckets, take R; for example. Then the
correspending bucket of T, 1s probed. A join result will be
output if there is a match. If the memory becomes full, a
bucket pair (R;, T;) will be chosen according to some flush
policy. The tuples in the two buckets are sorted and then
be written onto disk. In each hash table, the tuples in the
flushed bucket is only part of all the tuples with the same
hash value. The flushed bucket is called bucket run and
all the tuples of R (similar for S) with the same hash value
are called a partition of R (S) in the following to
distinguish them clearly.

161

There are four flush policies proposed in™. The flush
policy has much influence with the efficiency of HMIT, but
it has little influence to NDT because the cost of the
probing phase determines the overall join performance in
NDT. In this experiment we cheose Flush Largest Policy™
which means that the largest bucket pair in memory are
chosen to be flushed when memory get filled.

The hashing phase 1s ended when R is partitioned.
All the tuples in memory are sorted and written into the
last bucket runs of the corresponding partitions. Note in
the hashing phase the hash function is chosen so that
each partition of relation R can be leaded mnto memory in
full, because these partitions are needed to join with
remaining chunks of 5 in the probing phase.

The details of hashing phase are described below:

Procedure HashingPhase
Input: disk resident relation R
first chunk of tape resident relation S, denoted by T
Output: part of the join results
Sorted bucket mns of R and T
Begin
WHILE not end R DO
read tuple from R and T concurrently
IF there is no enough memory to accommodate tuple h THEN
The flushing policy chooses a bucket pair (R,, T,).
Ry and T, are sorted respectively.
Flush buckets R;, and T, onto disk.
Dispatch h to its destination buckets Ry (or Ty).
Join h with all tuples in corresponding bucket Ty, (or Ry).
Flush the memory tuples to the last corresponding bucket nuns

[0 00 =1 &y b B b

=}
=5

The cost of hashing phase 1s obviously (2|R[+T|VX;,
because 1n the hashing phase, relation R need to be read
into memory once, hashed and then written back onto
disk. T needs to be written onto disk from memory. Note
that the size of T 1s chosen so that the cost of reading T
from tape into memory is overlapped with reading R
from disk.

MERGING PHASE

The merging phase deals with those bucket runs that
are previously flushed onto disk duning the hashing
phase. For each hash bucket with hash value b, there are
m, bucket runs for relation R, and T,.

In the merging phase, we allocate one block of
memory for buffer space for each bucket run of partiton
R, and T, Then we merge all the runs of R, and
concurrently merge all the runs of T,. As tuples of R, and
T, are generated in sorted order by these merges, they can
be checked for a match. When a tuple from R, matches
one from T, and the two tuples didn't be flushed onto disk
together, output the pair. This procedure is iterated for all
the partitions of R and T.

Inform. Technol. J., 5 (1): 159-165, 2006

The details of merging phase are described below:

Procedure MergingPhase

Input: Sorted bucket runs of R and T
Output: Part of join results

Begin

1. FORi=1toNDO

2. tr = first tuple of Multi-way merge bucket mns of R

3 ts = first tuple of Multi-way merge bucket runs of T;.

4. WHILE not end R AND not end T DO

5. TF tr match ts AND they are not be flushed together

6. THEN output the join result

7. ELSETF tr < ts THEN

8. tr = next tuple of Multi-way merge bucket mns of R;.
9. FLSE ts = next tuple of Multi-way merge bucket mins of T..
End

The cost of merging phase is obviously (|R|+HT| ¥,
PROBING PHASE

The probing phase is iterated until S is exhausted. Tn
each teration I(1 > 1), [S] = |D| - |R]| blocks of S data are read
from tape, hashed and written into partitions which are on
the disk. A join process then reads each partition of R into
memory and joins it with the corresponding partition of S.
Note that a hash process can simultaneously read more
data from S and produce the hash partitions needed in the
next iteration.

The details of probing phase are described below:

Procedure ProbingPhase

Tnput: Partitioned R
Remaining tape relation S

Output: Join results

Begin

1. k=0i=1

2. copy S from tape and hash it onto disk buffer I,

3. WHILE not empty I, DO

4 start copying Si; from tape and hash it into disk buffer I,
5. WHILE not end of R DO

6 Load partition R; inte memory

7 Load partition S; from disk into memory and compute S;pR;
8. =il

9, wait until S, copied to T,

10, i=itl, k=1k

End

Same physical disk space 13 used to implement two
logical buffers!”. The cost of reading remaining S from
tape onto disk is (|S] - |T|)/¥; and the data need to be read
into memory from disk again, the cost of whichis
(IS|-T|)/X;. The cost of reading partitioned R from tape
mto memory 18 |R|/X;,. And the partitioned R needs to be
read into memory for [|S-T|/[D - R| |times. Partitioned R
and remaining S can be read simultaneously, so the cost
of probmng phase 1s:

max §|S-T)/Xy [S-T|/[D -RI- R/ Xp +2/S-T) /X }

162

CORRECTNESS OF NDT

Here, we show that NDT is correct in that all the join
result can be produced by NDT and no duplicate result
can be output either.

Theorem 1: Let R be a disk resident relation and S be a
tape resident relation, then NDT returns all the results
of RS

Proof: Assume that r £ R and s £ S and (1, s) satisfies the
join condition but they are not outputted as join result.
There two cases we shall consider: (1) the case when
s € T.(2) The case whens € S§(i > 1).

Case 1: Since r and s satisfy the join condition, they must
be dispatched by the hash function to the corresponding
partitions R, and T,. Assume reR, and s<T,, R, and
T, are the bucket muns of partition Rk and T, Ifi equals to
I tuple rand s are flushed together. If r is first read into
R, .s will probe all the tuples in R, when s arrives. Tuple
r must be joined with s and (r, s) be output. If i doesn't
equal to j, tuple r and s are not flushed together. Since r
matches s, they satisfy the join condition in the algorithm
of merging phase and (r, s) must be output as join result.

Case 2: tuple s must be hashed into some disk partition of
3, by the hash process. Then the join process reads the
corresponding partition of R, into memory, all the tuples
in 3, are joined with all tuples of R,. Since r must be in Ry,
(r, 8) can be output.

From the discussion above, we conclude that the
assumption that (r, s) is not output by NDT is not
possible. Thus, NDT produces all output results.

Theorem 2: et R be a disk resident relation and S be a
tape resident relation, then NDT returns all the results of
R »a S exactly once.

Proof: Assume thatt € R and s € S and (r, s) satisfies that
join conditions. We assume that (1, 8) are reported by
NDT more than once. Note that the chunks of S are the
partitions of tuples of S. There is no tuple s that belongs
to S, and S, (i # j) at the same time. So we have:

RraS=U R=8){ix08,=T)
B R

So we can prove the theorem by proving that NDT
returns all tuples of R »a §; (i = 0) exactly once. There two
cases we shall consider: (1) the case whens £ T. (2) The
case whens £ 5, (1> 0).

Case 1: (1, 3) could be produced in the merging phase, the
hashing phase or both. Tt is obviously that both hashing

Inform. Technol. J., 5 (1): 159-165, 2006

phase and merging phase can't output (r,) more than
once. Let's first assume that (r,) is produced in the
hashing phase more than once. Then if r is first inserted
into the hash table, it is only joined with s when s arrives
and there is no other chance to join r and s again. So the
assumption that (r, s) is produced more than once in the
hashing phase is not correct. (r, 8) can not be outputted
more than once in the merging phase too, because r and
s are generated in sorted order and r is checked for a
match with s only once. (1, 8) can not be produced both in
the hashing phase and in the merging phase. If (1, s) is
produced in the hashing phase, r and s must be flushed
onto disk together which prevent r from joining with s in
the merging phase. With the same reason, if (r, s) is
generated in the merging phase, (r, s) can not be
generated in the hashing phase.

Case 2: tuple s must be hashed into some disk partition of
3, by the hash process. Then the join process reads the
corresponding partition of R, into memory, each tuple in
3, is joined with the tuples of R, Se (r, s) is only
produced exactly once in this case.

From the discussions above we can conclude that
the assumption that (r, s) be output more than once
is not possible. Thus, NDT produces each join result
exactly once.

RESULTS

We implemented NDT on a 550 MHz Pentium system
running Linux 7.2. The computer has 128 Mbytes of main
memory, 20 Gbytes of disk space and an INITIO SCSI-2
bus, which connect to a tape library (Exabyte 220L). The
tape library has two Eliant 820 drives. The cartridge
capacity is about 10 GB without compression.

We only compare NDT with CDT-GH because CDT-
GH is the candidate to join a disk resident relation with a
tape resident relation. Since our purpose is to compare the
performances of NDT and CDT-GH under the same
condition, we reduce the size of main memory and disk
proportionally and at the same time we reduce the size of
dataset. The dataset was generated synthetically. The
tuple size of relation R is set to 1024 bytes long and the
tuple size of relation S is fixed at 9 times of that of
relation R. The number of tuples in both relations was the
same in all the experiments. The dataset size is increased
by increasing the tuple number of both R and S at the
same time. And the join keys are uniformly distributed in
a range of 1,000,000,000 values.

Total performance: We first tested the efficiency of the
NDT and compare it with that of CDT-GH. In the
experiment, dataset size varied from 2 to 10 Gbytes. The
memory size and disk size was fix at 20 and 400 Mbytes,
respectively. The total execution time of NDT is very

163

2500

1500

Exec. time (sec)

1000 5

500

10
Dataset size (GB)

Fig. 1: Total performance related to the dataset size

100 7 N o . —
o v - hdl
80
ey
& 60
g
g 40 -
& —— CDL.GH
—=— NDT
20 -
2 4 6 3 10

Join result num (*1000)

Fig. 2: Performance of producing the first k results

similar with that of CDT-GH and the slopes of the two
lines are very similar too, which indicate that the NDT
algorithm is as efficient as CDT-GH to deal with
massive data and scales well with the increase of
dataset size (Fig. 1).

Performance of producing first k results: Tn the
second experiment, we compared the efficiencies
of producing first k results of NDT and CDT-GH.
Weuse the 2 Gbytes dataset, in which relation R is
200 Mbytes. Memory size and disk size is fixed at 20
and 400 Mbytes, respectively. The results showed that
NDT took much less time to produce the first 10000 join
result than CDT-GH (Fig. 2). Tt took only about 10 in
NDT to produce the first 10000 join results while it took
about 92 in CDT-GH to produce those results. The first
tuple is seen at almost the beginning of NDT, but it
took about 72 to produce the first result in CDT-GH.
We can see from the two experiments that NDT is as
efficient as CDT-GH and can produce join result much
earlier that CDT-GH.

Inform. Technol. J., 5 (1): 159-165, 2006

80
70

50

Exec. time (sec)

30 —— CDT-GH

—&— NDT
10 e T e ——
0 T T T T 1

0.2 04 0.6 08
Mermary size (*R)

Fig. 3. Effectiveness of memory size to the performance
of producing the first k results

300 4
)
&
E 200
g
&
100 4
—— CDT-GH
—s— NDT
P e e m——
2 4 6 8 10
Disk size (*R])

Fig. 4 The effectiveness of disk size to the performance
of producing the first k results

Performance of producing the first k results related to
memory size: In the third experiment, we fixed the
dataset size at 2 and varied the memory size from 20 to
100 Mbytes to study how memory size affects the
performances of producing the first k results. The
execution time of CDT-GH and NDT both decreased as we
increase the memory size (Fig. 3). Although the execution
time of CDT-GH decreased much faster than that of
NDT, the execution time of CDT-GH is still much larger
than that of NDT, because in CDT-GH join result can only
be produced until relation is partitioned. ITn NDT, these
result are produced in the first two phase, so they are
produced much earlier than in CDT-GH.

Performance of producing the first k results related to
disk size: In the last experiment, we tested the
performance of producing the first k result related to the
disk buffer size. 2 Gbytes dataset was used and the
memory size is set to 20 Mbytes. The disk size varied from
400 Mbytes to 2 Gbytes. The execution time of producing
the execution time of CDT-GH increased as the disk size

164

is increased while the execution time of NDT remains the
same (Fig. 4). The reason is in CDT-GH the first chunk of
relation S needs to be hashed onto disk first and the larger
the disk size the longer it will take to hash the first chunk
since the chunk size increases with the disk size. While in
NDT, the first chunk of S is read concurrently with
partitioning relation R and many the join results were
produced in the first two phase.

CONCLUSIONS

In this study, Non-blocking Disk-tape (NDT) join is
proposed which join disk resident relation with tape
resident relation. Such join operation is often required by
modern applications that need to manage massive data.
Examples are data analysis tools and data mining tools.
This kind of join operation often needs a long time to
complete, s0 it is favourable to produce the join result as
early as possible. The execution of NDT can be divided
into three phases: the hashing phase, the merging
phase and the probing phase. In the hashing phase,
tuples of R and S are read into in-memory hash buckets
simultaneously based on their hash values. Then tuples
in the corresponding buckets are joined. Once the memory
gets filled, a bucket pair is chosen to be flushed onto disk.
After relation R is finished hashing. The merging phase
takes control and tuples that are previously flushed to
disk are joined together. In the probing phase, S are
hashed onto disk in chunks and joined with the hashed
version of R. The probing phase is iterated until S is
exhausted. Experimental results show that NDT can
produce join results much earlier than the-state-of-art
CDT-GH and the performance of NDT is about the same
with that of CDT-GH.

ACKNOWLEDGMENTS

Supported by National Natural Science Foundation
of China under Grant No. 60273082; the National
High-Tech Research and Development Plan of China
under Grant No. 2001AA41541; the National Grand
Fundamental Research 973 Program of China under Grant
No. G1999032704.

REFERENCES

Frew, J. and I. Dozier, 1997. Data management
for earth system science. ACM SIGMOD Rec.,
26: 27-31.

Myllymalki, J. and M. Livny, 1996. Disk-tape joins:
Synchronizing disk and tape access. Proc. ACM
SIGMETRICS, Lausanne, Switzerland, pp: 279-290.
Myllymalki, J. and M. Livny, 1997. Relational joins for
data on tertiary storage. Intl. Conf. Data Eng.,
Birmingham, UK, pp: 159-168.

Inform. Technol. J., 5 (1): 159-165, 2006

Kraiss, A., P. Muth and M. Gillmann, 1999.
Tape-disk strategies under disk contention. Intl.

Conf. Data Eng., Birmingham, Australia,
Pp: 552-559.

Myllymaki, J. and M. Livny, 1996. Efficient buffering
for concurrent disk and tape T/O. Proc.

Performance'96, Lausanne, Switzerland, pp: 453-472.
Shapiro, I.., 1986. Join Processing in database systems
with large main memories. ACM Trans. Database
Sys., 11: 239-264.

Wilschut, A. and P. Apers, 1999. Pipelining in query
execution. Conference on Databases, Parallel
Architecture and their Applications, Miami, TISA,
pp: 68-77.

Urhan, T. and M.J. Franklin, 2000. XJoin: A
reactively-scheduled pipelined join operator. Data
Eng. Bull,, 23: 27-33.

165

9.

10.

11.

12.

Mokbel, M. and M. Lu and W. Aref, 2004.
Hash-merge join: A non-blocking join algorithm
for producing fast and early join results. ITntl. Conf.
Data Eng., pp: 251-263.

Dittrich, T.P., B. Seeger, D.Taylor and P.Widmayer,
2002. Progressive merge join: A generic and
non-blocking sort-based join algorithm. Proc. Conf.
Very Large Databases, Hong Kong, China,
pp: 299-310.

Hass, L.M., M.I. Carey and M. Livny, 1993. Seeking
the truth about ad hoc join costs. Tech. Rep., 1148,
Univ. Wisconsin Madison, pp: 241-256.

Hagmann, R.B., 1986. An observation on database
buffering performance metrics. Proc. Conf. Very Large
Databases, Kyoto, Tapan, pp: 289-293.

	ITJ.pdf
	Page 1

