http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (2): 329-331, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Normalizer: A Case Tool to Normalize Relational Database Schemas

Nabil Arman
Palestine Polytechnic University, Hebron, Palestine

Abstract: Relational Database Schemas represent the database schema as a collection of relation schemas.

Sometimes, these relation schemas are poorly designed and need to be decomposed 1 an attempt to choose

“good” relation schemas. In this study, we used the theory of relational database normalization to develop a
case tool, called Normalizer, to automate the process of relational database normalization.

Key words: Case Tools, normalization, relational database design

INTRODUCTION

Normalization in relational databases is an important
step m database design The process of doing that
manually, as we see in these days, makes 1t difficult and
takes so much time, in addition to that, the human may
make mistakes in doing normalization.

Normalizer 1s designed as a case tool that helps the
database designers to perform the relational database
schemas normalization quickly and accurately. This saves
the time and effort of database designers and thus frees
them to focus on other aspect of the database design
process. The main objectives of Normalizer are:

¢ To perform normalization automatically and
accurately.

* To reduce the time needed to perform the process of
normalization.

To avoid human error in the normalization process.

The single most important concept in relational
schema design is that of a functional dependency. A
functional dependency is a constraint between two sets
of attributes from the database. Suppose that our
relational database schema has N attributes A, A,..... A,.
Let us think of the whole database as being described by
a single umversal relation schema R = {A,, A,,..., A} We
do not unply that we will actually store the database as a
single umversal table, but we use thus concept only in
presenting the formal theory of data dependencies. A
functional Dependency, denoted by X-7Y, between two
sets of attributes X and Y that are subsets of R specifies
a constramnt on the possible tuples that can form a relation
state r of R. The constraint is that, for any two tuples t,
and t, in r that have t,[X] = t,[X], we must also have
t[¥] = t[Y] This means that the values of the Y
component of a tuple in r depend on, or are determined
by, the values of the X component, or alternatively, the

329

values of the X compeonent of a tuple umiquely (or
functionally) determine the values of the Y component.
The abbreviation for functional dependency is FD or f.d.
The set of attributes X 15 called the left-hand side of the
FD and Y 1s called the nght-hand side. Thus X
functionally determines Y in a relation schema R if and
only if, whenever two tuples of r(R) agree on their
X-value, they must necessarily agree on their
Y-value!™.

NORMALIZER DEVELOPMENT

Normalizer depends on two major algorithms to
perform the normalization to the Second Normal Form
(2NF) and Third Normal Form (3NF). Since we assume that
we are dealing with relations, the definition of relation
guarantees that the relation s in 1NF.

The formal definition of 2NF states that a relation
schema R 15 in ZNF if every non-prime attribute 1s fully
functionally dependent on every key in R. Therefore, the
algorithm first determines the non-prime attributes and
then tests for partial functional dependencies. Non-prime
attributes are those attributes that are not part of the
Candidate Keys (CK) attributes.

The algorithm 1s presented below:

Procedure Second_Normal_Form_Normalization(
R: Relation Schema,
SCK: Set of Candidate Keys,
8FD: Set of Functional Dependencies)

determine the set of non-prime attributes (SNPA)
for each attribute A in SNPA do
{
for each FD in SFD do
{

if A is aright-hand side of FD
&& the left-hand side is not one of the
candidate keys
&& the left hand side is a proper subset of a
candidate key then
{

Inform. Technol. J., 5 (2):

Split R into two relations R, and R such that R, contains the
attributes of FD and atiributes that are dependent on A and R,
contains the remaining attributes and the left-hand side of FD
CallSecond Nommal Form Normalization{ R, SCE_SFD-FD)
¥ Hendif
1/ end inner for
} // end outer for
1/ end procedure

The formal definition of 3NF states that a relation
schema R is in 3NF if whenever a functional dependency
X—A holds in R, then either X is a candidate key or A is
a prime afttribute. Therefore, the algorithm needs to
determine the set of prime atiributes and then tests the
functional dependencies to determine the violations.
Although Third Normal Form Normalization algorithm
can be used to perform the normalization up to the 3NF
directly, without having to go through the 2NF
normalization, we have chosen to develop an algorithm to
perform 2NF normalization since some database designer
prefer to stop at 2NF (for performance reasons).

The Third Normal Form Normalization algorithm is
presented below:

Procedure Third Nomal Form_Normalization(
R: Relation Schema,
SCK: Set of Candidate Keys,
SFDx Set of Funchional Dependencies)

determine the set of prime attributes (SPA)
for each FD in SFD do
{
if the right-hand side of FD is not in SPA
&& the left-hand side is not one of the candidate keys
then
{
Split R into two relations Ry and R such that
Ry contains the attnbutes of FD and R; contains
the remaining attributes and the left-hand side of FD
Call Third Normal Form
Normali zation{ R, SCK_SFD-FD)
1/ endif
+ I/ end for
} /! end procedure

-
=]

29-331, 2006

The two algorithms are recursive in nature, since
relation splitting or decomposition should continue
until there is no violations of the 2NF and 3NF.

NORMALIZER DEMO

Normalizer is a Case Tool that has a GUI
interface that is very simple and easy to use. To use
Normalizer, and after launching the application:

The user should first enter the relation name in the
appropriate text box.

The use should enter the relation atiributes one by
ong, pressing INSERT button to add the attribute to
the aftribue list.

The user should enter the Candidate keys one by
one. pressing INSERT button to add the key to the
candidate keys list. I a candidate key contains more
than one atiribute, the user should separate the
atfributes by commas. For example, A, A,
represents a candidate key that is composed of
attributes A, and A,.

The vser should enter the functional dependencies
by inserting the FD left-hand side in the textbox
berfore the arrow and the FD right-hand side in the
text box afier the arrow.

Figure 1 shows an example that explains the input of
the Normalizer case tool. The main function for each

button 1s:

Insert Button: Used to input the attributes of relations or
Candidate keys or a functional dependency.

New Button: Used to begin a new normalization process.

Normalize Button: Used to perform normalization and
generate the result of the normalization process.

Fia Help

Database Normalizer
Frelahon Hama W

Antures And Feys
Adtritsn mean | [5THO a] Cheme
[e (3 I
CHO
CHAME
VEAR
COuRSE
AOOMNO
FOOMHAME <
Functional Dagandsncy

— [[STHO.CHG VEAR

[— |

Il\l.ll

STHO
CHO
ROOMND

Fig. 1: Input relation example

STHAME
CHAME
RODMMNAME

330

Ewr

Inform. Technol. J., 5 ¢2): 329-331, 2006

Mormalization output

[_[51x]

Nommalization Result For

RELATION

Second Momal Form

Keys

[STNAME.STHO)
[CHAME CNO)

Third Momal Form

[STND,IfND,‘KEAF\,EDUF\SE_RUDMND,HDDMNAME,ELAS 5]

[STNOI
[CHO;

one of the candidate keps

Keys

[ROOMNAME ROOMNO)

[STNO.CNOYEAR COURSE_ ROOMNO CLASS)
[STHAME 5TND)

[CHAME.CNO)

(ROOMNO)
one of the candidate keys
[STHO)

[CNO)

Fig. 2: Output relations from the normalization process

Exit Button: Used to exit the application (Normalizer).
The File menu contains three menu items, which perform
the same functions as (New, Normalize, and Exit) buttons.
Figure 2 shows the output screen, which contains the new
relations that result from the original relation after
normalization to the 2NF and 3NF.

Back button: Used to return to the main screen.
Normalizer has been tested with this relation by
entering the relation as shown in Fig. 1. Figure 2 shows
the output screen, which contains the new relations that
result from the original relation.
To apply Second Nommal Form Normalization
algorithm, the input of the algorithm is given by:

RELATION(STNO, STNAME, CNO, CNAME, YEAR,
COURSE, ROOMNO, ROOMNAME, CLASS)
SCK: {{STNO, CNO, YEAR)}
SFD:{STNO—STNAME, CNO —
CNAME, ROOMNO — ROOMNAME}

The algorithm first determines the set of non-prime
attributes:
SNPA= {STNAME, CNAME, COURSE, ROOMNO,
ROOMNAME CLASS}
The algorithm tests
SFD.

each functional dependency in

ForFD1: STNO— STNAME and since STNO is a proper
subset of (STNO, CNO, YEAR), then this functional
dependency violates 2ZNF, and the relation needs to be
split into two relations:

R1(STNO, STNAME)
R2(STNO, CNO, CNAME, YEAR, COURSE, ROOMNO,
ROOMNAME, CLASS).

331

The algorithm then recursively call itself with R as the
input relation, SFD-FDI1 as the new set of functional
dependencies, and the same set of candidate keys. Doing
the same for the other functional dependences produces
the result shown in Fig. 2. The application of
Third Normal Form_Normalization algorithm is very
similar to the application of Second Normal Form_
Normalization algorithm.

CONCLUSIONS

In this study, we used the theory of relational
database normalization to develop a case tool, called
Nommalizer, to automate the process of relational database
normalization. Normalizer uses a GUI interface that is
simple and casy to use. Normalizer is very useful for
database designer who may be very busy to manually
perform the normalization of the relational database
schemas, and need to focus on other aspects of the
database development process.

REFERENCES
1. Elmasr, R. and S. Navathe, 2003. Fundamentals of
Database Systems. 4th Edn., Addison-Wesley,
2. Ullman, J., 1989. Principles of Database and
Knowledge-Base Systems. Velume II, Computer
Science Press, pp: 2.
3. Silberschatz, A., H. Korth and S. Sudarshan, 2003.

Database System Concepts. 4th Edn., McGraw-Hill.

	ITJ.pdf
	Page 1

