http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (3): 416-421, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Hardware Implementation of Instruction Level Parallel Architecture Incorporating
Special Functional Units for Image Processing Algorithms

M. Kannan and S.K. Srivatsa

Department of Electronics Engineering, MIT Campus, Anna University,
Chromepet, Chennai-44, Tamil Nadu, India

Abstract: Parallel processing 1s an efficient form of information processing with emphasis on the
exploitation concurrent events in computations. Considering a sequence of assembly instructions for a
specific problem it iz found that many of the consecutive instructions are independent of each other,
without any data dependencies between them. This work exploits such situations and it executes pairs of
mstructions, which do not have dependencies between them, on two different processing elements, thus
enhancing the speed of operations. Tt is not always true that any two instructions taken from a sequence of
instructions could go in parallel. The various types of dependencies that exist among the instructions are
the bottleneck m executing instruction in parallel. The various possible data dependencies and control
transfers are handled so that most of the nstructions are run pairs. The ILP(Instruction Level Parallelism)
architecture designed here is to be used for image processing applications. Since specific hardware solutions
are always faster that their software counterparts and we have dedicated hardware units for most
frequently used image processing problems of finding DFT and DCT. The proposed architecture improves
the performance with a speed up factor of more than 1.5 with lesser data dependencies, we can get a higher

speed up factor, upper bounded by the value of 2 by the Amdahl’s law.

Key words: ILP architecture, DCT, DFT, parallel architecture

INTRODUCTION

Parallel processing has been one of the hottest
ideas of computing in which information processing 1s
done with emphasis on the exploitation of concurrent
events in computations. Not only architectures, but also
compilers and operating systems have been striving for
more than two decades to extract and utilise as much
parallelism as possible to improve the speed of the
systems (Hwang, 1990; Lilja, 1994).

Basically, parallelism is used in two different
contexts, available parallelism and utilised parallelism.
The available parallelism 1s present inherently in the
problem solutions thus making the implementations
easily parallel. The parallelism could be either functional
parallelism, which comes from the logic of the solution, or
data parallelism, which 1s due to the type of data
structures used (like vectors and matrices).

There are various levels in which the inherent
functional parallelism of the solution to the problem can
be utilised to complete the solution in a fast mammer. The
different levels of parallelism are Program level (Coarse-
grained parallelism), Procedure level (Middle-grained

parallelism), Loop level (Middle-grained parallelism) and
Instruction level (Fine-grained parallelism). Among these
levels, the highest level of parallelism possible 15 1 the
program level, which requires the device of parallel
algorithms. An optimising parallel compiler achieves
procedure level parallelism and loop level parallelism. By
exploiting concurrency between consecutive
instructions, which 1s the processing in the mstruction
level, an immense speed up can be got. This fine grained
processing gives the maximal through put without
making changes to the original algorithm.

The implemented TLP processor has instruction set
which 15 a subset of the DLX mstruction set (Patterson
and Hemnessy, 1990), which supports the special
instructions used specifically for image processing
applications, DCT and DFT instructions. DLX is a simple
load store architecture, which had been designed for
pipelining efficiency. In order to achieve ligher speed
up, these frequently used instructions are given to
dedicated hardware modules. The performance of the
system improves very much when these dedicated

hardware umits are added.

Corresponding Author: M. Kamnan, Department of Electronics Engineering, MIT Campus, Anna University,
Chromepet, Chennai-44, Tamil Nadu, India Tel: +91-44-22237276/233

Inform. Technol. J., 5(3): 416-421, 2006

This work proposes the design of a super scalar,
instruction level parallel architecture. There are two
processing elements and dedicated hardware for DCT
and DFT (Schlansker et al., 1997, Buehrer and
Ekanadham, 1987). The memory is divided into Data
memory and program memory thus following the Harvard
Architectire of Memory Organisation. For each clock
tick, two instructions are fetched from the Program
memory and a data dependency check is done on them
(Sohi, 1990). If they are independent and both their data
are ready, then they are 1ssued to two different processing
elements and hence these two mstructions run in parallel.
The dedicated units can also run in parallel with these two
processing elements.

IMPLEMENTATION ILP ARCHITECTURE

The instruction level parallel architecture designed
here 1s a Super Scalar processor (IEEE, 1998 a,b). Two
mstructions are ssued per clock since there are two
pipelines in the design. Parallelism between consecutive
instructions in the program sequence is exploited in
this design. The overall architecture of the processor 1s
shown in Fig. 1. It consists an instruction pre fetch unit
that fetches instructions from an interleaved instruction
memory, a scheduler which examines the instructions
(Arvind and Nikhil, 1986; Pratt, 1976), resolves data
dependencies among them and prepares them for
execution, a tagged data memory and tagged register file
with tags associated with each word to indicate the
presence or otherwise of valid data , a set of data
structures used by the scheduler, namely the Ready
Queue, the Deferred Instruction Queue and the Tag Unit,
a set of Processing Elements (PHEs) to execute the
mstructions for which data are available. These PEHs can
be homogeneous or each could be a specialized functional
unit. This design implements the lower order interleaved
memory orgamsation. The memory modules are byte
addressable. The processor 13 32 bit processor with a
register file of 32 registers, supports minimal muuber of
addressing modes to make the design as simple as
possible. The addressing modes supported are immediate
addressing, Register addressing and Based Indexed
addressing. The memory 1s organized as mterleaved
memory.

To facilitate simplicity again, DL.X basically supports
only 3 formats of instructions. They are I Type
mstructions, R Type mstructions and T Type instructions
and their formats are given in Fig. 2.

DLX supports the list of simple operations that is
supported by almost all the processors. The instructions
may be broadly classified as Load Store, ALU, Branches

417

h
Tagzed data)

Fig. 1. Overall instruction level parallel architecture

I Type:
|0pcode (6) |SRC 1(5) |SRC 2(5) | Immediat (16)

R Type:
[Opeode (6) |SRC 1(5) |SRC 2(5) | DST (5) | Function (11) |

J Type:
[Opeode (6) |

Offset (26)

Fig. 2: DLX instruction formats

[Clk1[Clk2|Clk 3 | Clk4[Clk 5] Clk 6]Clk 7|

TInstruction 1,2
Tnstruction 3,2
Instruction 5,6

Instruction 7,8 i

Fig. 3: Pipelined instruction execution in the ILPA

Fig. 4. Branch prediction state diagram

and Jump instructions. For the TLPA, there is one more
type of mstruction possible, which 1s the special
instruction type for the dedicated hardware units. The
opcodes are given in Table 1.

In a program, instructions sometimes depend on
each other m such a way that a particular mstruction
cannot be executed until a preceding instruction or even

Inform. Technol. J., 5(3): 416-421, 2006

Table.1: Opcode of DLX processor (Main Opcodes)

00 01 02 03 04 05 06 07
00 Special) JAL. BEQZ BNEZ
08 ADDI SUB
10 TR JALR ANDI ORI XORI NOP
18 SEQI SNEI SLTI SGTI SLEI SGEI
20 LB LH Lw LF LD LBU LHU LHI
28 SB SH swW SF SD SLLI SRLI SRAI
Special opcodes (Main Opcode = 00)
00 01 02 03 04 05 06 o7
00 ADD SUB AND OR XOR
08 SEQ SNE SLT SGT SLE SGE
18 SLL SRL SRA DFT DCT

two or three preceding instructions have been executed.
There are three types of dependencies possible. They are
Data dependencies (subsequent mstructions are
dependent on each other because of data), control
dependencies (a conditional jump statement is executed)
and resource dependencies (the same resource is being
used by both mstructions). All these dependencies are
taken care appropriately in the scheduler design
(Sohi, 1990, Arvind and Tannuei, 1986; Buehrer and
Ekandham, 1987).

The ILP architecture 1s a pipelined architecture like
DLX. This design mmplements a four-stage pipeline,
which is different from the standard DLX architecture.
The memory access stage in the standard DL X design
15 removed 1n this design, since it is considered
redundant. The four stages of the pipeline are fetch
stage, decode stage, execute stage and write back stage.

As shown in the Fig. 3, initially, in the first clock, the
first two instructions are fetched. In the next clock, they
are decoded and the fetch unit fetches the next two
instructions. In the next clock, the first two instructions
are executed in the corresponding execution umits, the
mstructions 3 and 4 are decoded and instructions 5 and 6
are fetched. In the fourth clock, the results of mstructions
1 and 2 are written back, instruction 3 and 4 are executed,
instruction 5 and 6 are decoded and the instruction 7 and
8 are fetched.

The ILP architecture design implements the branch
prediction logic as given below in Fig. 4. Whenever a
conditional branch instruction is encountered, it initially
assumes that the branch would be taken and starts
1ssuing the instruction from the “target address” sequence
of the program to the instruction pipeline, rather than the
‘sequential address’ of the program. There are two bits
assoclated with each and every branch mstruction that
occurs in a program out of which the first bit says if the
branch would be taken or not. “0° indicates the branch
would be taken and °1” indicates it would not be taken.

When the execution of the branch mstruction 1s
over and if the branch 1s taken as predicted, then the bits

Fig. 5. Architecture of the DCT processor

WoWoWoWo FuF ot Fo

W, W, W, W, FF.FyFy

¢ ¢ [|¢ EEEE

v v ¥
4 W |e E€E=

k2K 2K 2
o e |ezess
¥ ¥ ¥
131

P4l

WoW. W W, FnlFot iy

W W W, W, FF . F, Fy

v v ¥ v
F, F. F. F.
F. Fa Ex Fa
EOE R OE

Fig. 6: Systolic array representation of DET

remain at “00”. If the branch is not taken, but was
predicted that it would be taken, then the bit transition
occurs. So, the current status of the branch 1s used as
history to predict the future branches.

Consider the following example, which adds r5
6 times into rl. In the first clock, 1 and 2 are fetched. In
clock 2, they are decoded and 3 and 4 are fetched. In the
third clock, 1 and 2 are executed, 3 and 4 are decoded and
in the mean time, the fetch umt 1s free which now uses the
branch predicted ‘target address” and fetches the
instructions 1 and 2 again.

» Loop: Addrl,rl, 15
o Addirs, 16,1

. Sleir4, 16, 6

» Bnezr4, loop

The sequence proceeds 1n the above said manner for
6 times. When the instruction 3 resets the register 14 when
r4 becomes pgreater than 6, the branch would not be
taken, which would have been predicted to be taken. In
that case, instructions 1 and 2 would have gone into the
pipeline already. So, we have to flush the pipeline this
time and the status for this branches moves from “00”
to <017,

Inform. Technol. J., 5(3): 416-421, 2006

When the different units of ILP Architecture are
considered, the Scheduler takes care of scheduling
mstructions onto available processing elements by
coordinating with other units. This includes preparing
the instructions and putting in the Ready Queue (RQ)
when the data is available. If data is not available the
mstruction is transferred to Deferred Instruction Queue
(DIQ) and transferred from DIQ to RQ once the data is
available.

The Tag unit acts as a reservation station for the
register file. Whenever a write to a register is imtiated,
an instance for that register 1s made m the tag umt.
Thereafter, instead of addressing the register by its
number, it is addressed by its tag nuniber or the instance
nurber. When one or more of the mput operands are not
ready at the time of decodmng, then that particular
instruction has to be deferred. This data structure DIQ is
used the The
architecture has an extensive set of registers orgamised
as a register file with 32 GPR s. Each Register m the
register file has a busy bit associated with it. If the
busy bit s . this indicates that a write into the
register has been wutiated and an instance created in
the tag unit. If it 1s not set, then the data in the register 1s
valid and that data could be read by the instructions.

The Ready Queue maintains the list of all
mstructions, which are currently ready to get executed.
The Ready Queue gives the instructions to be executed
to the scheduler and the scheduler schedules the
instructions to the processing elements when it finds
the PEs free. On the nise of every clock, the scheduler
takes a look at the status of the execution umits. If one
or more of them are free, then the instructions from the
RQ are scheduled to the execution units and the locations
i the RQ are made free for further mstructions to come.

Related to the Data Dependency Check 1if the busy bit
is set for particular register, the tag unit is searched for
the latest tag entry of that register (Espara and Valero,
1997). The corresponding tag index 1s entered as tag
nuber of the source operand to the DIQ along with the
instruction. If the busy bit was teset for the
corresponding source register, the data is retrieved from
the register file and stored m the correspondmg slot of
the DIQ. This is repeated for both the source operands.
That is, if for one of the sowrces, the corresponding
register has valid data item, this data is stored along
with the instruction m the DIQ until the other register
gets that data. If both sl and s2 are available, the
instruction is scheduled to any available computational
unit and executed. In case of the destination register, a
free tag 1s allocated to this register indicating that an
mstance has been created for generating this value.

to store deferred instructions.

set,

419

Processing element: The core of any architecture is its
processing The TLPA processes 32 bit
operands. The processing element of the ILP architecture
consists of Carry Look Ahead adder, Camry Save
Multiplier, Logic units, Comparator, Barrel Shifter etc.
(Patterson and Hennessy, 1990). The other two functional
units are the DCT and DFT (Pratt, 1976).

element.

Discrete cosine transform: The Discrete cosine transform
is a sequence of multiply-accumulate operations as given
in the equation. The 2D DCT 1s a separable function and
can be easily achieved by two 1D DCTs operating in a
pipelined mamner. The fast algorithm for the 8 point DCT
is
expressed mathematically as follows.

discussed below. The one-dimensional DCT is

2 L (2i+Dkn
Yky=,1—C(k Rk
(k) N ()EX(I)COS N
where:
Clr=_L when k=0
J2
= () Otherwise

For an eight-point DCT, the matrix shown here gives the
transform coefficients.

Y(0) AAAA X(0)+ x(7)
Yy BC-CB X(1) + x(6)
Y(2) A-A-AA | | XD +x05)
Y@ | C-BB-C X(3)+ x(4)
Y(4) DEFG X(0)+ x(7)
Y(5) E-G-D-F| |X0)+x(6)
Y(6) F-D-GE X(2)+ x(5)
Y(7) G-FE- X(3)+ x(4)

Where,

A=cos™; B=Tcos; C=sin™
4 8 8

D=" cos 3 E=cos; F=sin>"; G=sin ®

16 16 16 16

The block diagram of 1D DCT processing unit 1s
shown 1 the Fig. 5. This consists of the multiplier umt,
the register unit and the pre processing adder and
subtractor units, with a post processing accuniulator unit.

The mput data from the Dual ported RAM 1s
accessed in blocks of 8x8. Two values can be accessed

Inform. Technol. J., 5(3): 416-421, 2006

simultaneously from the DPRAM. The first two values
accessed are x(0) and x(7) where 0 and 7 indicate the
position of the pixel in the cwrent row under
consideration. The address generation logic for accessing
these values i a specific order as required by the
algorithm 1s given as follows.

The values fetched from the DPRAM are given to the
adder and subtractor. The algorithm requires the sum and
difference of the two value pairs x(0) and x(7), x(1) and
x(6), x(2) and x(5) and x(3) and x(4) for the computation of
DCT coefficients Y{0),Y(1),... Y(7) as indicated by the
matrix. The adder computes the sum of the two values and
the subtractor computes their difference.

The output of the adder should be multiplied with the
coefficients A, B and C. Parallel multipliers are used to do
thus. The algorithm also requires the difference multiplied
by the coefficients D, E, F and G, which is also done
simultaneously by using 4 multipliers.

Discrete fourier transform: The DFT is also a set of
multiply-accumulate operations. The DFT of a two
dimensional signal is given as follows:

Fuv)= 3 ff(x,y)e”“(%]e’”“[%]

x=0y=0

This mathematical fimction can be split into two separate
MAC operations.

F'ix,v)= %:1 f(x, y)e_]”[%]

ux

Flu,v) = % F'(x,v)eijzn[ﬂ

The multiplied values are accumulated into a register
i the Processing element in the first part of the DFT
(finding ¥ (%, v)) and 1n the next part, the accumulated
values are multiplied and outputs are taken (finding F (u,
v)). The DFT block 1s designed based on the Systolic
Array topology.

The PEs are arranged in a 4x4 2D array. When the
clock goes high, the process of multiply-accumulate
begins. Initially all the registers of all the PEs are
cleared. The control input is held low during the first half
of the operations. The weights or the twiddle factors for
the DFT are fed as vertical mputs whereas the
horizontal inputs are the mput matrix values.

420

Table 2: Synthesis results of some units of TLPA

Cell count

Maximum
Module Combinational Sequential Total speed
DCT Unit 965 192 1157 223 MHz
DFT Unit 124 16 140 34.6 MHz
Adder Unit 215 0 215 84 MHz
Multiplier Unit 1289 0 1289 45.9 MHz
Comparator Unit 177 0 177 294 MHz

For the first 4 c¢locks, the input values are multiplied
with their corresponding weights and are stored into the
registers Rij. The mput value for a row 1s passed on to all
the processors in that row simultaneously and the weight
for a column is also broadecasted to all the processors in
the column in the same way. When these 4 clocks are
counted, the control signal 15 made high.

RESULTS

The blocks of the ILPA are simulated using
Modelsim and the results are obtained. The above blocks
are synthesised using Leonardo Spectrum and the results
are given in Table 2.

The performance of the ILPA 13 measured and
compared with a smgle processing systems for standard
Matrix Multiplication. The number of instructions
executed is 25. Using single processor systems it would
have taken 25 clocks to run the same code of matrix
multiplication. Since the ILPA takes advantage of
parallelism, it could complete the same job with 16 clock
cycles, with all data dependencies
producing the same output. Hence a speed up of 1.56 1s
achieved for this particular program. If we write longer
programs and with lesser data dependencies, we can get
a higher speed up factor, upper bounded by the value of
2 by the Amdahl’s law.

resolved and

DISCUSSION

The ILP architecture designed here exploits the
inherent parallelism in the program and appropriately
speeds up the execution. When the design is used for the
specific application of image processing, the dedicated
units come to help a lot. The architecture proposed here
can also be used for any other application not necessarily,
Image processing, since all it looks for is the
independence of consecutive The
architecture can improve the performance with a speed up
factor of maximum 2. For almost all programs, it easily
exceeds 1.5.

As mentioned earlier, this study is easily extensible
to any specific field. For example, 1f it 1s going to be used
for a data base specific applications, the same factors of

instructions.

Inform. Technol. J., 5(3): 416-421, 2006

speed up could be gained easily. Since the data base
applications will hardly be using the DCT and DFT units,
they can be replaced with the functions these applications
often use, like sorting and searching. The units can also
be replaced by dynamically reconfigurable units, which
can do specific hardware functions, giving speed and also
be reconFigd, thus giving programmability. Thus
reconfigurable hardware umts give us a very good
hardware-software balance.

REFERENCES

Arvind, R.and S. Nikhil, 1986. Executing a program on the
MIT Tagged Dataflow Architecture. Memo 302, MIT
Lab, Comput. Sci., Cambridge MA.

Arvind, R. and R.A. Tannues, 1986, Two fundamentals
Issues in Multiprocessing”. Memo 226-6, Mit Lab,
Computer Sci., Cambridge, MA, pp: 1-21.

Buehrer, R. and K. Ekanadham, 1987. Incorporating data
flow ideas mto Von Neumann processor for
Parallel execution: TEEE Transaction on Computers,
36: 1515-1521.

421

Espasa, R. and M. Valero, 1997. Exploiting Instruction
and Data level parallelism. IEEE Micro, Vol. 17.

Hwang, K., 1993, Advanced Computer Architecture.
McGraw-Hill,

TEEE, 1998. Signal Processing Magazine, Special Tssue on
Multimedia Processors, Vol 15, No. 2.

[EEE, 1998. Symposium on FPGAs for Custom Computing
Machines, Napa Valley, California.

Lilja, B.T., 1994. Exploiting the parallelism available in
loops. IEEE Computer, 27: 13-26.

Patterson D.A. and JI Hennessy, 1990. Computer
Architecture A Quantative Approach. Morgan
Kaufmann Publishers, Inc San Mateo, California.

Pratt, W., 1991. Digital Image Processing. Springer-
Verlag.

Schlansker, M. and T.M. Conte et al., 1997. Compilers for
instruction level parallelism. TEEE Computer.

Sohi, G.8., 1990. Instruction issue logic to ligh
performance, mterruptible, multiple functional umit,
pipelined computers. TEEE Transactions
Computers, 39: 349-358.

on

	ITJ.pdf
	Page 1

