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model with different phase point sets. Local model
the mapping function usmg the
approximation method, being done with phase pomt sets
neighboring to the prediction point in a piecewise manner.
In global models the function approximation is estimated
for the whole domain with all phase points, here MPMR
1s used to do it 1 global model.

estimates local

MINIMAX PROBABILITY MACHINE REGRESSION

The approximation mapping function f should be
established by learning from the training dataset with
regression problem, so there i1s comresponding output
estimation ¥ = f(x) for a given input X. The model,
maximizing the mimmum probability that the regression
model 1s within € tube of the true regression function, 1s
better.

Minimax probability machine classification: Mimmax
Probability Machine Classification(MPMC) is first used to
separate with linear decision boundary two class of
points fu}™ and {v}" , which mean vectors and covariance
matrices given byu~ {0z )andv~(v.2 ). Thus, the
hyperplane a"z = b(a,z e R",be R) should be determined,
which separates the two classes of points with maximal
probability. It can be defined:

1— o> sup Pr{aTu

(2)

max o 5.1

o.,ah

1— o> sup Pr{aTvz }

With the help of the theory (Popescu and Bertsimas,
2001), sup Pr {a'vzb} = 1/(1+d”) and

@ = inf (V¥ ZI(v¥),

a vzh

The above optimization problem can be converted to,
minya 2,8 +4a" T asta (TV)=1
The solution to the problem is a.,

b, = aIﬁ—K*,faT y.a= aIV—K*,faT Y.a

and

KlgarZ a. +4a. 2. a, |=1
Nzl
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Kernel method can be introduced to separate two
class of points fu}" and {v}"" unseparated with a
hyperplane. The input space is mapped to a higher
dimensional feature space with a mapping function
¢@:R" - R" and the data be mapped

u b o) ~ (p(u), 3 )

and

Vi (V) ~ (9(V).Z )

The binary classifier has the form(c=-1 for the first class
and ¢c=+1 for the second):

o=sign[ 3 ¥K'(z,2)+b,] 3)
1=1

Where,
K*(z,2) = oz Jop(z).
z=u,i=1L m)
z=v,i=mu+1 L,ou+nv)
T=(T,..T

nu+mi)

The above problem can be solved with the following
optimization:

{ KU v

} styTk, -k,)=1 (4)

min ¥l + ¥
7w |, vov |,
Where,
K, =K, 1,k K, =K, -1_k .k, k, cR™™
Defined as:
1 1 nu prc
k) =—X"K W,z)
nu
and

1 1 v pre
[kvl = _E]=1K (v1=z1);
nv

1, 15 a k dimensional column vector of ones; K,
contains the first nu rows of the Gram matrix K, K,
contains the last nv rows of the Gram matrix K and K is a
square matrix consisting of the elements K; = K*(z, z).
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Given that y solves the minimization problem in (4), b, can
be caculated using;:

b, =7k, - K,}LYTKUTKUY
Nu (5)
=1k, +x ‘LVTI"(VTIN(V"{
Nv

-1
1T - . T -

K= [\/—YTKUTKUY + J—YTKVTKVY}
nu nv

Here the maximum probability of incorrect classification 1s
bounded by 1-¢, & = */(1+x%)

Where,

Minimax probability machine regression: MPMC-based
regressior, Miinimax Probability Machme Regression
(Strohmamn and Grudic, 2003), requires that two
(1+m) dimensional vectors w;, and v(i = 1,L N)
are produced with every sample data (x, y). That
sw, =y +ex,x,,Lx ) andv,=(y, -gx,x,,Lx )
therefore making two classes of pomts. Appling them to
MPMC, v is obtained by minimizing Eq. 4, resulting in
regression surface for MPMR given by:

2N
TrKi{z.0+b,=0 6)
1=1

Given the input x = (X, X3, L. Xy), the regression
N+1,...., 2N medel ocutput ¥ can be obtained by solving
Eq. 6 about y, where z = (v, x,, x5, L x,). With above
preduced dataset there existz; =u for 1 = 1, L N and
z=v_, fori=N+1, L 2N.If K°(z,z) is nonlinear, solving
equation (6) fory is a nonlinear single variable
optimization problem.

To allow Eq. 6 be solved analytically, nonlinear
K°(z,.z) should be restricted as:

K(z.2) = y,§ + K%, x), K(x,x) = ¢(x, )p(x)
Is Mercer kernel, where,
2=(§,x,%, %X )z, =W,y =y +€
for
i=1---N, g, = vlfN,y‘l =y, —-€
for

I=N+1,.2N

The analytical solution to Eq. 6 exists in the form of
B = -2e(y V.. and b = -2eb,, thus Eq. 4 optimization for
¥ be reduced to solving the following linear least square
problem:

mtinHKu(yU + Ft)H2 (7

Where,

vy=1, +Ft

v >

v, =k, - KO/ K, -k

2N-1 2N 2N-1
te RN FeR™EN

Is an orthogonal matrix whose columns span the
subspace of vectors orthogonal tok —k_ -

CHAOTIC TIME SERIES GENERATION

Considering the time series generated by Mackey-
Glass equation, a time-delay ordinary differential equation
displaying well-known chactic behaviors. Tt is described
1n the following formula:

0.2x(t—1)

- - 8
(i) 0.1x{t) (8)

x(t)

This time series is chaotic, always used as
benchmark dataset for nonlinear dynamic system
modeling and forecasting in the neural network and fuzzy
modeling research commumties. Here the fourth-order
Runge-Kutta method used to find the numerical solution
to the above MG equation, the time series value at integer
points {x,}" obtained. Assuming that x, =1.2,7=17 and

L6 Mackey-Glass Chaotic Time Series
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Fig. 1: The chaotic time series generated with Mackey-
glass equation for prediction
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x(t) = 0 for t<<0. This time series shown in Fig. 1 make the
experimental data for the simulation.

According to standard practice with the Mackey-
Glass chaotic time series, The embedding dimension and
time delay are set in m = 4 and © = & with the reconstructed
phase space for the time series. For each t, there 13 a pomt
in the form of x, = (X, X,s Xp100 Xp15)» 88 INpUL training data
for MPMR. The comresponding output x.,. In order to
predict the future value, the mapping function x,,, = F(x,)
1s obtained with MPMR m global model here.

PREDICTION SIMULATION

For each t, ranging for 118 to 1117, 1000 mput/output
data pairs {x, x,,} . are formed, making the first 500 points
for the traimng dataset and the last 500 pomnts for the
test dataset. Modeling the training set is done with
MPMR, which kernel bemng set to RBF function.
Moreover for the width 6 of the RBF function and tube
value € selection, we perform cross-validation with (0, €)
combination. Tn this experiment they are validated to be
2 and 3 respectively.

In the above approch, a single-step predictor is
constructed with MPMR. However multi-step predictions
can be accomplished from the single-step predictor by
simply iterating it, which means that the previously
predicted values will be used to predict latter step values.
For the considered mstance, after the prediction result at

t+6, X, being made, the corresponding input x, , will
be lined inx ;= (X,,.x,.%,_,.X, ,, ) to predict the value at
t+12,%,.,, . The process can be iterated to obtain

multi-step prediction results, 20-step prediction will be
made with the MPMR-trained model in the simulation.
Two error metrics are utilized to evaluate the prediction
performance, one is MAPE defined as:

P}
MAPE = :

The other is RMSE calculated with

RMSE= #Zr{:l(xt - it )Z,

Where, n 15 equal to 500, corresponding to the
mumber of total prediction points. Tn Fig. 2 presents
samples of the 18-step ahead prediction results on the
500-point test dataset and the true value in graphical form,
the actual values and the predicted values are shown in
solid line and dotted line respectively. Tt can be seen that
the prediction values fit the true values well and the
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Fig. 2: The 18-step ahead prediction values on the test
dataset and the actual values
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Fig. 3: The error metric curve MAPE and RMSE for the

multi-step ahead prediction on the test dataset
value

calculated MAPE and RMSE are 0.04528 and 0.051747.
Multi-step ahead predictions from 1 to 20 step are
experimented on the test dataset and the related error
metrics MAPE and RMSE are calculated and shown in
Fig. 3 (indicated by legend MPMR). The results tell that
the prediction accuracy drops with the increase of
prediction step, verifying short-term predictability for
chaotic time series.

As comparison, wighted
regression(LWLR) has been used to model the same
chaotic time series, multi-steps ahead prediction from 1
to 20 steps being done on the test dataset, where the
number of nearest neighbors is 8. Tts error metrics relation
to prediction steps 1s also shown m Fig. 3 (with legend
Local). It’s evident that the two error metrics for MPMR
are better than TWLR. In Table 1 presents experiment
error metric values MAPE and RMSE with multi-step
ahead prediction of 1, 5, 10, 15 and 20 steps for MPMR
and LWLR.

Local linear
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Table 1: Two emror metrics with multi-step ahead prediction for MPMR and

LWLR
Prediction steps 1 5 10 15 20
MAPEx1072 MPMR  1.3001 2521 3.5396  5.2121 6.6l62
LOCAL 27544 44033 45105 9.0302 7.6375
RMSEx1072 MPMR 1.4589 29585 4.1873 5.608 8.299
LOCAL 34959 54673 55184 10.804 8.7871

The calculation cost for MPMR optimization
algorithm is proportional to the number of training
samples because of kemel matrix calculaton, so the
traiming dataset can be reduced properly before learning
process is executed MPMR is also used with the first
200 points of 500-point training dataset and a good
prediction accuracy on test dataset 1s achieved. If
neural network model used, more traimng samples
should be requested and the leaming time for
modeling will be relatively longer. That is to say, MPMR
1s superior to neural network model for chaotic time
series prediction in the ratio of performance to time.

CONCLUSIONS AND FUTURE WORK

MPMR takes comvex optunization to obtain
distribution-free results and the worst-case bound on the
probability that the regression model is within € tube of
the true regression function, can be directly estimated. In
this study multi-steps ahead prediction on Mackey-Glass
chaotic time series is done with MPMR, the good
performance being present. Tt can be said MPMR be
excellent predictor with chaotic time series, compared with
other approaches. In the future MPMR predictor will be
generalized into the engineering field, taking use of the
advantage of local model and combined with it.
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