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Abstract: A new approach to leaming Bayesian networks (Bns) was proposed in thus study. This
approach was based on Particle Swarm Optimization (PSO). We start by giving a fitness function to
evaluate possible structure of BN. Next, the definition and encoding of the basic mathematical elements
of PSO were given and the basic operations of PSO was designed which provides guarantee of convergence.

Next, full samples for the traimng set and test setare generated from a known original Bayesian network
with probabilistic logic sampling. After that, the structure of BN was leamed from complete training set using
improved PSO algorithm steps. Finally, the simulation experimental results also demonstrated sthis new

approach’s efficiency.
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INTRODUCTION

Bayesian Networks (BNs) are quickly becoming the
tool of choice of many Al researchers for problems
involving reasoning under uncertainty. They have been
implemented in applications in areas such as medical
diagnostics, classification systems and software agents
for personal assistants, multisensor fusion and legal
analysis of trials (Heckerman and Geiger et al., 1995). Until
recently, the standard approach to constructing belief
networks was a labour-intensive process of eliciting
knowledge from experts. Methods for capturing available
data to construct a Bayesian network or to refine an
expert-provided network promise to greatly improve both
the efficiency of knowledge engineering and the accuracy
of the models. For this reason, learning Bayesian
networks from data has become an increasingly active
area of research.

Learning a Bayesian network can be decomposed
mto the problem of leammng the graph structure and
learmng the parameters. An obvious choice to combat the
problem of getting stuck on local maxima is to use a
stochastic search method (Kennedy 2001; Eberhart and
Kennedy, 1995). This study explores the use of Particle
Swarm Optimization (PSQ) algorithms for learning
Bayesian networks. Network structures are especially
amenable for PSO algorithms since the substructures of
the network behave as building blocks so we can evolve
higher fit structures by exchanging substructures of
parents with higher fitness.

PROBLEM FORMULATION

Bayesian networks and associated schemes
constitute a probabilistic framework for reasoning under
uncertainty that in recent years has gained popularity in
the community of artificial intelligence (Pearl, 1998,
Neapolitan, 1990).

From an informal perspective, Bayesian networks are
Directed Acyclic Graphs (DAGs), where the nodes are
random variables and the arcs specify the independence
assumptions that must be held between the random
variables.

To specify the probability distribution of a BN, one
must give prior probabilities for all root nodes (nodes with
no predecessors) and conditional probabilities for all
other nodes, given all possible combinations of their
direct predecessors. These numbers in conjunction with
the DAG, specify the BN completely. The joint probability
of any particular mnstantiation of all n variables m a BN

can be calculated as follows:

Px,x,.....%,) (1

RCAES
1=l

where, x; represents the mstantiation of the
variable X, and m; represents the instantiation of the
parents of X,.

The most common approach to building Bayesian
networks 1s to elicit knowledge from an expert. This works
well for smaller networks, but when the number of
variables becomes large, elicitation can become a tedious
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and time-consuming affair. There may also be situations
where the expert is either unwilling or unavailable.
Whether or not experts are available, if there are data it
makes sense to use 1t in building a moedel. The problem of
learning a Bayesian network from data can be broken into
two components: learning the structure, B, and learning
the parameters, B;. If the structure 15 known 1 then the
problem reduces to learming the parameters. If the
structure 15 unknown, the learner must first find the
structure before learning the parameters (actually in many
cases they are induced simultaneously). Generally, 1t 1s
difficult for experts to give the structure of BN directly
and learning it from data is a feasible modeling method. In
addition, the structure learming algorithm can itself be
decomposed into searching for structures by using search
algorithmm and evaluating structures by using scoring
metric (fitness function), which aims at finding the best
structure with highest accuracy of generating training set.
So the problem of the structure learmng can be formally
defined as follows:

Input: A training set D of instances of X, which
contains N observation sequences. The length of the kth
sequence 1s |, and each case x,[0], x[1]...., x[L ] 18 given.

Output: A BN that best matches D. The notion best
matches is defined using a scoring function.

PSBN ALGORITHM

Particle Swarni Optimization (PSO) is an evolutionary
computation technique, which is inspired by social
behavior of bird flocking and fish schooling (Kennedy,
2001; Eberhart and Kennedy, 1995). Comparing with
Genetic Algorithm (GA), PSO’ s advantages lies on its
easy implementation and few parameters to adjust. It has
been found to be extremely effective i solving the
continuous optimization problem, but now it has been
expanded to discrete domain. Though its strict conver-
gence has not been proved, it can be easily modified for
any dis crete/combinatorial problem for which we have
no good  specialized algorithm. Therefore, as a
combinatorial optimization problem, it is possible to learn
the structure of BN by using PSO algorithm.

PSBN algorithm can be expressed simply by the
following equation, PSBN=(F, X, V, 5., P,. M, P, 4,
Gy L), where, F is a fitness function, X a space of
positions of particles, V velocity set of particles, S, a
substraction operation (position, pesition), P,, a move
operation (position plus velocity), M, a multiplication
operation (coefficient times velocity), P, a addition
operation (velocity plus velocity), Athe swarm size, G, an
mnitial swarm and v stopping condition.
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Fitness function F: The most common fitness function
F to evaluating structures is by the posterior probabil-
ity of the structure given the observations. Thatis, a
structure 15 good to the extent it is probable given the
available information. The posterior probability of a
structure can be obtamed by applying Bayesian rule:

P(D| B, P(B;)
P(D)

P(B,| D)= (2)

where, P (B |D) is the posterior distribution of the
structure given the data, P(D[B;) is the likelihood function,
P(B,) is the prior probability of the structure and P(D) is
the normalizing constant. Since P (D) is not dependent on
the structure, it can be ignored when trying to find the
best scoring function. In addition, without prior knowl-
edge of structures, we can as sume they have equal
probability. However, if we do have information on
structures we can always use the prior mformation.

The problem is now reduced to finding the structure
with the likelihood P (D|By). In other
words, given a structure, these structures are evalu ated
according to how probable it is that the data were
generated from the structure.

Cooper and Herskovitz showed that when a Dirichlet
prior 1s used for the parameters in the network, the
likelihood P (D|B;) can be obtained m closed form:

maximum

T(N,)
F(Ni] + N ) k=1

& T(N;jk + Nijk)

: 3
T(N;,)

n g
F=P(D[B,)=

i=1j=I

where, 11 18 the number of variables in the database, 11
is the number of possible states for variable Xi, ¢ is the
number of possible states for pa (Xi), Ny, are the suffi-
clent statistics from the database (counts of occurrences
of configurations of variables
and their parents), N, are the hyper parameters (prior
counts of occurrences of variables and their parents)
specified for the parameter prior (assuming an u n informa-
tive prior as in the prior for the structure we set the hyper
parameters to 1),

N =

1

K:lNuk
. B '

N = N,
E k=l K

For computational convemience, the number of
parents allowed for a particular variable is limited. This
scoring metric (3) is commonly referred to as the Bayesian
Dirichlet metric. In practice, the logarithm of (3) 1s usually

used to score networks.
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When data are complete, the Bayesian Dirichlet
metric, a fitness function for BN, exists in closed form. So
we may utilize the score decomposition properties, which
facilitate the computation of the scoring metric (3) in
several ways. Note that the likelihood is expressed as a
sum of terms, where each term depends only on the
conditional probability of a variable given a particular
assignment to its parents. Thus, if we want to find the
maximum likelihood parameters, we can maximize within
each family independently.

With the Bayesian Dirichlet metric (3), we can now
search over possible structures for the one that scores
best networks from complete datasets that mean that all
of the cases in the data contain values for all of the
variables.

Encoding PSO elements for BN: The BN structure can be
represented as an adjacency list, (Fig. 1) where each row
represents a variable X1 and the members of each row,
with the exception of the first member, are the parents of
Xi, pa (Xi). The first member of each row, i.e, the first
column of the adjacency list, is the variable Xi.

Position of particles and state space: As PSBN algorithm
is designed to find the best structure of BN by using PSO,
the structure of BN should be encoded into a position of
particle.

Although we show the variable X1 m the Fig. 1 for
clarity, the internal representation encodes its parents
only, with the variable being encoded by sequence.
The adjacency list can be thought of as a position where
each pa (X1) represents a local position For example,
the local position of the variable F can be encoded as
[D,E]. Because the logarithm of the scoring metric 1s the
summation of scores for each variable, each local position
can be scored separately and added to generate the
fitness score for the entire structure.

So the search space is enormous. A local position
can range from no parents to n-1 parents, where n 1s the

_4 = L_
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F

Fig. 1: Encoding the structure of a BN
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number of variables in the dataset. Thus a local position
k

cantakeon (i) possible values where k is the maxi-

mum set of parents a variable can have and n is the

number of variables in the dataset. So, the search space
can be defined as follow: e

j= i

VELOCITY

Definition 1 switch operator: If a specified BN has n
variables, the position of a particle can be expressed as an
adjacency list P = ((x))), 1 =1,....n. We define a switch
operator SO which, when applied to a position during one
time step, gives an other position. So, here, SO has three
types: +x, -x; and ¢. The +x, denotes adding a variable x,
into original position, -x;reducing a variable x,and ¢ null.

Definition 2 switch unit: A sequence composed of one or

several switch operators is a switch unit. We denote it
by SU.

SU = (30, 50,.., Soy) (4

Where, SO |, SO ,.., 30, are k switch operators and

the different orderings of them have different

signification. The length of the SU is defined by

IISU] =k Each SU is applied to the change of a
local position.

Definition 3 switch list (velocity): A sequence composed
of one or several switch units 1s a switch list. We denote
it by SL. Here, actually, the num ber of switch umts of
each switch list 15 equal to the number of Variables nof
BN. The length of the SL is defined by ||SL|l= [|SU, ||
. . . i=1

A velocity V 1s then de fined by:
V=3SL=(SU, SU,.., SU_) (5)
Where, SU,, SU, ., Su, are n switch units and
each SL or V 1s applied to the change of a global position.

Definition 4 equivalent set of switch list: If different
switch lists are equivalent (same result when applied to
any position), the set of them 1s called equivalent set of
switch list.

DESIGNING OPERATIONS FOR PSO

Opposite of a velocity: Tt means to do the same switch as
in original SL, but with reverse operator. For example,
- ((FA), (FB-C)) = ((A), (-B+C) ). Tt is easy to verify that we
have - (- SL ) = SL (and SLa&-SL= ¢, Addition velocity plus
velocity).
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Addition (P, ) position plus velocity: Let P be a position
and V a velocity. The positon P’=P+V 1s found by
applying the first switch of V to P, then the second one to
the result etc.

Example
P=(¢,A A B C,DE) (6)
V =({+B), (-A), -A+B), (-B+C), (¢), (-D-E+A)
Applying V to P, we obtamn successively
P=B.¢.B.C.C.A) (7)

Substraction (8,,) position minus position: Let P, and P,
be two positions. The difference P,— P, is defined as the
velocity V, found by a given algorithm, so that applying
V to P, gives P,. The condition "found by a given algo-
rithm" 18 necessary, for, as we have seen, two velocities
can be equivalent, even when they have the same size.
In particular, the algorithm i1s chosen so that we have
P,=P2=V=P,-P,=¢

Addition (P.,) velocity plus velocity: Let V, and V, be two
velocities. In order to compute V,® V, we consider the
switch list which contains the first switch unit of V,
followed by the first switch umt of V2, then the second
switch unit of V,, followed by the second switch unit of
V2 ete. For example, ((-A), (-B+C)) @ ((-B+A), (-B+D))
={((-A-B+A), (-B+C-B+D)). In general, we "contract” it to
obtain a smaller equivalent velocity. For example,
((-A-B+A), (-B+C-B+D)) = ((-B), (+C+D)). In particular, this
operation is defined so that V &- V. = ¢. So, we can have
the following definition:

Definition 5 basic switch list: The switch list of
equivalent set of switch list, which contains the least
switch operators, is defined as basic switch list. Each
velocity 1s a basic switch List.

Multiplication (VL) coefficient times velocity: Let ¢ be a
real coefficient and V be a velocity. There are different
cases, depending on the value of ¢.

Case ¢t =0

We have ¢ V=¢

Case e [0,1]

We just "shrink” V. Let ||oV || be the greatest integer
smaller than or equal tog |V]. So we define ¢ V =((30,,..,
SO, A80,,.,80),). ke

Case ¢t = 1

It means we have ¢ = d + «’, d 1s an integer (d#0),

¢ "e[0,1]. So we define ¢V
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V) oV
1=
Case g <0

Asa V=1{(-)* (-V.), we only need to consider one of the
previous cases.

Control Parameters: The mitial swarm G, as well as the
velocities, can be generated either randomly or by a
Sobol sequence generator (Henrion, 1988, Press et al.,
1992) which ensures that the D-dimensional vectors will
be umformly distributed within the search space.

The swarm size A should be not kept too big
because of the computation time required scoring the
fitness function;, On the other hand, A should be not kept
too small for improving the diversity of particles of swarm
to avoid premature convergence. Hence, we choose A
within [30,100].

The stopping criterionu for the algorithm is set in
term of that when either g, generations have been run or
when i g, successive generations, the value of the
fitness function of the best structure corresponds with
the average value of the fitness function.

PSBN Algorithm for BN: We can now rewrite the formula
from the basic PSO algorithm:

Vil=w*vE ¢ *rand()*(p, — Xk

¢, * Rand() * (P, —Ki) (8)

X =Xt v (9)

Where, 1=1,2,..., N; N 15 the swarm’s size; d
represents the d-dimensional search space; w 1s the mmertia
weight factor; ¢, and ¢, are two positive constants, called
the cognitive and social parameter respectively; rand ()
and Rand () are two random numbers uniformly
distributed within the range [0,1]; v¥ 1s the velocity of
particle 1 at iteration k;, %% is the current position of
particle 1 at iteration k; Py, 13 the best previous position of
particle i at iteration k; P, is the best neighbour’s best
previous position at iteration k.

The PSBN algorithm can be described as follows:

Step 1: Imtialize the particle swarm (each particle 1s given
a stochastic initial solution/position and switch li-
st/velocity).
Step 2: If stopping criterion is satisfied, tum to Step 5.
Step 3. Calculate the mnext positiony,(the new
solution) according to the current position X, of the
particle I.
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¢ Calculate the difference « by ¢ =P, - X;; where « is
a basic switch list and is applied to X, to obtain P,.

»  Calculate the difference by p=P,, - X; where B is
also a basic switch list.

*  Calculate the velocity vy, in term of the Eq. 8 and

transform vy, into a basic switch list.
¢ Calculate the new solution ¥, in term of the

Eq. 9.
¢ Ifa better solution is found, update P,,.

Step 4: If a better solution is found for the whole s warm,
update P,and turn to Step 2.
Step 5: Show the optimal solution.

EXPERIMENT

For evaluating the behavior of PSBN algorithm pro
posed, we perform the different experimental steps as
follows:

Step 1: Begin with a BN (structure + conditional proba-
bilities) and simulate it, generating randomly 1000 samples
for the training set D and another 1000 for the test set.
Step 2: Using the approach based on PSBN algorithm try
to obtain BN structure B; from D, which maximize the
probability P (D|By).

Step 3: Evaluate the performance of PSBN algorithm by
evaluating the accuracy of B, predicting objective
probability distribution.

For this experiment we use a Bayesian network
known as ASIA. The ASIA network was initially pre-
sented by Lauritzen and Spiegelhalter (Lauritzen and
Spiegelhalter, 1988). It is a small (nine variables) fictitious
model of medical knowledge concerning the relationships
between visits to Asia, tuberculosis, smoking, lung
cancer, lung cancer or tuberculosis, Positive X-ray,
Dyspnoea and bronchitis.

We use probabilistic logic sampling (Henrion, 1988),
with which we generate 1000 samples each from the
original network for training and test. The algorithm is run
with 3, 5, 7 and 9 hidden variables for 5, 10, 15 and 20%
missing data, respectively. The experiments are run 20
times for each level of hidden variables and then the best
structure of BN of 20 times learning is selected as the final
learning result of each level of hidden variables.

For the purpose of comparison, all simulations deploy
the same parameter settings for the PSBN except the
swarm size A and inertia weight w. The positive constants
¢, and ¢, are both set as 2; the ||V,..|| is setas 9. We try to
observe the influence of A, w and hidden variables on the
PSBN performance and different w and A are chosen for
simulations.
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Fig. 2: Comparision of log loss for different number of
hidden variables: 3, 5, 7, 9.

We decide to stop the algorithm when either 1000
generations are reached or when in 200 successive
generations, the value of the fitness function of the best
structure corresponds with the average value of the
fitness function. Finally, We calculate the log loss for the
test set using the “best™ network from each run, which
can be seen in Fig. 2. The log loss is a commonly used
metric appropriate for probabilistic learning algorithms.
[t is a member of the family of proper scoring rules. Proper
scoring rules have the characteristic that they are
maximized when the learned probility distribution
corresponds to the empirically observed probilities.

As can be seen from Fig. 2, the more the hidden
variables and the number of training data are introduced,
the higher predictive accuracy becomes proper scoring
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rules. Proper scoring rules have the characteristic that
they are maximized when the learned probability distri-
bution corresponds to the empirically observed
probabilities.

CONCLUSIONS

In this study we describe a novel approach for
learning Bayesian networks. This problem is extremely
difficult for deterministic  algorithms and s
characterized by a large, multi-dimensional, multi-moedal
search space. Qur approach is based on particle swarm
optimization algorithm, which is called PSBN algorithm. It
1s simple and reliable and 1t can converge rapidly.

Using simulations of the ASTA network, we carry out
a performance analysis on the PSBN algorithm proposed.
The obtained experimental results also prove its efficiency
and good performance. Mean
while, it is confirmed in this paper again that PSO can be
applied to solve any discrete/combinatorial problem as
same as other evolutionary algorithms.

The future important step forwards would be to
extend the proposed structure learning approach based
on PSO for trying to find out the optimal ordering of these
variables in BN, which is expected to improve the
convergence of learning the structure of BN fiwther. Then,
we also plan to adapt the described structure learning
approach to dynamic Bns (Kjaerulff, 1992).
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