http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (3): 565-572, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Partitioned Cube: Condensed Storage and I'ast Access for Data Cube

Mohammad Kasem Ajaja
Jordan Umiversity for Graduate Studies (JUGS), Damascus University, Syria, Jordan

Abstract: In this study a new approach 1s proposed for partitioming and storing data cube efficiently. The new
method partition the storage of the cube mto multiple tables and uses a pointer table to link attribute
combinations to aftribute values. Experiments on synthetic and real data sets show that the required storage
for the new method is about 60% of that required for flat table cube. Also the proposed approach has the
advantage of fast access to the attribute values. Also it supports fast roll up and drill down without the need

of any indexes for the attribute values.

Key words: Data cube, data warehouse, multidimensional database, OLAP, data analysis, aggregation,

summary tables

INTRODUCTION

In recent years, data in enterprise operational
mformation systems has grown to a very large size. The
analysis of this data became a major objective for lugher
productivity in decision-making process. Data warehouse
represents an essential part of data analysis. A data
warehouse 13 subject-oriented, mtegrated, tune-variant
and nonvolatile collecton of data in support of
management decision making processes (Inmon, 1996).
Data cube represents the heart of a data warehouse.
The data cube was proposed (Gray et al., 1996) to pre-
compute the aggregation-such as sum, average, maximum
or minimum-for all possible combinations of dimensions
to answer analytical queries efficiently.

Unfortunately, the sizes of the extracted data cubes
for any real life databases are huge (Sismams et @f., 2002;
Barbara and Sullivan, 1997; Lakshmanan et al., 2002).
Huge data cubes require large storage and the features
finding process 1s very slow. Several methods have been
proposed for compressing and condensing data cubes
(Sismanis et al., 2002; Wang et al., 2002; Barbara and
Sullivan, 1997; Lakshmanan et al., 2002; Fengand Shan,
2002). Some of these methods are used to get approximate
answers (Feng and Shan, 2002; Acharaya, 2000, Barbara
and Sullivan, 1997, Vitter et al., 1998) while others try to
compress the content of the cube and store it (Wang et
al., 2002; Sismanis et al., 2002). In the later methods a
decompression processing is required to interpret the data
in the data cube.

Data cubes are used to show different views of the
cube data according to a subset of dimensions with their
values. Because of the large size of the extracted data
cube, it is not efficient to access this specific information
through exhaustive search, even if the cube is stored in a

565

compressed format. To speed up search, several mdexes
are required on the attribute combinations. But these
indexes require extra storage and may be they require
more storage space than the cube itself. Supporting fast
access to data cube data without the need of these
indexes is considered a big challenge.

In this study a new method is proposed for the
reduction of the storage required for the data cube. The
proposed method supports the fast access for the cube
data without any extra indexes. The new method depends
on eliminating the storage of the value ALL from the cube
by partitiomng it mto a mumber of tables equal to the
number of cube dimensions. To denote the attribute
combination for a specific row in the partitioned table with
m dimensions, a pointer table is used to store the different
combinations with m attributes where each row in the
pointer table links each attribute combination to its first
row in the partition with m attributes.

The proposed method does not compress any data,
so 1t does not need any de-compression. Also it stores
the cube without any loss of mformation, so it is used for
exact answers. The proposed method has the advantage
of fast access to any attribute combinations through the
usage of small poiter tables. The pointer tables have the
role of fast index for each attribute combination first row
in the partition.

PROBLEM DESCRIPTION

Congsider for example the sales database shown in
Table 1. This database stores information about sales for
products according to specific months and selling
employees. The table that stores the original data used for
data cube extraction is called fact table. The data cube
that consists of the dimensions, product, month and

Inform. Technol. J., 5 (3): 565-372, 2000

Product

P1
P2
P7
P4

P9 Month
L

John JAN FEB MAR
Holm

Employee

Fig. 1: Data cube for the example sales database

Table 1: Example sales database

D Product Month Employee Amount
1 P1 Jan John 100

2 P3 Jan John 50

3 P7 Feb John 60

4 P4 Mar John 40

5 PO Mar Holm 90
Table 2: The data cube for the sales database

Cube

D Product Month Emplovee Sum
1 All All All 340
2 All All Holm 90
3 All All John 250
4 All FEB All 60
5 All FEB John 60
[\] All JAN All 150
7 All JAN John 150
8 All MAR All 130
9 All MAR Holm 90
10 All MAR John 40
11 P1 All All 100
12 P1 All John 100
13 Pl JAN All 100
14 P1 JAN John 100
15 P3 All All 50
16 P3 All John 50
17 P3 JAN All 50
18 P3 JAN John 50
19 P4 All All 40
20 P4 All John 40
21 P4 MAR All 40
22 P4 MAR John 40
23 P7 All All 60
24 P7 All John 60
25 P7 FEB All 60
26 P7 FEB John 60
27 Po All All 90
28 Po All Holm 90
20 Po MAR All 90
30 Po MAR Holm 90

Table 3: The attribute cardinalities of the example sales database

Attribute No. of values (cardinality)
Product 5
Month 3
Employee 2

employee for the sales database 1s shown in Fig. 1. It is
usually stored as flat table as seen in Table 2 where the
value ALL in any attribute represents the computed
agpregate for all values in this attribute.

In the example sales database, the data cube has
three dimensions: product, month and employee that has
the values and attribute cardinalities as shown Table 3.

The data cube for this dummy database consists of
30 rows as shown m Table 2. For real data sets, the
extracted data cube has more than ten dimensions and the
cardinalities of these dimensions ranges from 2 to several
hundreds so its size 15 huge (Wang et al., 200Z;
Sismams et al., 2002; Han et ai., 2001; Lakshmanan et @i,
2002) and in some cases cannot fit in main storage during
its extraction. In some cases, the cubes are extracted
using lower granularities for the attribute values using
concept hierarchies for these attributes (Ester et al., 2000).
Usually, the extracted cube is represented as a flat table
for the attbute values by adding the computed
aggregate. In this case, the value ALL in any column
represents the aggregate computation for all values in this
column.. Some literature uses the symbol * to denote the
value ALL and some commercial databases uses null for
the same purpose. All the previous representations
require storage space for the value ALL. The dimensions
of the data cube are either categorical with limited number
of values or continuous for numeric and date attributes.
The continuous attributes are divided mto a reasonable
set of intervals. Now handling the data cube is done by
mapping continuous attributes to the chosen intervals. In
the case of continuous attributes, the number of intervals
cannot be selected to be very large because this tends to
a larger data cube. Also very small number of intervals will
hide a lot of trends represented in the cube. To reduce
required storage for the cube, both categorical attributes
and mapped intervals for continuous attributes are
indexed and represented by small number of values.
Attribute indexes have very small length and the value
ALL still exists in the cube represented as flat table and
requires storage space to represent it Consider the
example cube shown in Table 2 there are 30x3 = 90
attribute values represented and stored in this data cube.
From these attribute values there are 37 'ALL' values that
represent a ratio of about 41% from all stored values. This
ratio will increase as the number of dimensions increases
or the attribute cardinality increases. Eliminating the
storage of 'ALL' values will decrease the size of the stored
cube. In this paper a new storage approach 1s proposed
for data cubes that eliminate storing 'ALL' values while
providing fast access for the cube contents. Data cubes
are used mainly for analyzing the data and extracting
unknown and unusual features through visualization and
other methods (Sathe and Sarawagi, 2001; Dong et al.,
2001; Keim and Kriegel, 1996). The proposed method has
the advantage of fast roll up and drill down throw the
structure of the pointer tables as will be described later.

Inform. Technol. J., 5 (3): 565-372, 2000

RELATED WORK

data cube has attracted
researchers to develop new methods for extracting,
representing and exploiting them efficiently (Barbara and
Sullivan, 1997; Beyer and Ramakrishnan, 1999, Fang et al.,
1998, Han et «f, 2001; Lakshmanan et ai, 2002,
Lakshmanan et aif., 2003; Ross and Srivastana, 1997). In
(Wang et al, 2002) a new structure called condensed
cube was proposed to reduce the represented rows in the
cube. This method depends on the combinations of
values for cube dimensions. Tt depends on eliminating
cells that can be computed from other cells in the cube.
However, this method adds an un-normalized column to
the cube where this column stores more than one value to

The problem of huge

show the attribute combinations for the values in this row.
This column requires large storage space compared with
the compression ratio achieved. Furthermore, this method
requires exhaustive search for attribute values to get a
specific value or new indexes are required to speed up the
search. These indexes require extra storage space. A
dwarf cube is proposed by Sismanis et al (2002) that
eliminates the representation of redundant wvalues in
the cube combinations. In (Lakshmanan et al., 2002) the
cube is partitioned according similar values of the
computed aggregates which is rare in large real life
databases.

THE PROPOSED APPROACH

To the best of my knowledge, the problem of
eliminating 'ALL' values and de-normalizing the storage
structure of the data cube has not been addressed before.
The proposed approach depends on eliminating 'ALL'
values represented in the extracted cube by using a
storage structure suitable for this purpose.

Let us consider the database shown in Table 1 and
the extracted cube for this fact table shown in Table 2.
The storage of ALL wvalues can be eliminated if the
sttucture of the representation has changed. Lookimng
agam at the data cube shown n Table 2, we notice that
there are several attribute combinations that store values
other than 'ALL'. For example row 2 has value for one
attribute (Employee = Holm) and row 10 has values for
two attributes (Month = MAR and Employee = John).
To de-normalize the representation of the data cube we
can divide this flat table into many tables each of them
has different attribute combinations. Figure 2 shows all
the partitions that have different number of attributes. For
Fig. 2a-c, they have one dimension from the cube in
addition to the aggregate function computed for the

567

values of this dimension. Table d-f in Fig. 2 have two
dimensions and the computed aggregate. Similarly, the
Table g in Fig. 2 has three dimensions and the computed
aggregate function for the different combinations of the
attribute values. If one needs to divide the computed cube
to thus form, too many tables are required. So we need a
distinet table for each attribute combinations where the
number of attributes in the combinations ranges from 1 to
the number of dimensions in the cube. For a cube with N
dimensions, the number of tables with x (where 1 <x<N)
attributes is:

~ N(N-1)....(N-x-1) (1)
x!

M(x)

The total mumber of tables for all attribute

combinations 1s

7o P NO-D (N

x!

x=1
Multiplying with (N-x) factorial we can find

NN-1) o N-x-DN=x).... 15 N

@
x! (N0 “H o)

T=%

x

So for example, if number of dimensions N is 5 the
total number of tables 15 31 and the total number of tables
15 1023 for N = 10.

From the previous analysis, if one needs to partition
the cube mto many tables each of which has different
attribute combination, it 1s concluded that the number of
tables increases dramatically by the increase of the
number of dimensions. Also the number of attribute
values that contain 'ATLL' in the original flat table cube
represents a high percentage of the total attribute values
in the cube and these values if eliminated from the
representation will result in a high reduction of the
storage required for the computed cube. Looking again to
the example partitioned Tables from Fig. 2, it 1s seen that
there are many tables with the same number of dimensions
but with different attributes. If one merges all tables with
the same number of dimensions in one table, the total
number of tables required for the storage will be reduced
very much. In this method, only N tables are required to
store all cube data without any loss of information and
'ALL' attribute values from the original flat table cube are
eliminated.

To merge the tables with different attributes but
have the same number of dimensions, a pointer is required
to link the part of the merged table to the attribute

Inform. Technol. J., 5 (3): 565-372, 2000

ID | Product Sum ID| Mooth | Sum ID | Employee| Sum
11 Pl 100 4 | FEB 60 2 Holm 90
15 P3 50 6| JAN 150 Johm 250
19 P4 40 8 | MAR 130
23 P7 60
27 P9 90
(8) (b} ()
ID | Product | Month | Sum ID | Product | Employes | Sum ID |Month|Employee | Sum
13 P1 JAN 100 12 Pl John 100 5| FEB John 60
17 Fa JAN 50 16| P3 John 50 7]1aN | Jobn | 150
21 P4 MAR 40 20 P4 John 40 9 | MAR.| Holm 90
25 P7 FEB 60 24 P7 John 60 10| MAR. | John 40
29 P9 MAR 90 28 P9 Holm 90
@ ®© @
ID | Product | Month | Employee| Sum ID| Sum
14| P1 JAN John 100 1] 340
18] P3 JAN John 50
22| P4 MAR John 40
26| P7 FER John 60
30| P9 MAR Holm 90
® ®
Fig. 2: The cube partitioned into a table for each attribute combination
Columnl | Pointer | [ID] Columni | Sum][Column1[Column? JPointer] [ID]Column1 [Column2 [Sum]
Product 11 Pl 100 |[Product [Month —®13| P1 Jan 100
Momnth N\ 15 P3 50 Product |Employee| 17] p3 Jan |50
Employ W\ 19] P4 40 Month |Employee| ,\ | [21] Pps Mar |40
\23 P7 60 \25 P7 Feb |60
27 PO 90 29 P9 Mar |90
4 Feb 60 12 P1 John |100
6 Jan 150 16 P3 John |50
] Mar 130 20 P4 John |40
2 Holm | 90 24 P7 John |60
3 John 250 28 P9 Holm |90
S5 Feb John |60
7 Jan John |150
9 | Mar | Holm [0
10 Mar John |40
Column]|Column2?| Column3 |Pointer |0 | Calumni | Column? | Column3| Sum 1D | Sum
Product [Month [Employed] ——M14] 1 Jen John |100 1 340
18 P3 Jan John |50
22 P4 Mar John |40
26 P7 Feb John |60
30 P9 Mar Holm |90

Fig. 3: Partitioned cube storage, a distinct table for all attribute combinations with the same number

combination. Consider this pointer has the structure as
seen in Fig. 3. The pointer has a structure of a table with
many rows for all attribute combinations with the same
number of attributes. The storage structure of the merged
tables with the pointer tables is called the partitioned
cube.

Tt is clear from the partitioned cube representation
that they do not contain the value 'ALL', so no lost
storage for these values. Usimg this method for data cube

storage requires number of tables equals to the number of
dimensions in the computed data cube. Each table stores
the attribute values for all attribute combinations with the
same number of columns (Fig. 3). The pomter tables have
a very important advantage where they point directly to
the attributes combination of the computed aggregate. To
access some attribute values from the partitioned cube,
one first searches the pointer table with the same number
of attributes. The size of this pointer table is too small

568

Inform. Technol. J., 5 (3): 565-372, 2000

where each pointer table used for x number of attributes
in a cube with N dimensions contains only number of
entries as computed in Eq. 1. For example, a cube with 10
dimensions has 252 entries in the pointer table with 5
attributes and 120 entries m the pomter table with 7
attributes. The data in the data cube tends to be highly
static, so each set of rows related to the same attribute
combination can be sorted according to the attribute
values. This storage enables fast access for the attnibute
values.

It should be noted that, the total number of rows m
the partitioned cube equals to the number of rows in the
flat table data cube and only the value ALIL has been
eliminated from the partitioned storage. According to the
type of data stored in the partitioned cube colummns, it
should be able to represent any simple type that can be
stored i the database such as number, string, dateetc.
The type varchar from the SQL standard is able to
represent all the values from the other types. For example,
numeric values are represented by digits from 0 to 9 and
date 1s represented as a string with the form dd/mm/yyyy.
As mentioned before, the actual values of the categorical
attributes are mapped to an index values and so for
mtervals of categorical attributes. In this case, the indexes
are always numbers and require small storage compared
to the original values.

Concermng the extraction of the data cube using the
proposed storage structure, all proposed algorithms can
be used (Beyer and Ramakrishnan, 1999; Han et af., 2001,
Rossand Srivastana, 1997) with a very slight modification.
Instead of using a single storage structure for the
extracted cube, multiple structures are used according to
the attributes combinations suitable for the proposed
approach.

EVALUATION STUDY

Here an evaluation study will be presented for the
proposed storage method. The storage required for the
proposed method is compared with that required for the
cube represented in a flat table. The umt of the
comparison is the number of attribute values required for
each of the two methods.

The evaluation study uses synthetic data generated
for this purpose. The fact table has the following
structure:

FACT(C1,02,03,04,05,06,07,08,09,09,C10,C11,C12,C13,M)

Tt consists of 13 attributes each has a cardinality of 25
and a quantitative attribute for the computed aggregate.
The content of the fact table ranges from 10to
100 k records. The first experiment consists of computing

569

the cube for all dimensions. Figure 4 shows the required
storage in number of attribute values for flat table cube
and partitioned cube according to the number of records
in the fact table.

Tt is clear from this figure that the partitioned cube
requires about 50% storage space compared with the flat
table cube. Also the flat table cube requires several
indexes to access the computed values for some attribute
values. Consider that the visualization requires a roll up
for the columns C1, C2, C7 and C9, it requures an index that
contains these attributes as major key in the case of flat
table representation. To visualize the same attributes in
the partitioned cube, it is done directly from the pointer
table that points to the partition with 4 attributes (which
is very small compared to the flat table cube and it
contains at most 1365 entries according to equation 1) and
searches for the columns C1, C2, C7 and C9 where this
entry points directly to the required data in the partition
that contains four attributes. It should be noted that the
contents of the pomter table can be sorted because it is
never changed and binary search or another fast search
method can be used.

The second experiment has a fact table of 20k records
and attributes cardinality is 25 and the cube is computed
for different number of dimensions ranges from 2 to 10.
Figure 5 shows the required storage (again as number of
values) for flat table cube and for the total storage
required for the partitioned cube according to the number
of dimensions in the cube. Tt is clear that the required
storage for the partitioned cube 1s less than that required
for the flat table representation. Figure 6 shows the same
information but as percentage storage ratio.

The third experiment has a fact table of 20k records
and the number of attributes 13 10 and attributes
cardinality ranges from 2 to 100. Figure 7 shows the
required storage for flat table cube and for partitioned
cube. Tt is clear that the required storage for the
partitioned cube 1s about 50% of that required for the flat
table cube. Figure 8 shows the ratio between required
storage in partitioned cube and flat table cube according
to the attributes cardinality.

In the practical experiments, a comparison study is
presented for the storage required in the proposed
method and the original cube measured in number of
values for data cubes computed for real life data sets.
Also, the storage required in Kbytes m one of the
commercial databases is recorded for both methods. The
first real life data set is used for tracking purchase orders
for a large network of retailers. The fact table has the
attributes shown m Table 4 together with their mumber of
values and the intervals for continuous attributes.

Inform. Technol. J., 5 (3): 565-372, 2000

230 -

900 —h—
— = Flat toble cube Flat table cube
8001 —w——Partitioned cube —uw— Partitioned cube
§ 700 200
%‘ 600 %
g 500 "150 1
8 400 .g
S 300- 5100 1 —
a
Z 200 =
100 %7
09K 5K 10K " 20K T 30K T 40K 50K 100R 0 +—M— . ,
No. of rows in the fact table 2 5 10 15 20 25 30 50 100
Atiribute Cardinality

Fig. 4 Number of stored attribute values for flat table

o ; Fig. 7. The required storage for flat table cube and for
cube and partitioned cube according to the number

partittioned cube according to the attributes

of rows in the fact table cardinality
2,500+ —ar— Flat table cube 0.7-
=—#— Partitioned cube
2,000 4 0.6
g
| 0.5
g 1,500+
o
E 2 944
'E 1,000 4 E
€ 0.3
s
4
500 024
0.1
0_
1 2 3 4 5 6 7 8 9 10 11 12 13 0 —
No. of Dimensions 2 5 10 15 20 25 30 50 100
Attribute cardinality

Fig. 5:Required storage for flat table cube and for the

Fig. 8 The ratio bet ired st in partitioned
partitioned cube according to the number of & © TR0 beweet Jedured SLotage T b one

cube and flat table cube according to the

dimensions in the cube attributes cardinality

L.14 Table 4: The stnicture of the purchasing database for a retail network
14 Attribute Type No. of values Interval
0.9+ Purchase order date Continuous 1/1/1991- 30/12/2000 Week
0.8 Purchase order type Categorical 2
0.7- Supplier ID Catcgorical 1377
& 061 Employee ID Catcgoncal 132
| Thie date Continuous 20/1/1991-30/12/2000 Week
& 05 Shipping date Continuous 23/2/1991-14/4/2001 Week
0.4 Arrival date Continuous 26/2/1991-22/6/2001 Week
0.3 Shipping type Categorical 4
0.24 Shipping cost Continuous 3k-31k 0.1k
0'1 i Tatal cost Continuous 17k-852k 1k
0
"T1'2 34 § 6 7 8 9 1011 12 13 Table 5: The structure of the employee annual tax database
No. of Dimensions Attribute Type Values/Range Interval
Employee number Tdentifier 237452
Fig. 6: The ratio between storage required for partitioned =~ Year Continuous ~ 1982-1992 1 year
cube and storage for flat table cube according to Age Continueus 18-72 Lyear
. . Employment type Categorical 5
the number of dimensions Education level Categorical 5
Education type Categorical 8
The purchasing database contans 8245 records. The Gender Categorical 2
. . . Marital_status Categorical 4
extracted data cube is used for all dimensions and the Own _house Categorical 2
measure 1s the average period between due date and Nationality Categorical 17
Annual tax Continuous 3-61k

arrival date.

570

Inform. Technol. J., 5 (3): 565-372, 2000

Table 6: Required storage for flat table cube and for the partitioned cube for two real life data sets

Storage for flat table cube

Storage for partitioned cube

Data set Rows in fact table Rows in data cube No. of values Kbytes No. of values Kbytes Percentage (Values)
Purchasing 8245 8009620 80096200 267880 41245941 151968 51%
Emp. annual tax 1977975 62666096 626994864 2258392 382466341 1422799 61%

The second real life data set is used to record the ACKNOWLEDGEMENTS

annual tax for employees inthe years from 1982 until 1992.
The fact table has the attributes shown in Table 5
together with their number of values and the intervals for
continuous attributes.

The data cube extracted for the annual employee tax
consists of all dimensions except the identifier of the
employee. The annual employee tax contains 1977975
rows since not all the employees has a distinct row for
each year in the interval from 1982 until 1992 where new
employees entered the work after 1982 and old employees
left the work before 1992.

Table 6 shows a comparison for the required storage
for both flat table cube and partitioned cube for the
previous data sets. It 1s clear from this table that the
proposed method requires less than 60% storage space of
that required for the flat table cube. The table also shows
the required storage in Kbytes for both methods using
one of the most common commercial databases.

CONCLUSION AND FUTURE RESEARCH

In this study a new approach 1s proposed for
partitioning and storing data cube efficiently. The
proposed method eliminates the storage of the value ALL
by partitiomng the flat table cube inte mumber of tables
equals to the number of dimensions in the cube. Each
table stores the attributes values and the computed
measure for combinations with the same number of
attributes. A set of pointer tables are used to link different
attribute combinations to the attribute values in the
partitioned tables. The pointer tables have the advantage
of fast access for the attribute values since they are very
small compared to the original cube size. The fast access
for the attribute values 1s very important in rollup and drill
down without the need of any indexes for the attribute
values.

Experiments on synthetic and real data sets show that
the required storage for the new method is about 60% of
that required for flat table cube.

All previously proposed methods for data cube
extraction can be used and adopted to use the proposed
storage approach.

Developing new visualization method for the cube
content stored n partitioned cube 13 currently under
development.

571

I would like to thank Mr. Rudi Bayer for his practical
suggestions and notes on the implementation of the
proposed method. Also many thanks to Advanced Data
View for providing the real life data sets used in analyzing
the storage space for the proposed method.

REFERENCES

Acharaya, 3., P.B. Gibbons and V. Poosla, 2000.
Congressional samples for approximate answering of
group-by queries. In SIGMOD 200, Vol. 29.

Barbara, D. and M. Sullivan, 1997. Quasi-cubes: Exploiting
approximation in multidimensional databases. In
Proceedings of International Conference
Management of Data (SIGMOD).

Beyer, K. and R. Ramakrishnan, 1999. Bottom-up
computation of sparse and iceberg cubes. In
Proceedings of International Conference
Management of Data (SIGMOD).

Dong,G.,J. Han, I. Lam, J. Pei and K. Wang, 2001. Muung
Multi-Dimensional Constrained Gradients in Data
Cubes. In Proceedings of the VI.DB 2001 Conference,
Ltaly.

Ester, M., J. Kohlhammer and H.P. Kriegel, 2000. The
DC-Tree: A Fully Dynamic Index Structure for Data
Warehouses. In Proceedings of 16th International
Conference on Data Engineering (ICDE’2000).

Fang, M N, H. Shivakumar, R. Garcia-Molina, Motwam
and I.D. Ullman, 1998. Computing iceberg queries
efficiently. TIn: Proceedings of International
Conference on Very Large Databases (VLDB).

Yu, F. and W. Shan, 2002. Compressed data cube for
approximate OLAP query processing. J. Compute.
Sei. Technol., 17: 625-635.

Gray, J.A., Bosworth, A. Layman and H. Pirahesh, 1996.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-totals. In
Proceedings of International Conference on Data
Engineering (ICDE).

Han, I., I. Pei, G. dong and K. Wang, 2001. Efficient
computation of iceberg cubes with complex
measures. In: Proceedings of International
Conference on Management of Data (SIGMOD).

Inmon. W.H., 1996. Building the Data Warehouse. John
Wiley and Sons.

on

on

Inform. Technol. J., 5 (3): 565-372, 2000

Keim, D.A.
Techniques Mining Large A
Comparisonn In IEEE Transactions on Knowledge
and Data Engineering, 8: 6, Dec. 1996.

Lakshmanan, 1.V.3., T Pei and J. Han, 2002. Quotient
cube: How to summarize the semantics of a data
cube. In Proceedings of Intemational Conference on
Very Large Database (VLDB).

Lakshmanan, L.V.S., P. Jian and Y. Zhao, 2003.
Snakes sandwiches: Optimal clustering
strategies for a data warehouse. In: Proceedings of
International Conference on Management of Data
(SIGMOD).

Ross, K.A. and D. Srivastana, 1997. Fast computation of
sparse data cubes. In: Proceedings of International
Conference on Very Large Database (VLDB).

for Databases:

and

and H.P. Kriegel, 1996. Visualization

572

Sathe, G. and 5. Sarawagi, 2001. Intelligent Rollups in
Multidimensional OLAP Data. In Proceedings of the
27th VLDB Conference, Roma, Italy.

Sismaris, Y., A. Deligiannakis, N. Roussopoulos and
Y. Kotidis, 2002. Dwarf: Shrinking the peta-cube. In
Proceedings of International
Management of Data (SIGMOD).

Vitter, J.5., M. Wang and B.R. Iyer, 1998. Data cube
Approximation and histograms via wavelets. In
CIKMO8.

Wang, W., I. Feng, H. Lu and J. Yu, 2002. Condensed
cube: An effective approach to reducing data cube
size. In: Proceedings of International Conference on
Data Engineering (ICDE).

Conference on

	ITJ.pdf
	Page 1

