http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (3): 601-611, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

A Survey of Concurrent Object-oriented Languages (Cools)

'Kalim Qureshi and *Paul Manuel
"Department of Mathematics and Computer Science,
*Department of Information Sciences, Kuwait University, Kuwait

Abstract: The progress in hardware and networking has changed the computing environment from sequential
to parallel. During the last decade object oriented programing has made a widespread mfluence. Many attempts
have been made to combine both developments. The main objective was to provide the advantages of object
oriented software design at the increased power of parallel machines. This survey covers the well known
characteristics of both object oriented paradigm and parallel programming and then mark the design space with
possible combmations by identifying various nterdependencies and key concepts. The survey presents the
characteristics and feature tables for 111 proposed languages.

Key words: Concurrent object-onented programming languages, parallel and object-riented paradigms, parallel

paradigm, survey

INTRODUCTION

Concurrent object-oriented programming languages
(COOL) focus on the abstraction and encapsulation
power of abstract data types on managing the
complexities of concurrency and distribution. In particular,
pure fine-grained concurrent object-oriented languages
(as opposed to hybrid or data parallel) provides the
programmer with a simple, uniform and flexible model
while exposing maximum concurrency. While such
languages promise to greatly reduce the complexity of
large-scale concurrent programming, the popularity of
these languages has been hampered by efficiency which
15 often many orders of magmtude less than that of
comparable sequential code.

The mcreasmg use of parallel machimes has
exacerbated the longstanding tension between high-level
and low-level programming languages. Though high-level
languages ease the task of expressing a computation,
advocates of low-level languages argue that detailed
control is required to achieve efficiency. Arguably,
moving to parallel systems increases both the complexity
of programming and the importance of achieving high
efficiency. Thus, determming what high level features can
be supported efficiently and how to implement them
efficiently is an important topic of research.

The larger problem of achieving good parallel
performance requires both generation of efficient
sequential code and data locality. We explore the
elimination of object-orientation and concurrency control
costs m the generated code. Even the best
implementations incur tens to hundreds of instructions for

each method invocation (America, 1987) due to the cost
of managing a distributed mem ory. Furthermore, the high
procedure call frequency typical of object-oriented
programs not only magnifies the method mvocation
overhead, it also reduces the benefits of traditional
optimization.

Basics of object-orientation: An object 15 the basic
programming entity. Tt takes up space in memory and has
an associated address. The object stores a ‘state” and
offers a set of methods for meaningful operations on that
state. A language with objects provides data abstraction
(data encapsulation) if the state encoding can be hidden
so that it can only be accessed through methods instead
of direct access to instance variables.

A class 1s an implementation of a set of objects.
Objects of the same class share the same implementation.
A class determines a concrete type, i.e., the interface of
methods that are offered by that implementation.

Languages with objects, but without the notion of
classes, are called object-based languages (Agha, 1986).
Languages that
referred to as

offer both objects and classes are
Object-based
languages with a mechamsm to clone objects, 1.e., to make
several objects adhering to a common interface and

class-based languages.

implementation, are called prototype-based languages
{(Turcotte, 1993). In class-based programming languages,
classes hide mformation regarding their internal details
behind a well defined interface and hence support a
modular system design. Inheritance is the essential
feature that turns class-based languages to object-
oriented languages (Meyer, 1988).

Corresponding Author: Dr. Kalim Qureshi, Department of Mathematics and Computer Science, Kuwait University, Kuwait

Inform. Technol. J., 5(3): 601-611, 2006

An object-oriented language is said to offer
multiple mheritance if a new class can inherit from the
implementations of more than one (unrelated) ancestor or
if a new class can be m the type hierarchy below two
different types. For full extensibility, however, the two
additional characteristics (Bal et al., 1989). Polymorphism
and dynamic binding have to be offered by the language.

COOL PROGRAMMING PROBLEMS

The common problems when concurrency is added to
object oriented language. Most of these problems can be
avoided by appropriate programming style or language
design.

Parallel Performance

1. Fan-out: In general it is inefficient to spawn activities
sequentially since on a machine with p processors it
takes p steps until all processors are busy. Tn COOLs
that only support the creation of a single new activity
the programmer can always use a binary creation tree
to reduce the time to log(p) steps wntil all p
processors are busy. However, such code is often
hard to read and programmers tend to avoid it. For
increased expressiveness, COOLs should therefore
offer spawning constructs with lugh fan-out.
Intra-object concurrency: In many COOLs, objects
are implemented as momtors without mtra-object
concurrency so that only one method is executed at
a time while concurrent mvocations are delayed.
Since in general such delays are inefficient, COOLs
should allow intra-object concurrency, 1.e., it should
be possible to invoke several methods of an object
concurrently.

Locality: On distributed memory parallel machines,
good parallel performance can only be achieved if
objects and activities are co-located in the same node
to avold slow remote access.

Inheritance anomalies: The concept of inheritance 1s
meant to refine certain aspects of a class while keeping
other aspects stable and reusing them. However, n an
implementation with callee-side coordination, a class
implementation contains nstance variables, code that
implements the intended functionality and code that
implements the coordination constramts. In general,
there is a high interdependence between coordination
constraints of different methods and instance variables
(Bal, 1991). Concurrency coordination and functionality is
mtimately interwoven. Because of this mterdependence,
methods often cannot be refined in subclasses without
affecting other methods due to modified coordination
constraints.

602

Expressive coordination constraints: Callee-side
coordination needs mechanisms to express so-called
proceed-criteria that specify whether a method mvocation
can proceed or must be delayed. As discussed m the
previous section, proceed criteria need to be isolated and

separable to reduce inheritance anomalies.
INITIATING CONCURRENCY

The initial question of parallel programming is how to
iitiate parallel execution. In this section we present
various proposals for expressing parallel execution in
object-oriented programming languages and discuss
whether these mechanisms are appropriate (Yaoqing and
Kwong, 1993; Wyatt et al., 1992).

Automatic parallelization: The sequential representation
provided by the programmer is automatically converted
1nto a parallel form. Conceptually, automatic parallelization
fits well to object-oriented programming languages since
it does not visibly interfere with existing language
characteristics.

Fork, join and equivalents: This section covers
constructs that start exactly one new concurrent activity.
This activity 1s not bound to objects but can operate on
the data structures in the same way as the activity that
executed the construct. Table 1 gives the overview of
Fork-Toin and Equivalent Category of COOLs.

Fork and join: A method can be invoked with the fork
statement, but after the start both the nvoking and the
invoked method proceed concurrently. Together with
fork, often a join statement is introduced. The process
that executes the jom blocks unless/until the forked
method has terminated. There can be several join
statements that refer to a single fork but only one may be
used at mn-time. Basic fork and join restrict parallel
performance due to limited fan-out and are affected by the
library problem if fork is provided by a separate library.
Callee-side coordination is needed as a programming style
to achieve encapsulation. Fork and join do not obey the
single-entry single-exit paradigm. Unless used with
discipline, the programs are speckled with fork and join
statemerits.

Asynchronous call and future: Several COOLs provide an
asynchronous method call that is equivalent to the
fork statement as long as there are no return parameters.
The programmer cannot determine when the
asynchronously called method has terminated since there
is no join.

Inform. Technol. J., 5(3): 601-611, 2006

Table 1: COOLs in fork-join and equivalent category

COOL Fork Asvnc. call 1st class future Post-processing Misc. features

ABCL/X s
Acore

ACT++

Actl

Actalk

Actorpsace

Actra

A-NETL

Amber

ASK

AUM

Cantor

CEifTel

CHARM-++

CLIX

Compos. C++

Conc. aggregates

Conc. smaltalk

cooC

COOL/Chorus v
COOL/NTT

COOL/Stanford

Coral

Correlate

CST

Demeter Thread object
Distr. C++ Thread object
Distr. Eiffel

Distr. smalltalk-object v
Distr. smlltalk-process v
DOWL Thread object
DROL

Ellie

ES-kit

ESP

FOG/C++

HAL

Harmony

Heraklit

HoME v
Hybrid

Karos

LO

MeldC

Mentat

Meyer’s proposal

MPCH++
Multiprocessor-smalltalk

Oblig

Orca

Parallel computing action
Parallel Object-oriented Fortran
PO

POOL 4

Presto Thread object
Procol v

pRather v v Queue

PVM++ Thread object
Python Thread/fork, library
QPC++ Wait by necessity
Rosette
SAM
Scoop Thread object
Smalltalk v
SR

Tool

Trellis/Owl

Ubik

UC+H+

s
s

First, last, queue
Once, queue

Thread object

NN SNNANNSSNSSN

Wait by necessity

~

Spawn command

LN

Wait by necessity

A N N N N NS SN

\
\

Manual fiture
Manual future

Thread object

A N N N Y N N

Return value

ANENEN

ANENEN

ANENEN
ANENEN

Thread object

N

603

Inform. Technol. J., 5(3): 601-611, 2006

Table 2: COOLs in Cobegin, Par and equivalents category

Cools Cobegin

Par statement

Activity st Misc. features

ABCL/X s
COOL/Stantord
Comp. C++

Conc. aggregates
DOWL

Guide

LO

Micro C++

Proof

pRather

Rosette

Scheduling predicates
SOS

Spar

SR

Trellis/Owl

AR NN

LANNNS S

Wait for staterment

Combination Join
Block D thread boundary

Co-statement
v

Many COOLs make this dependence explicit. They
introduce so-called futures that are special variables with
the following characteristic: after a value has been written
to the future, the future behaves like a plain variable. An
activity that tries to read from an un-initialized future is
blocked until another activity writes to the future.

Asynchronous calls and futures restrict parallel
performance due to limited fan-out and may break
modularity unless encapsulation is preserved by
callee-side coordination.

Post-processing: Early return (also known as post-
processing) is dual to asynchronous method calls.
Whereas in the case of the asynchronous method call
parallelism is introduced at the point of the method call,
post processing tesults in initiation of parallelism at the
point of return. With post-processing the called method
can return a result but continue to work.

Cobegin, par and equivalents: Table 2 deals the syntaxes
of Cobegin, Par and equivalents.

Cobegin: The cobegin statement (Kessels, 1977;
Papathomas, 1989, Briot et al., 1998) is a structured form
of initiating parallelism in a language. In contrast to
fork-join and their equivalents, this control structure
obeys the single-entry single-exit paradigm. The execution

Cobegin StmtList] |.....| StmtListn end

of creates n concurrent activities, each of which executes
the corresponding list of statements. The essential
difference to fork-join is that the original thread only
continues when all n threads themselves have terminated.
Whereas the join statement was optional and several join
statements could refer to a single fork, the cobegin
statement syntactically enforces a synchronization.

Par and equivalents: The par statement is similar to the
cobegin statement in its characteristic that the original

604

activity is blocked until all activities that are spawned
inside the par statement are terminated.

par StmtlList end

The par statement itself does not introduce any
parallelism but is solely used to coordinate concurrency.
Only if StmtList itself initiates concurrency does the
above mentioned synchromzation take place. A cobegin
can be equivalently expressed by means of par and fork:

Activity set: The programmer can explicitly add activities
to an activity set and then wait for the completion of all
those activities. Although the effect is similar to the par
statement, 1t no longer provides the ease of
understanding of potential concurrency. Whereas the par
statements narrow the concurrent activities to a couple of
program lines, the activity set can be modified anywhere
in its scope.

Forall, aggregate and equivalents: This section covers
constructs such as Forall, aggregate and equivalents that
may start many concurrent activities at once. The readers
may find this mformation related to COOLs 1n Table 3.
These activities are bound to objects or specific data
structures because each new activity is supposed to only
work on a particular object or data element of a given data
structure.

Forall: Various forms of the cobegin statement found
their way into parallel languages. Most notably, the forall,
doall and doacross forms. Several instances of StmtList
are executed concurrently, one for each element m the
range.

forall I: [range] do StmtList(I) end

The forall may break modularity unless encapsulation
15 preserved by callee-side coordination or by strictly

Inform. Technol. J., 5(3): 601-611, 2006

Table 3: COOLs in forall, ageregate and equivalents category

COOL Forall Agoregate Multicast Miscellaneous
Actorsace v

A-NETL s

Arche s

Blaze-2 s

Braid Data parallel
[Shi Data parallel
CHARM-++ Cluster aggregate
Comp. C++ v

Conc. aggregates v

dpSather Data parallel
EPEE Cluster aggregate
Fragmented objects, FOG/C+ v

HPJava v

Modula-3* v

NAM Data parallel
parallel C++ Data parallel
Procol v Via type

QPC++ v Processor set
Spar v

SR Array of process: strip, co-stmt: quantifier
Titanium v

Table 4: COOLs in autonomous code category

COOLs Life routine

Autonomous routine

Self start Miscellaneous

Arche v
Atom

Beta

CHH//

CEittel

COB

Cong. class eiffel
Correlate

Distr. eiffel

DoPVM

Dragoon

Eiffel’/

Emerald

Guide

IceT

Java

Java//, ProActive PDC
Mediators

Mentat

Micro C++

Moose

Panda

POOL

Proof

Guide (process, static)
QPCH

SR

Titanium

'd

LN

< ANRNE NN

AN

NN

Separate start

Separate start

NONSS

Process: dynamic
Process: static

ANENEN

Process: static
Process
Separate start

Process: static

LN ONRSRNNNNS

Process

confining concurrency to individual data elements (one
per instance of the forall), ie., by avoiding any data
dependence within the forall. Here as cobegin helps in
determining these activities which could be executing
concurrently, the forall statements further reduce
complexity by restricting what the activities can do to a
single statement list.

Apggregate, multicast and cluster aggregates: Aggregate
languages offer a mechanism to group together several
objects and then call a particular member function for all
objects of this aggregate. Similar to the forall where a data
structuring concept of the language, i.e., the array, is used

605

to express that an operation must be performed on all
elements (Wegner, 1987).

Languages that are based on explicit message
passing sometimes define aggregates implicitly by
defiming lists of recipients or by linking several recipients
to a single communication channel. This is called
multicast message passing.

Autonomous code: This section covers constructs that
start one new concurrent activity at a time. This activity
15 bound to an object, a specific data structure of the
language, or to a code sequence. The COOQOLs in
Autonomous code category is given Table 4.

Inform. Technol. J., 5(3): 601-611, 2006

Process: Fork-join, cobegin, forall and aggregates initiate
parallelism at arbitrary points of an otherwise sequential
program. Instead, process declarations make parallelism
explicit and are targeted towards coarse grain parallelism
where a few clearly identifiable tasks exist. Process P 1s
Procedure-Body end Processes do not express parallelism
within the object-oriented program; they are a language
concept that exists on top of an otherwise object-oriented
language.

Autonomous routine: An extension of process
declarations 1s to combine them with object declarations.
When an object is created, an additional activity is
spawned that executes a specific member function, called
autonomous routine. Whereas in some languages
(Wegner, 1987, Cardelli and Wegner, 1985; Korson and
McGregor, 1990) autonomous routines are started
automatically upon object creation, other languages
require an explicit start of that method.

COORDINATING CONCURRENCY

This section surveys coordination constructs found
i COOLs. The main distinction 1s made with respect to
the goal of callee-side coordination (Meyer, 1988; Goss
and Hartmams, 1983).

Activity-centered coordination: Mecharisms i this group
do not fulfill the goal of callee-side coordination though
some allow fulfilling it manually. The COOLs m activity
centered coordination category is given in Table 5.

Synchronization by termination: Most of the mechanisms
for mutiating parallelism provide a simple way of

Table 5: COOLs in activity centered coordination category

synchronization. Whereas in practice fork-join and
cobegin programs rely on other means of coordination,
data-parallel and aggregate programming are solely based
on synchronization by termination.

Semaphore, mutex and lock: The semaphore 1s another
basic concept of orgamzing concurrent access to shared
data. A semaphore is a non-negative integer variable with
two atomic operations. A critical section of the code, i.e.,
a section that operates on shared data, must be enclosed
by a pair of these operations. The other operation, called
V or signal, increases the variable atomically. When the
value of the variable is greater than one, more than one
activity can pass. Blocked activities are queued. Mutex
and lock are special types of semaphores that allow
exactly one activity to enter a critical section. Both mutex
and lock can easily be implemented with semaphore
operations.

Piggy-backed synchronization: In pure message passing
languages, concurrently executing activities are often
synchromized by blocking commumnication commands.
The receive statement waits until a message m arrives
from a specific sender s. Thus, the synchromzation is
piggy-backed on top of the communication. Here is the
syntax:

receive m [from s]

Boundary coordination: We distinguish three general
forms of boundary coordination mechanisms. The
distinction is based on the division of responsibility
between the run-time system and the object. The basic
question 18 where the coordination code 1s placed. The

COQOLs Termination Semaphore Mutex

Lock

Misc. features

Amber

Atom

Beta

Blaze-2

Braid

e

Comp. C++
Conc.
Aggregate
Conc. smalltalk
cooC
COOL/Chorus
CST

Distr. C++
Distr. eiffel
Distr. smalltalks
DoPVM
DOWL
dpSather
EPEE

ESR-Kit
Harmony
HoME
HPJava

'd

NN

WA ONNANN

Barrier
Enable set, instead of *become’ like guarding conditions

Coordination fiture

reader/wr

i

ter lock

Coordination fiture

LN

Piggy-backed Sync.

606

Inform. Technol. J., 5(3): 601-611, 2006

Table 5: Continue

COOLs Termination Semaphore Mutex

Lock

Misc. features

IceT

Distr. C++
Karos

LO

MeldC
Modula-3*
MPC+ (mutex)
Multiprocessor-smalltalk
NAM

Obliq
Panda
parallel C++
PO

Presto
Proof
pSather
PVM++
Python
QPCH-
Scoop
Smalltalk
Spar

SR
Titanium
Trellis/Owl

'd

ANENEN

\

NN

~

NENNSS

Pigey-backed Sync

Coordination fiture

Piggy-backed Sync

Piggy-backed Sync

Table 6: COOLs in boundary coordination category

COOLs Monitor

Condition variables

Conditional wait Misc. features

Amber
A-NETL
A'UM
CHARM-++
Conc. smalltalk
COOL/NTIT
COOL/Stanford
CST-MIT
Emerald

ESP

Fleng+t
Fragmented objects, FOG/C+
Heraklit
Mentat

Micro C++
Obliq

Orca

Oz, Perdio
Panda

Presto

SAM

Tool

UC+H+

NARSNNS

LANN NS NSNS

ANENEN

Sequential and persistent objects

COOLs in Boundary Coordination category is given in
Table 6.

Implicit control: COOLs based on boundary coordination
with implicit control define for all classes whether and
which of concurrently invoked methods to execute. The
programiner not write explicit concurrency
coordination code. The run-time system is responsible for
proper coordination.

does

607

Monitor: Tmplicit control is an instance of the monitor
concept (Yaoqing and Kwong, 1993; Wyatt ef af., 1992).
In object oriented terminology, a monitor 1s an object that
has internal variables to implement its state and offers
methods that operate on that state under a mutual
exclusion regime.

Condition variables: In this monitor extension, an activity
that has entered a monitor can block inside of the monitor

Inform. Technol. J., 5(3): 601-611, 2006

Table 7: COOLs in isolated hand shake category

COOLs Method guard Enable set Life routine Seralized method MISC.

Acore Un serialized

ACT+H+ v Called: behavior set
ASK v

Arche v Reader/writer Protocol
Blaze-2 v Also: lock

CH+/ v 1st class methods
CEiffel v Method compatibility
CLIX v

COB v

Comp. C++ v Also: coordination fubire
Conc. aggregate Un serialized, reader/writer Protocol
Cong. class eiffel v

cooC v Also: semaphore
COOL/Stantord v Also: condition variable
Correlate 4

Demeter v v

Distr. Fiffel ' Reader/writer Pratocol
Distr. smalltalk-process ' v Also: semaphore
Dragoon v Counter

Eiffel’/ v 1st class methods
Guide ' Counter

HAL '

Java v Also: mutex

Java//, ProActive PDC v 1st class methods
Mediators (life routine,) ' v Receive, counter
Mentat. v Receive

Meyer’s proposal v

Micro C++ v Receive

Moose '

Oblig v Also: mutex, lock
Orca v

Parallel computing action v

PO '

POOL v Receive

Procol v Path expression

Proof v

QPC++ v Receive

Rosette ' v v

Scheduling predicates v Counter

508 v Counter

at the condition variable by calling cond var. wait. Whle
1t 18 blocked, another call can proceed. The first activity
blocks until the other activity calls cond var.signal. Since
the monitor’s one-activity-at-a-time principle is obeyed it
must be specified what happens after a signal call, when
conceptually at least two activities are ready to proceed.

Conditional wait: This variant of condition variables has
been introduced by Kessels (1977) to improve the
conditional synchromzation in monitors. Kessels (1977)
proposed to 1solate the conditions syntactically instead
of spreading wait and signal over the class.

condition identifier : cond-expr;
Although some of the problems are solved, it cannot

be specified which of a collection of blocking activities is
continued when the condition holds. It is much easier to

608

identify the relevant conditions i the code, but the
programmer can still be tricked mto deadlocks.

Handshake control and isolated handshake control:
Boundary coordination with handshake
divides the responsibility for coordination between the
object’s implementation and the run-time system (or the
handler of message queues) (Borning, 1986). In general
there is code in the class that has the sole purpose of

control

specifying the concurrency coordination, 1ie., the
object’s dynamic Handshake
mechamsms fulfill the goal of callee-side coordination.
The COOLs 1n Isolated hand Shake category 1s given in
Table 7.

interface. control

Method guard: With method guards, proceed-criteria can
be expressed similar to preconditions. Before a guarded
method i1s executed its condition is evaluated. If it holds,

Inform. Technol. J., 5(3): 601-611, 2006

Table 8: COOLs in reflective control category

COOLs Reflective control Misc. features

ABCL/R2 v

ABCL/R3 v

DROL Protocol object, 1-activity time
HAL v

MeldC Shadow object, intra-object conc.

the method is invoked, otherwise the call is delayed. The
condition can be an expression over all instance variables
of the object.

Enable set: One of the remaining problems with behavior
abstractions is that each method has to perform a
possibly complex analysis to determine the new behavior
i the transition phase. When the sets of possible states
change in subclasses, this analysis must be re-worked in
otherwise unaffected methods.

Life routine: It specifies coordination procedurally. The
constructs discussed below use the message terminology
instead of understanding messages as method calls.

Reflective control: COOLs (Castagna, 1995) based on
boundary coordination with reflective control keep class
implementations free of coordination code. In contrast to
implicit control, where there i1s no explicit coordination
code, with reflective control the programmer can explicitly
formulate the coordination constraints in meta-classes.
The COOLs in Reflective Control category is given in
Table 8.

LOCALITY

A COOL that is implemented on a parallel computer
faces the mapping problem, 1.e., the COOL must provide
for a mapping of objects and activities to memory modules
and processing elements. On parallel computers, the
notion of locality 1s essential for achieving appropriate
run-time performance since access times to memory are
more non-uniform than they are for single processor
computers. The COOLs in Locality category is given in
Table 9.

Meta-level locality: COOLs with reflective concurrency
control usually extend the reflective approach to the
mapping problem. Distribution 1s completely transparent,
Le., given an object reference, it 1s impossible to decide
statically whether the object is stored locally or on a
remote processor. The programmer is in charge to
implement appropriate mapping strategies procedurally in
the meta-class. No locality-enhancing work need be done

609

by the run-time system and compiler. When a new object
is created, the meta-object assigned to the class is
consulted first. Since every method nvocation goes
through the meta-object first, it is possible to implement
object migration.

External locality: COOLs with external locality have
object placement that i1s beyond the scope of the
language. The user is in charge of the mapping, by
manually placing objects on various machines and
registering their location with a name server. The user
then binds variables to possibly remote objects by asking
the name server for a reference.

Internal locality: The programmer can optionally specify
the processor that must be used to store an object or to
execute a thread. If the specification is omitted, an
automatic default mapping strategy is applied. Often, the
new statement 1s augmented with an optional processor
number or the statements to initiate concurrency have an
additional syntactic feature to guide thread creation.

Virtual topology/scope locality: The difference between
internal locality and virtual topology/scope locality 1s that
the programmer has an abstract model of the parallel
machine in mind Objects and threads are mapped onto
this model, e.g. by means of abstract processor numbers,
instead of mapping them directly to the hardware. The
abstract model is automatically mapped to the underlying
machine topology. The visibility rules reflect locality, i.e.,
only elements that are declared m the same segment are
stored locally and can be accessed directly; access to
other elements rtequires additional syntactic overhead,
reflecting the cost of non-locality. Most COOLs in this
category do not offer object migration. There are no
dynamically changing virtual topologies.

Group locality: In the approaches discussed so far, the
mapping 1s specified procedurally or declaratively. In
contrastt COOLs with group locality specify
characteristics that shall be fulfilled by all potential
mappings. It can be expressed that certain objects should
be kept together by the automatic mapping. Often, objects
are ‘attached’ to other objects. The programmer explcitly

Inform. Technol. J., 5(3): 601-611, 2006

Table 9: COOLs in locality category

COOLs Meta level External Tnternal

Virtual topology/scope Group Misc. features

ABCLA
ABCLA
ABCL/R2
ABCL/R3
Amber
A-NETL

Beta

Braid

Comp. C++
Conc. aggregates
Cong. class eiffel
COOL/ Choms
COOL/NIT
COOL/Stantord
Correlate
Distrib. C++
Distrib. Eiffil
DOWL
DpSather
DROL
Emerald
EPEE

Guide

HP Java
Java//, ProActive PDC
JavaParty
Java/RMIL
MeldC

Mentat
MPC++

NAM

Obliq

Panda

Parallel C++
POOL

Procol

pSather
Rosette

SR

Titanium
UC+H+

ANEN

v

ANENEN

Data //, arrays

Data //

Data //, at, on

Zones

Zones

forms networks of objects that belong together. The
run-time system then maps the networks to the underlying
topology (Yonezawa, 1990).

CONCLUSIONS

The combmation of parallel and object-oriented
paradigms i the design of COOLs raises
various difficulties, since these paradigms have
some contradictory issues. The aspect of concurrency
cocrdination 1s well researched: Enable sets, standard life
routines and reflective control solve most of the
concurrency coordination problems. There are two major
aspects that need more attention. First, to specify how to
map objects and activities for locality there are almost no
mechanisms that would blend with object or class-based
programming. Second, the area lacks quantitative and
empirical data. The COOLs are not used for enough

610

application code, almost no performance data is published
for quantitative evaluations and comparisons and there
are no comparative figures about programming error
probability and maintenance time.

REFERENCES

Agha, G.A., 1986, ACTORS: A Model of Concurrent
Computation in Distributed Systems. MIT Press.
America, P., 1987. Inheritance and subtyping in a parallel
object-oriented language. ECOOP (Lecture Notes n

Computer Science, 276: 234-242.

Bal, HE., J.S. Stemer and A.S. Tanenbaum, 1989.
Programming languages for distributed computing
systems. ACM Computing Surveys, 21: 261-322.

Bal, HE., 1991. A comparative study of five parallel
programming languages. Spring Conference on Open
Distributed Systems, EurOpen, pp: 209-228.

Inform. Technol. J., 5(3): 601-611, 2006

Borning, A.H., 1986. Classes versus prototypes in object-
oriented languages. ACM/EEE Fall Joint Computer
Conference.

Briot, I.P., R. Guerraoui and K.P. L"ohr, 1998. Concurrency

and distribution in object-oriented programming.

ACM Computing Surveys, 30: 291-329.

Cardelli, L. and P. Wegner, 1985. On understanding types,
data abstractions and polymorphism. ACM
Computing Surveys, 17: 471-522.

Castagna, G., 1995, Covariance and contravariance:
Conflict without a cause. ACM TOPLAS., 17:
431-447.

Goos, G. and J. Hartmams, 1983. The Programming
Language Ada Reference Manual, ANSI. MIL.-STD-
1815A-1983,

Kessels, JL.W., 1977. An alternative to event queues for
synchronization in monitors. Communications of the
ACM., 20: 500-503.

Korson, T. and I.D. McGregor, 1990. Understanding
object-oriented: A unifying paradigm.
Communications of the ACM., 33: 40-60.

611

Mever, B., 1988. Object-Oriented Software Construction.
Prentice Hall

Papathomas, M., 1989. Concurrency Issues in Object-
oriented Programming Languages. Object Oriented
Development, Tsichritzis, D. (Ed.). University of
Geneva, Switzerland, pp: 207-245.

Turcotte, L.H., 1993. A survey of software environments
for exploiting mnetwork computing
Technical Report, Mississippi State University.

Wegner, P., 1987. Dimensions of object based language
design. OOPSLA., pp: 168-182.

Wryatt, B., K. Kaviand 3. Hufnagel, 1992. Parallelism in
object-oriented languages: A survey. IEEE Computer,
11: 56-66.

Yaoqing, G. and Y.C. Kwong, 1993. A swvey of
mplementations of concurrent, parallel and
distributed Smalltalk. ACM SIGPLAN Notices,
28: 29-35.

A, 1990. ABCL: An Object-Oriented

Concwrrent System-Theory, Language, Programming,

Implementation and Application. MIT Press.

TESOUIrces.

Yonezawa,

	ITJ.pdf
	Page 1

