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Abstract: The study here is mainly adapted to the implementation of a radiation spectral integral, involved to
describe modal field behaviour outside a non uniform structure for optical communication purposes. This is
achieved by sumply associating with each individual spectral plane wave incident on any boundary of the
structure, a refracted wave with appropriate transmission coefficient. This spectral integral describes rigorously
and systematically a source-free field behaviour not only before and after a branch point singularity (transition
region), but also outside a tapered structure too. In this sense, the implementation of the resulting spectral
formulation, for the case of homogenous media, contains all informations pertinent to the modal propagation
mechanism, not only outside the structure, but also inside it, before and after the singularity caused by cut off

of the propagating mode.
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INTRODUCTION

As the purpose of this study is an origmnal
investigation of a structure using a tapered configuration;
the impetus was given m order to analyse the field
distribution mvolved i the propagation process outside
such a structure using the tapered waveguide as a main
body (Armold, 1985). It 1s then, necessary to track the
motion of any observation pomt X, not only along and
inside the tapered waveguide itself, but also across the
cross section of its adjacent bottom medium (n,). The
observation point X 1s locally positioned at a thickness T,
as shown in Fig. 1.

From a physical point of view, rays of the spectrum
undergo bottom reflections at I'; interface adjoinmuing the
wedge angle a and at vicinity of the critical angle 6,
defined by the relation cos (0¢) = (n2/nl);, when total
mnternal reflections prevail. But, for observation points X
located beyond critical transition range, rays reaching X
begm to radiate through I';,. It is the purpose of this
article to investigate the modal field distribution i the
adjacent bottom medium (n,). To achieve this, it will be
necessary to imtroduce the concept of a radiation
spectral mtegral which governs the field propagation in
medium (n,) and which will describe the radiation
mechamism taking place in the structure. The following
treatment could also apply to top adjacent medium (n,)
which is the free-space. But we restrict ourselves to the
radiation process occuring at bottom medium (n,) only;
for one has appropriately chosen the refractives indices
such as, nl>n2>n3.

MATERIALS AND METHODS

Model presentation: The mathematical model
implementing the radiation integral in an open region
can be presented by a spectral integral representation
R(X,0). This 1s accomplished by extending the preceeding
plane wave spectral analysis fully expressed by Amold
(1985) and Belghoraf (1992), hence:

R(X,0)=(2ay"? jexp[ij(X,e)]de (N

Where the mtegration contour {C) 1s fully developed by
Belghoraf (1988). The phase S(3{,6) will explicitly be
defined later. The wavenumber k in here refers to bottom
medium (k = n, k). The parameter kO 1s the free-space
wavenumber. The expression given by Hqg. 1 must satisfy
the boundary conditions at I',. That isat X =0 or X = a,
respectively (Fig. 1). In this respect, one constructs the
radiation integral R(¥,0) by tracking the spectrum of a
particular and appropriate species of wave that
radiates by refraction mte the corresponding
boundary and which satisfies that boundary condition.
To present the radiation mntegral referred to bottom
boundary I',, we consider only one type of wave
among the four species introduced by Armold (1985)
and Belghoraf (1992) and which is characterised by
the phase 3" (3,8). This choice is justified by the fact
that [ikS:(X,0)]is a wave which is destined to be
refracted at the bottom medium (n,). Multplymg the
appropriate  downward propagating plane waves
Si(X.8) in Eq. 1 by the transmission coefficient at

Corresponding Author: A. Temmar, Institute of Telecommunications, Rout d’Es-Senia, BP 1518 M*Nouer, Oran 31000, Algeria
Tel: (213)41594436-165 Fax: (213)41594418



Inform. Technol. J., 5 (4): 719-725, 2006

Medium having a refractive index (n,)

InterfaceT

VAR AR A AR SR S R S S S 4

VARV A

Trapered waveguide having a
refractive index (n,)

[+

Incident ray

incidence angle 8

Interfacel,,

5

Medium having a
refractive index (n,)

Fig. 1: Tapered waveguide under mvestigation. The observation pomt X=(X.r) 1s positoned at a local thickness

T

I'}; interface, one obtains the radiation integral governing
the field distribution in adjacent bottom medium (n2):

R(X,0)=(2a)""* I {1+ exp[ie(0)]} expii[-n,k, rcos

(©"—a+X)-1/24(8) +[1(2a)]

=}
I¢(8')d'+ [(n0)/(2a)] —(nBq)/a]}dd 2)
et:

We bear in mind that ¢p(0) is the phase of the
Fresnel reflection coefficient (Tamir, 1979) and q 1s the
mode number to be exited along the structure. We also
that the angle 6"
corresponding to the direction of propagation of the
refracted wave in the adjacent bottom medium (n,). These
angles are both interrelated by snell's law, which
stipulates that:

recall incidence 6 becomes

1, cos(0) =1, cos(0™

3)

Combining Eq. 2 and 3, after expanding the cosine
term in the mtegrand of Eq. 2, we obtain after neglecting
terms which vamsh as a ~ 0 (this 15 physically compatible
with our structure geometry).

R(X,0)=(2a)™" J'zcos[q)(e)/z] exp [ikS(X,6)]de (4

KS(X,0)=[1/(2a)] [ 0(6)d0"~ [70/(2a)](2q — 1)~

[(k,n,r)/n ][n, cos(B)cos(X —a) -

. (5
sin(X —a)(n,” —n’ cos*(O)'*]
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Parametric eigenvalue equation of the radiation spectral
integral: To evaluate Eq. 4 asymptotically by means of
saddle point method (Belghoraf, 1988), one ought to
reconsider the new eigenvalue equation by finding zeroes
(saddle point 8,) of the derivative of the phase function
in Eq. 5, one sets:

ds _ (6)
5 (50,0

Combining Eq. 5 and 6, yields the new characteristic
equation, which 1s:

sin(B, )cos(X —a)+ [¢(6 ) -n(2q -1)]/[2rakn, ]

o, sin(f Jcos(8,) 0

+sin{X —a) -
(Il22 — I112 cosz(Bq))E (N

One notices the dissimilarity between Eq. 7 and the
original eigenvalue equation treated (Armmold, 1985;
Belghoraf, 1992). The former exploits the concept on an
intrinsic field mtegral used to analyse field propagation
inside the tapered waveguide; whereas the latter makes
use of a concept of radiation integral developed to
investigate the field behaviour outside the tapered
waveguide. In Eq. 7 the additional terms are due to the
¥-dependence quantity which mathematically accounts
for the dependence on depth in the adjacent bottom
medium (n,); and which appears here to behave as a
parameter. At interface I'};, say at X = a, Eq. 7 and that
found by Amold (1985) and Belghoraf (1992) are identical.
Hence, they engender the same saddle pomts 8,. For at
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Fig. 2: Computation of eigenvalue equation Eq. 7 of the radiation integral. Solutions in the complex 0 plane are the
mcident angle 0, (saddle points) for the lowest mode, as the thickness T 1s arbitrary reduced. Three multiple
values of the wedge angle a are considered for the cross variable X. the wedge angle a = 0.027 rds. The refractive
indices in each medium are: n, = 2;n, = 1.76; n; = 1. The V sign in figures locates the branch point 6,

X = a, matching boundary values are necessarily required
between the construction of the radiation mtegral R(X.0)
whose eigenvalue equation is given by Eq. 7 and that of
the intrinsic integral 1(3,6) developed by Arnold (1985)
and Belghoraf (1992) whose eigenvalue equation 13 also
given there. One recalls that I(X,0) describes the field
inside the tapered waveguide and it is analytically
expressed in the cited references. A proper substitution of
&b(0) in Eq. 7 by the phase of the Fresnel's coefficient
leads to the corresponding eigenvalue equations which
engenders the saddle points 8, The saddle points are
then located for each observation point X defined by the
polar coordinates X=(X, r). The parametrically computed
eigenvalue Eq. 7 1s depicted m Fig. 2 for successive
values of the transverse variable X (Xza) and for the
lowest mode only. In other words, Fig. 2 show the
physical effect on the eigenvalue Eq. 7, of moving the
observation point X outside the tapered waveguide and
away from bottom boundary I',,. Figure 2a shows a plot
corresponding to the parameter X = a, where the
observation point 1s located on bottom interface I' .

One notes that such a parametrical case has already
been treated via the eigenvalue Eq. 7, whose numerical
plotting 1s reported (Arnold, 1985; Belghorat, 1992); a case
dealing with the analysis inside the tapered optical
waveguide. Locating an observation point X at X = 2a or
at X = 3a, as shows by Fig. 2b and ¢, respectively, has the
effect of shifting up the selutions of Eq. 7 (saddle poimts
8.); particularly those lying beyond the transition region,
to a region near the branch point 8, which is denoted by
V sign in figures. For those solutions which are situated
in the guided wave region (region delimitted by 6<Bc),
they exhibit a slight positive imaginary component. In the
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case (X = 2a or X = 3a), all solutions which are supposed
to belong to the leaky wave region (region delimitted by
6=0,), seem to be coinciding with the branch point 8, In
other words, choosing a thickness T beyond transition
region, will have the effect of bringing all complex saddle
points to coalesce with 6, Such an effect, exhibited by Fig.
2b and ¢, can geometrically be explained by reference to
Fig. 3. As a matter of fact, in the guided wave region, as in
Fig. 3a, the saddle pomnts 0, are within the interval
0<B,<8,. Consequently, all rays inside the tapered
waveguide undergo total multiple reflections at I'), and
I',, mterfaces. For any observation pomt X located
outside the tapered waveguide and within the guided
wave Tegion, there are evanescent waves accommodate
by the complex 0,.As X moves away from I', interface (as
X increases), the transverse propagation constant T of
that evanescent wave becomes 'more complex' and entails
a strongly decaying evanescent field. The constant T is
defined as follows:
T = (0 -0 cos'(0))" ®
Hence, one expects the imaginary part of the saddle
point to mncrease. However, m the leaky wave region in
contrast, Fig. 3b shows how the rays are refracted into
medium (1), once the branch pomnt 0, 1s exceeded by 0,
In this case, any observation point X outside the tapered
waveguide receives the contribution of 2 distinct rays
unpmging at I, interface, from 2 angles of incidence, 0,
and 6. Therefore, 2 saddle points (6, and 6,) are
required at a given thickness T and at a given transverse
variable X (3>a). Because, one of these is at incidence
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Fig. 4: a) Computation of the phase in the radiation integral Eq. 4, versus the incident angle 6 varying along the ral axis.
b) Computation of the integrand in the radiation integral Eq. 4 versus the incidence angle 6 varying along the
real axis. The saddle point 0, is located in the guided wave region at k, T = 5. Mode 1, normalised critical
thickness = 1.75. The x sign locates a saddle peint 6,; the V sign locates the branch point 6, X = a = 0.027 rds

Saddle point 8 located in the guided wave region: Figure
4a shows the complex variation of 3(3{,0)-3(X.0,) versus
the incidence angle 6 varying on the real axis. The real
saddle pemnt 0, is located in the guided wave region at
kT = 5 Real [S(X,0)-3(X.0,)] has an extremum at the
chosen saddle poimnt 6,, which 1s dencted by the x sign in
figures. Its imaginary part is zero for all Real 0's lying in
the region 0«0, where 8, is the branch point for the
phase S(X,0) and it 1s denoted by V sign in figures.

This means that Tmag [S(X,8)] is constant in the
guided wave region. However when 6>0,, the imaginary
part increases in magnitude, then leakage occurs. Tt is that
very imaginary part of S(3{,0) that accounts for the
amplitude decay of the field in the leaky wave region. In
confrast, Real [S(X,0)] decreases towards the constant
Real [S(X.0,)] as 0 tends to 6, and increases as 0 tends to
0, and beyond. Figure 4b shows the complex variation of
the integrand in Eq. 4, when the mcidence angle 0 varies
on the real axis. Both components exhibit extrema at
location of the saddle point. They oscillate initially, then
decay exponentially as the incidence angle 6 approaches
/2. This signifies that for 8>7/2, the radiation integral of
Eq. 4 engenders a vanishing field. In other words, there is
no contribution of rays whose incidence angle is higher
than /2. This important statement justifies and accounts
for the neglect of all types of subsequent rays in the
establishment of Eq. 4.

Saddle point 0, located in the leaky wave region: Figure
Sa shows the same phenomena for a saddle pomt 6,
located 1n the leaky wave region atk; T = 1.2. We notice
that 3(X.0)-5(X.0,), accommodates a shift due te the fact
that the saddle peint 6, 1s complex m this leaky wave
region. Therefore, any variation of 0 on the real axis, will
never comeide with 0, Henceforth, S(X.0)-3(20,), will
never fall to zero. This explains why S(3{,0)-3(3.,6,)
exhibits a shift in its real part. This shift 15 more
accentuated as 0, becomes strongly complex; that is to
say, as the observation point X tends towards the apex
(or as T diminishes). As for the variation of the integrand
of Eq. 4, Fig. 5b shows that initially it exhibits more rapid
oscillation and then decays exponentially and faster than
n Fig. 4b.

Hence, here too, the field engendered by the radiation
integral Eq. 4 vamishes as 0 tends towards m/2. For any
location of the saddle pomt 0, with respect to 0, 1t is safe
to neglect the field contribution outside the range
0<B<m/2. Returning to the radiation integral in Eq. 4, we
shall then perform it along the real axis and in the interval
0<B<m/2. In this case, the presence of any branch point
will automatically be taken care off (Belghoraf, 2001). The
convergence of Eq. 4 is, however, guaranteed by taking
an integration step much smaller than the oscillating
periods of Fig. 4and 5. It 1s also necessary to maintain the
for (6-6)' and (0-0')",

same branch conventions
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Fig. 5: a) Computation of the phase in the radiation integral Eq. 4, versus the incident angle 6 varying along the ral axis.
b) Computation of the integrand in the radiation integral Eq. 4 versus the incidence angle 6 varying along the
real axis. The saddle point 8, is located beyond transition region (in leaky wave region) atk, T = 1.2. Mode 1,
normalised critical thickness = 1.75. The x sign lecates the saddle pomt 0,; the V sign lecates the branch peint

0.X=a=0027rds. (n,=2,n,=1.76,n,=1)

defined earlier. In as far as we are not using the saddle
point methed to calculate Eq. 4, knowledge of the saddle
point 0, i1s mot necessary. In spite of this, we still
represent each observation point _X (X.r) by its
equivalent notation X = (30,). Note that Fig. 4 and 5
have all been numerically carried out for an observation
pomt X at X = a and for the first mode q = 1 only. Similar
qualitative results could have been obtained for any other
parameter.

CONCLUSIONS

Numerical plotting of the radiation field in the guided
wave region: Let us now concentrate first on Fig. 6. They
shows the variation of the normalised field modulus in
medium (n,), versus the variation X, for mode 1.

Three locations of the observation point X are
considered i the guided wave region, 0,<0. They
correspond to the three distinct normalised thicknesses in
(1), (ii) and (iii) in figures 6 Thereby, it is clear that, as 6,
approaches 0, (that is to say, as k; T approaches the
critical thickness of the corresponding mode 1), the
evanescent field decays less rapidly mn the medium (n,).
The decay is more strongly evanescent, when X is located
far from 0, as in (i), than when it is near, as in (iii). This is
mamly because, 1 such a region. the waves inside the
tapered waveguide are totally guided When 0,
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approaches 8, as in (iii), energy starts leaking out from
the inside of the tapered waveguide to medium (n,). As a
matter of fact, this leakage near the transition region,
makes the amplitude of the cross section field inside the
tapered waveguide decrease in the guided wave region of
course, the above remarks hold for any ligher mode,
characterised by its own corresponding critical thickness.

Numerical plotting of radiation field in the leaky wave
region: In this case, all observation points X are located
in the leaky wave regior, such as 0, >0, In this region,
energy is leaked out from the tapered waveguide to
medium (n;). Such a leakage characterises the radiation
process taking place at bottom wmterface I'j,. The hight
rays, then, are no longer totally reflected back into
the tapered waveguide, but are partially transmited into
medium (n,) as refracted waves. Figure 7 show the
variation of the normalised modulus of the radiated field,
versus the angular variable X, formode 1.

Each position of X is located in the leaky wave
region. Tt is seen in each plotting that the field oscillates
to a maximum, then decays exponentially because of the
continuous refraction taking place n medum (n;). Also,
in each diagram, the locus engendered by each
maximum of the radiated field describes a caustic
(Oliver, 1974) whose gradient with respect to the bottom
wnterface I';, corresponding to X = a, represents the
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Fig. 6: Computation of the normalised cross section field in medium (n,) versus the cross angle X. The saddle points
mn (1), (1) and (1) are located in the guided wave region. Mode 1, normalised critical thickness = 1.75,a = 0.027 rds,
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Fig. 7. Computation of the normalised cross section field in medium (n,) versus the cross angle X. The saddle pomts
1 (1), (11) and (u1) are located in the leaky wave region. Mode 1, normalised critical thickness = 1.75. The top of

each figure represents the caustic

directionality of the beam of the radiation pattern in
medium (n,) (Belghoraf, 2001 a,b). Itis the existence of this
caustic that causes the field (in each diagram of Fig. 7) to
oscillate in one part of the cross section pattern and
decay exponentially in the other. We also notice that the
amplitude of the field maximum becomes smaller as
the thickness k;, T diminishes from one diagram of Fig. 7
to another. This emphasises the fact that as 6, moves in
the leaky wave region, away from 0, and towards /2, the

field tends to vamish. The same remarks apply to any
higher mode.
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