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Abstract: Data aggregation i1 Wireless sensor networks (WSNs) has attracted wide attention since it could
reduce the wireless communication data amount and thus save power consumption, which is one of the top
concerns in low-power WSN systems. Given a Data Aggregation Tree (DAT) for data query purpose in a WSN
and the expected query accuracy, we will show the feasibility to adaptively adjust the waiting period in each
DAT level so that the end-to-end query delay could be optimized, 1.e., without unnecessary pause m an
aggregation node. This study will intfroduce some important data aggregation parameters (such as desired query
accuracy and practical query resolution, etc.) to study the optimal, low-cost timing control scheme. For such
an adaptive timing control scheme, we propose to use a Fimte State Machine (FSM)-based auto-feedback
control algorithm to adjust the waiting period of each DAT node to timely respond to the varying query results
performance. For instance, in the beginning of the query task, the FSM algorithm should be able to use the fast
speed to increase the waiting period so that more query results can be collected, while the algorithm should use
micro-adjustments to slowly adjust the waiting period after the query accuracy has reached a certain level. From
quantitative analysis, networking simulations and experimental setup perspectives, we will investigate the
efficiency of our FSM-based timing control algerithm in terms of achieving a good trade-off between query
accuracy and end-to-end query response delay. Our sensor network simulation results and hardware
experiments have verified the validity of our proposed timmg control scheme. In addition, we will also compare
different FSM algorithms i different WSN data aggregation scenarios.

Key words: Wireless Sensor Networks (WSN), distributed sensor networks, data query, data aggregation,
timing control, fimte state machine, end-to-end query delay

INTRODUCTION »  Sensors are usually low-cost devices with severe

constraints  with respect to energy source,

Advances 1 electrical engmeering  and
microelectromics have allowed electronic devices to shrink

computation capabilities and memory, wlle
actuators generally have relatively higher energy

m both size and cost It has become possible to
incorporate environmental sensors into a single device
with a microprocessor and memory to interpret the data
and wireless transceivers to commumnicate the data. These
sensor nodes have become small and cheap enough that
they can be distributed in very large numbers into the area
to be monitored and can be considered disposable. Once
deployed, these sensor nodes are able to self-organize
themselves into a multi-hop wireless network, called
Wireless Sensor Network (WSN), which greatly differs
from a general Mobile Ad hoc NETwork (MANET) as
follows (Akyildiz et al., 2002):

¢ The number of the nodes in a W3N is significantly
larger than in a MANET;

storage, which allows longer wireless transmission
distance;

The sensors are usually stationary or with quite
limited mobility;

Mode of commumcation in W3Ns typically 1s
many-to-one (from sensors to sink), while it is
typically peer-to-peer in MANETS;

Data aggregation may not be important in
MANET, however, it 13 a necessary scheme in
data query tasks of large-scale W3Ns because it
can greatly reduce the commumcation data amount
(Akyildiz et al., 2002).

In order to reduce energy consumption (the energy

for one bit of wireless communication in typical sensor
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networks can be wsed to execute over 1000 local
instructions in each sensor), many sensor network
applications attempt to mimmize the amount of data
transmitted by using some form of data aggregation. A
sensor query task that asks for the maximum value sensed
is an ideal candidate for aggregation operations because
any number of messages can be easily combined into a
single value at the aggregator. A query for the average
over a field is slightly more complicated in that the number
of responses must be communicated to calculate the
average, but the final message will still be shorter than
multiple mdividual responses. However, a query for all
values sensed would not be a candidate for aggregation
because each value must be appended to the message
and the final message will be proportional in length to the
number of sensors responding.

The focus of this study is to determine appropriate
timing control scheme in data aggregation operations,
which 1s a largely unexplored issue in the WS3N
Middleware layer. In a large scale WSN, there may be a
significant delay between the time when an event is
sensed (or a query is answered) and the time when the
data reaches the sink. For better query accuracy, each
aggregating sensor should be able to transmit all data
received from all of its children sensors at one time.
However, this could lead to an even larger delay between
when the data onginates and when 1t 1s finally reported, as
each aggregating node may have to pause to wait for
query results from more children sensors (to achieve
higher query accuracy) before sending a report to its
parent node. Depending on the priority of query accuracy
vs. maximum latency, it may make more sense for an
aggregator to wait for all, some, or only the first of its
children to respond. As an example, Fig. 1 shows a
network with a potential aggregation timing problem. In
the case m which only leaf nodes respond to a query, if
Node B wishes to aggregate responses from its children,
it will be faced with a decision of whether to wait for the
slower response from Nede C or to transmit the response

Fig. 1: Potential timmg control problem in a data
aggregation tree
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from Node D first and send C’s response later. Here we
may assume that each transmission over a wireless link
takes exactly the same amount of time. If thus 1s not the
case, the tining control problem becomes
complicated and less deterministic.

Based on the timing models described by Solis
and Obraczka (2003), existing periodic data aggregation
protocols can be classified into three categories, namely:
periodic simple, periodic per-hop and periodic per-hop
adjusted. (1) Periodic simple aggregation works by having
each node wait a pre-defined period of time, aggregate all
data items received and send out a single packet
containing the result. (2) Aggregation mechanisms in the
periodic  per-hop category have send the
aggregated packet as soon as they hear from all their
children. While excessively late reports are dropped as in
periodic sunple. (3) Fmally, periodic per-hop adjusted
schemes use the same basic principle of periodic per-hop
but schedule a node’s timeout based on its position in the
distribution tree (rooted at the information sink and
spanning all reporting and intermediate nodes). The
aggregation scheme proposed in this study falls within
this category and, when compared to other existing
periodic per-hop adjusted algorithms, presents benefits
such as not requiring clock synchronization among nodes

more

nodes

and mimimizing the timeout scheduling overhead.
In this study, we attempt to answer the following
three questions:

Given a Data Aggregation Tree (DAT) for data query
purpose m a WSN and also given the expected
query accuracy, is it possible to adaptively adjust
the waiting period m each DAT level so that the
end-to-end query delay could be optimized, ie.,
without unnecessary pause in an aggregation node?

In present study, we will introduce some
important data aggregation parameters (such as
desired query resolution, practical query resolution,
etc.) to study the low-cost timing control scheme.
For such an adaptive timing control scheme, how we
could use a Finite State Machine (FSM)-based
auto-feedback control algorithm to adjust the waiting
period of each DAT node to tumely respond to the
varying query results performance?

For instance, in the beginning of the query tasl,
the FSM algorithm should be able to use the fastest
speed to increase the waiting period so that more
query results can be collected, while the algorithm
should use micro-adjustments to slowly adjust the
waiting period since the query accuracy has reached
a certamn level.
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From both quantitative analysis and experimental
perspective, what is the efficiency of such a
FSM-based timing control algorithm in terms of
achieving a good trade-off between query accuracy
and end-to-end query response delay?

Tn this study, we will use math model, (OPNET,
2006) networking and also WS3N
hardware experiments to verify the validity of our
proposed timing control scheme. We will also
compare different FSM algorithms in different data
aggregation scenarios.

simulations

RELATED WORKS

General WSN issues: A survey of the early work on
WSNs 1s provided in (Akyildiz ef of., 2002). While wired
multi-sensor systems were studied in the 1980°s (Koniger,
1989; Kleinschmidt and Mock, 1989), since the mid to late
907s, there has been great mterest in WSNs (Bult, 1996;
DAPRA, 2002). A number of researchers have presented
related visions for WSN, including hardware designs and
applications (Warrior, 1997, Asada, 1998; Chandrakasan,
1999). Recently much research has been conducted on
coverage and comnectivity (Meguerdichian and
Koushanfar, 2001; Meguerdichian and Gu, 2001), time
synchronization (Romer, 2001; Elson e al., 2002), sensor
localization (Hightower and Borriello, 2001), MAC (Woo
and Culler, 2001) and other unportant sensor network
issues.

WSN data query: The database perspective on sensor
networks and the use of data aggregation operators to
optimize query performance for such sensor databases
have been described in Cougar (Yao and Gehrke, 2002),
Acquire (Sadagopan et alf, 2003) and others
(Bonnet et al., 2000, 2001; Govindan, 2002; Madden and
Szewceyk, 2002; Bonfils and Bonnet, 2003). Data centric
storage using geographic hashing is discussed in
(Ratnasamy, 2002) and DIFS (Greenstein ef af., 2003) 15 a
distributed mndexing techmque for data-centric storage.
DIMENSION (Deepak et al., 2003) provides hierarchical
wavelet-based storage for drill-down queries, while (Goel
and Imielinski, 2001) describes the use of MPEG-like video
coding techniques to exploit both spatial and temporal
correlations for energy savings. IDSQ/CADR (Chuet al.,
2002) is an active querying technique that attempts to
balance information gain with commumcation costs
while querying neighboring sensors and guiding queries
through the network. Other active querying techniques
include the mobile-agent based Rumor Routing
techmique (David and Deborah, 2002) and ACQUIRE
(Sadagopan et al., 2003).
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Data aggregation research: Data aggregation is an
important operation during Data Query tasks since it can
greatly save the sensor energy consumption and thus
prolong WSN operation lifetime. Directed Diffusion 1s a
routing algorithm that has been proposed for use in
wireless sensor networks (Intanagonwiwat, 2002). Tts
authors mention that it creates a network topology
suitable for data aggregation, but stop short of specifying
details for any specific implementation. Others have
proposed detailed aggregation schemes intended to be
used with Directed Diffusion, mcluding Greedy
Aggregation (Solis and Obraczka, 2003) and CLUDDA
{Chatterjea and Havinga, 2003). However, none of these
address the issue of timing control between different
levels of sensors. Most aggregation schemes focus on
finding an optimal node at which to aggregate data,
simply mentioning that aggregation is performed there
and often assuming in their calculations that all responses
recelved are aggregated before being propagated.

TAG (Madden and Franklinn 2002), or Tiny
AGreggation, is a good example of a periodic per-hop
adjusted aggregation mechamsm. TAG uses aggregation
as queries are processed within the network. Some queries
i TAG request reports to be sent from sensors
periodically. In this case, TAG intelligently subdivides the
data collection epoch into smaller slots. Each slot is the
epoch length divided by D, the depth of the tree.
Following per-hop adjusted aggregation operation, slots
are assigned to nodes in decreasing order, D, D-1, D-2,. .,
as the query propagates through the network. This
scheme requires knowledge of the network topology and
time synchronization between nodes, but allows nodes to
power down when not scheduled to transmit or receive.
Our proposed aggregation scheme 1s not affected by the
potential sleep schedule and our MAC layer scheme,
discussed later, takes full advantage of it.

In addition to TAG (Madden and Franklin, 2002),
another well-received aggregation scheme is AIDA
(He et al., 2004). Though both of these schemes suggest
several potentially energy-saving ideas, they focus on
disjoint aspects of aggregation. TAG’s main focus is on
an efficient querying language that is conducive to
aggregation, but 18 mamly an application-level
optimization. AIDA, on the other hand, inserts a new layer
into the protocol stack that interprets and repackages data
near the MAC layer, but does not consider dynamic
timing  parameters based on  application-level
requirements. Both of these frameworks are useful for
reducing energy consumption in WSNs and are
compatible with our timing protocol, but do not
adequately address the 1ssue of trade-off between query
accuracy and response delay.
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In (Abdelzaher et al, 2004), the authors
demonstrated the application of control theory to resolve
fundamental performance trade-offs in sensor networks.
Fundamental limits were presented on real-time network
capacity. These limits where then used to derive set
points of control loops. Two different mechanisms for
data aggregation were presented whose combined effect
15 to maximize information throughput while reducing
protocol overhead. Their focus is to utilize WSN capacity
limit models and general control theory to achieve a
low-complexity data aggregation. While the focus of our
study 1s to control the “waiting period i each level of the
data aggregation tree in order to achieve a good trade-off
between query accuracy and end-to-end query response
delay.

The concept of cascading timeouts, where nodes
would wait for a period of time directly related to their
depth in the aggregation tree, was recently proposed in
(Solis and Obraczka, 2003). Though thus 1s a potentially
useful optimization, its mam shortcoming 1s that it requires
significant additional data to be transferred during the
setup period. Our proposed timing control scheme (details
later) requires minimal overhead, but 1s flexible enough to
allow expansion for later optimizations.

TIMING CONTROL DURING DATA
AGGREGATION

Assumption of data query topology

A cluster-tree architecture: Before the description of our
timing control in data aggregation, we provide the
assumption of the data query network topology. In
terms of WSN topologies for the purpose of optimal
data aggregation, we propose to make use of both
cluster-based and tree-based methods because we have
verified that the hybrid tree-cluster architecture can adapt
to large-scale routing operations (Fei et al., 2006). To form
such a topology, first, the sensors should self-organize
themselves into different clusters usmng any clustering
algorithm such as our probabilistic approach (Fe1 ef al.,
2006). There is a cluster-head in each cluster that can
aggregate the data from other sensors. Next, a Data
Aggregation Tree (DAT) 13 formed among those
cluster-heads with the WSN sink as the tree root. Thus
groups of sensor nodes will combine their reports at the
lowest level and reports may continue to be aggregated as
they pass up the aggregation tree toward the root node.
The Cluster-tree 13 a promising data query topology
architecture in terms of overall energy -efficiency
(Greenstein et al, 2003). Since each cluster-head first
performs local aggregation in its cluster before forwarding
data to the next cluster-head, this study will focus on the
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Lewvel 2,
sink/clusterhead

Level 1,
clusterhead/node

Level 0,
cluster/leaf node

Fig. 2: Data aggregation tree (DAT)

data aggregation issue i the entire tree (1.e., the data
aggregation 1ssues among cluster-heads instead of inside
each cluster).

Consider Fig. 2 DAT scenario. In this example, each
circle represents a sensor node. Groups of two or three
sensor nodes at level 1 are grouped together under the
control of another node at level1 + 1. Nodes at level 1= 0
are leaves in the tree and function only as sensors. The
vast majority of nodes in the network fall into this
category. Nodes at level 1+ 1 and higher, up to the root of
the tree, would be considered cluster-heads.

With an increasing cluster-size r (the number of
sensors in each cluster), cluster-heads will have to
farther to reach each other, but the tree of
cluster-heads will be simpler. A simpler tree leads to more
energy-efficient topology maintenance at this level. Also

transmit

with an increasing cluster-size 1, mamtenance and
commumication costs for each cluster will be increasing.
Thus there 1s a balance to be struck between cluster size
and tree size. The larger the clusters are, the smaller the
tree of cluster-heads may be and vice versa. The optimum
balance may be calculated offline and goes beyond of the
focus of this paper. Please refer to (Heinzelman, 2000) for
some quantitative discussions on the determination of
the cluster size.

Proposed timing control protocol during data
aggregation: As mentioned before, aggregating sensors
in the higher levels of DAT have to wait for data from
their chuldren to arrive, before they send aggregated data
to their parent node. There 13 a design tradeoff in the
maximum amount of time to wait. If an aggregating node
waits too long, the results of the query may not be
time-relevant. This 15 especially true in situations in which
the data sink may want initial results immediately. On the
other hand, if the waiting period is too short, the
aggregation node could not collect enough query results
from its children nodes and thus the final query accuracy
does not meet desired requirement. Tn this section, we will
propose an efficient adaptive control algorithm for the
adjustment of waiting period in each DAT level with the
objective to guarantee a certain aggregation accuracy and
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also to achieve an optimal end-to-end delay. For the
convenience of describing our timing control algorithm,
we provide the defimtions of some variables to be used
later:

N
desires. This 1s based on application-level knowledge
and should be pre-determmed by the system. If the
sink receives fewer responses than N, it will know to

5 - the optimal number of responses the sink

increase the waiting period. If the sink receives more
than N, it will know to decrease the waiting period.
N... - the number of responses received. Please note
that the values of N, and N, could be simply the
total number of nodes that have responded to the
data request or the number of query result packets
received at the sink. From the timing control
algorithm viewpoint, as long as we use consistent
metrics and performance parameters, it should not
matter in terms of the efficiency of the algorithm.

n - the round number for a specific data query task.
During a round of data aggregation, the WSN sink
(i.e., the root of the DAT) waits for responses to a
data request. There could be multiple rounds of data
aggregation operations for any data query task. The
total number of rounds is application specific and
should be determined beforehand by analyzing the
network characteristics. The time duration of each
round varies depending on the propagation delay of
the network, number of collisions, effective
throughput and other WSN environment parameters.
T, - The sum of the current waiting periods in all
DAT levels, 1e., the total timeout period of the
current data aggregation round for a specific data
query task. The relationship between the entire
walting period T, (across all DAT levels) and the
waiting period in each tree level will be analyzed.

T..1 - The sum of the waiting periods in all DAT
levels to be used for the next data aggregation round
for a data query task. The main goal of our timing
control scheme 1s to set up the value of T, based on
the values of T, and other parameters related to the
such as N, and N

query accuracy, ot

Our proposed aggregation timing control protocol
makes use of a separate “setup’ phase to distribute
parameters necessary for aggregation. This is typical of
and compatible with, most dynamic WSN routing and
MAC protocols. To reduce the protocol overhead of
timing control, the setup phase takes some finite amount
of time and is followed by a much longer data collection
period. The concrete timing durations in each phase
cann be set up depending on the protocol overhead
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I
Control parameter
setup phase

~_

Data collection
phase

Fig. 3: Setup vs. data collection phases

requirements of WSN applications In this study, we use
the ratio 1:10 for the durations of setup phase and data
collection phase. These phases are scheduled to occur
periodically. Figure 3 shows the phases of timing control
protocol.

In the following discussion, we assume that a Data
Aggregation Tree (DAT) has already been formed
through some current sensor data query schemes such as
in (Madden and Szewcyk, 2002; He et al., 2004) and we
then add our timing control algorithms to set up the
waiting periods T, (n = 1,2,3 ...) in each round of data
aggregation.

Setup phase

The WSN Sink (the DAT root) broadcasts the Tree
depth request. The request i1s propagated down
through the entire DAT (similar to a simple data
query propagation).

Message reaches the DAT bottom level nodes
(i.e., tree leaves) and is then returned back up. Each
node returns with its hop count, starting from leaves
nodes (at DAT level 0). The parents of these leave
nodes realize that they are at level 1 and pass this
information back up the tree. This continues until the
sink retrieves DAT depth information and 1s able to
construct the entire DAT topology. Each node
propagates the ‘depth request’ to its children and
each node returns an answer to its parent. Thus this
procedure is accomplished with complexity ©
(depth).

In order to further reduce data amount (thus
save energy consumption) during this setup phase,
some level of aggregation may be performed at this
step. Possibilities vary from transmitting information
(that completely describes the network) to
commumecating only the maximum depth of the tree.
Finally, the sk will calculate and transmit an
appropriate value for T; based on the depth of the
tree, the maximum tolerable latency. Tn addition, the
sink will also propagate the optimal number of
responses, N, which is related to the concrete
query accuracy requirements of a WSN application,
to the entire DAT.
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After performing this exchange, each
aggregating node, including the sink, should have all
knowledge necessary for it to
appropriate timeout period. Depending on the level
of aggregation performed in step 2, nodes may be
aware of how balanced or unbalanced the tree is, or
parent nodes may be aware of the entire aggregation

tree below their positions.

calculate an

Data collection phase

*  The sink transmits a query message with an updated
timeout period T,.,. This operation does not require
any time synchronization because the sensors and
agpgregators just maintain the previous value T, until
notified for change. Aggregators that receive the
query with updated timeout period will reduce it
uniformly before propagating the query to its
children nodes.

*  Each aggregator replies with the number of replies
recelved (average, per query) and its depth level in
the tree. Note that an aggregator that 1s the parent of
another aggregating node will sum its total number
received (N,.) with its children’s report.

In order to get the most accurate view of the
event data, aggregators may also report the number
(Ny4) and timing information (T,,.) of late reports.
This would allow the sink, if powerful enough, to
choose an appropriate aggregation period even more
intelligently. For example, if the sink does not receive
a satisfactory number of responses, it may calculate
the benefit of increasing the aggregation period.
Disregarding network fluctuations, this can be done
by simply counting the number of nodes whose
additional latenesses were reported to be less than
the mimmum increment of the aggregation period.

¢ The sink will send out an updated T,, to all
agpgregators. The updating algorithm is based on a
Finite State Machine (FSM) scheme.

Finite State Machine (FSM) in Timing Control
Algorithm: The trade-off between the query accuracy and
the end-to-end query delay is achieved by the adaptive
adjustment of the aggregation perioed, which 1s calculated
according to a Fmnite State Machine (FSM) scheme. We
have developed several FSMs for query performance
evaluation. The FSM aims to maintain the number of
messages received as close as possible to the optimal
number (determined by the application). In addition, from
control timing viewpoint, our FSM is desired to reach this
point as quickly as possible. Before the description of our
FSM schemes, we list some variables as follows:

N,.. Optimal number of responses; determined by the
application.

N, Number of responses received, tallied by the
aggregators and reported to the sink

Maximum aggregation period, distributed by the sink

Maximum latency (application level)

opt

Maximum aggregation period at DAT level 1.
The round; T 1s calculated once for each round,
which is assumed to be long enough to create a
heuristic without becoming stale.
o Aggregation peried that satisfies N, = N,
¢ A parameter chosen by the application m the sink
that relates N, to T,
N Number of late packets received by aggregators
Time umts while waiting for late packets
Depth of the tree
Level of node i in the tree.
Difference between T at each level of the tree

BoR oS

B =g
%

If D is known, the sink can derive a maximum T, for
each level in the tree, based on the maximum latency (I.")
of the application:

T=L-K-A (1)

Since the nodes know their own level in the tree, they
can individually calculate their aggregation periods, using
the above formula (assuming A is available). Our timing
control protocol is capable of distributing this delta as
part of the control message. Though there may be some
advantage using a variable A, there is a tradeoff in the
amount of control data transmitted. This study assumes
a constant A,

Figure 4 1s the simplest FSM (we call it Version 1). At
each evaluation of the aggregation period, the optimal
number of messages received (N,,) is compared to the
actual number of messages received (N,,,). If there were
too few messages received, the aggregation period is
increased by one atomic unit. If more messages were
received than were needed, the aggregation period is
linearly decreased in a similar marmmer. The amount of
increase and decrease can also be varied depending on
the application and network characteristics.

Idle T.=T,+1

EZ
v
Z

Ty =T,-1

Fig. 4: Fimte state machine (Version 1)
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Slow start phage
I IN,, - N, | < Deviatian, N 2Ny,
h 4
T,,=05T,
* N.<N,
e  [TTTTTTT P T,=T+l
L]
IN.>N,,
A 4
T,,=T,-1

Fig. 5: Fimite state machine (Version 2)

To make our timing control scheme better adaptive to
the aggregation performance, we ntroduce the concept of
deviation: if the difference between the practical number
of received responses (N, and the desired optimal
number of responses (N,,) is larger than a deviation, we
need to change the aggregation period in a faster speed
instead of the slow addition/subtraction operations as
used in FSM Version 1. As shown in Fig. 5, The FSM
Version 2 aims to reduce reaction time, but fluctuates less
once a good operating point has been reached. Some
parameters, such as the acceptable deviation and the
multiplicand, can be selected beforehand based on the
empirical query performance results in the specific WSN
applications.

The FSM version 2 may not be able to capture the
following practical data query situation: in the beginning
of the timing control for each query task, we need to
quickly increase (maybe at an exponential speed) the
aggregation period since we want to largely shorten the
waiting delay when there are not many responses from
lower tree level sensors. Later on, we may increase the
agpregation period at a slower and slower speed or may
even decrease the aggregation period. In other words, the
mcreasing/decreasing speed of aggregation period
depends on the deviation between N, and N, In our
FSM Version 3 (Fig. 6), the aggregation peried starts out
being increased exponentially, then is cut in half after
reaching the optimal number of responses and increases
or decreases linearly after this point. Note this FSM is
similar to the TCP congestion window-size control
scheme. In Fig. 6, ¢ 1s a constant parameter chosen by the
application in the sink that relates N, to T,

Control protocol overhead: A data query/collection round
may include multiple requests for similar or dissimilar data,
but uses the same parameters for timing control for the
duration of each aggregation round. At the end of a
round, the performance experienced is evaluated and
parameters are chosen for the next round.
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N. <N,
———————————— P T.=T.+
Slow start phase N - N
1
| N >N,
|
Y N, <Ny
Me [N » .-+
T o - No)2
T | N >N,
v
Tm = Tn -
G(Nq: - N,..Jﬂ

Fig. 6: Finite state machine (Version 3)

As mentioned, the aggregators, or clusterheads are
likely ordinary sensor nodes, tasked with additional
responsibilities. For this reason, the Master (or
clusterhead) must be rotated periodically to provide a
reasonably even load on each sensor node (Heinzelman,
2000; Smaragdakis and Matta, 2004). This may be done
after each round, or after a specific number of rounds.
This leads to another tradeoff in energy efficiency. If the
network 1s reconfigured too frequently, it will lead to
unnecessary protocol overhead in the form of control
messages and calculations. At the other extreme, if the
network topology is chosen once and remains static, then
a single node will bear responsibility for an unfair amount
of time and will likely die before its cluster members. This
also decreases the overall usefulness of the network,
since when this clusterhead dies, it may take wretrievable
data with 1t.

Tt is common practice to use a setup phase where we
commumcate all the necessary control packets for the
creation of the network DAT (Heinzelmar, 2000; Sichitiu,
2004). At this point we could conceivably mform the
aggregating nodes of their depth in the tree. This is the
only parameter necessary for a basic aggregation timing
control scheme. Another option i1s to embed certain
control mformation within each data packet transferred.
This provides more timely feedback on the state of the
system, but adds overhead in the form of additional data
for each transmission.

The only additional information that may need to be
passed back up the tree during the data collection phase
1s some optional information such as the mumber of
messages missed by an aggregator due to a short
aggregation period, or perhaps just whether or not any
messages were received late from the last query. This
requires only a few additional bits as part of the data
message packets and the rest of the protocol does not
depend on its use.
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Aggregation Types Chosen by the WSN Sink: Tn most
aggregation schemes, late reports are often discarded
(Madden and Szewcyk, 2002; He et al., 2004). If late data
15 useless to the application it makes sense not to transmit
it (or not to forward it all the way up the tree). However,
we feel that it 13 a decision that should be made by
the applications. In some situations (such as real-time
applications) there may be a hard deadline. In other cases
(such as soil condition monitoring in agricultural
applications), the application may be willing to accept a
longer delay in exchange for a longer network lifetime. We
therefore propose support for wvarying levels of
aggregation priority as follows:

No aggregation

Some aggregation, send inmitial results, aggregate and
any later results separately

Some aggregation, send imitial results and aggregate,
but disregard late results

Ounly send aggregated results

The sink will specify one of these flags when
submitting a query to the network. These lead to another
tradeoft in performance. By supporting this flag we incur
a slight mcrease in the amount of control traffic, but
provide much more flexibility to the application running in
the sensor network.

Earlier we mentioned the possibility of using
aggregation during the setup phase. This could allow the
network designer to trade off energy savings for a more
complete description of the network, if such 1s necessary
at that point in the network setup. The sink first transmits
a depth request to the network. When the nodes reply to
this query, we have the following options:

Full aggregation may be performed. The sink and the
mtermediate aggregators receive only the maximum
depth of the nodes underneath them and each node
will only pass a single message back upstream. How
balanced or unbalanced the tree is will not be easily
deduced by these aggregated reports. This piece of
information may be irrelevant to the aggregation
function anyway.

Per-level aggregation may be performed. For example,
if a node had three children that were each at level 0,
it would report simply that it was at level 1, itself.
This requires a single message with the mmimum
payload. If a node had one child node at level 1 and
one child that was a leaf node, 1t would report both of
these levels to its parent, doubling the payload of
this node’s response. This situation applies to node
BinFig. 1.
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This would more completely describe the

networl, but require more data to be transferred than
1f using full aggregation. Commumcation costs would
be higher for more unbalanced trees.
No aggregation may be performed. This will
completely describe the network topology to the
sink, but require much more communication. This
option would likely only be used as a backstop to the
existing network topology creation, since such
complete knowledge may not be necessary for data
aggregation.

QUANTITATIVE ANALYSIS

Height-based differential analysis: In a DAT structure
there could exist a time difference between different DAT
levels when data is received by a parent node from its
children nodes. For example, in Fig. 1, if nodes E, F and D
all sense an event, node B will likely receive the report
from node D before it receives the forwarded reports from
node C. An Event Triggered Scheme (ETS) has been
introcuced in (Yuan et al., 2003). In this model, each node
has an internal timer that, when exhausted, will cause
received data to be aggregated and forwarded to its
parent node. Having a time-out is necessary to assure that
aggregating nodes do not wait forever when messages
from their children are dropped due to communication
errors or sensor deaths (due to out-of-energy or physical
damage). In their scheme, the timer is started when the
node either senses an event or receives a report from one
of its direct children. Our scheme specifies that a node’s
internal timer should be started when a query 1s received
from a parent node. The main difference here is that we
assume a mainly query-triggered system (i.e., data pull
instead of data push). In both cases, only loose time
synchronization required as there 1s
transmission latency between one-hop neighbors.
Tt is necessary for nodes closer to the root of the tree
to wait longer than those near the leaves. For example,

18 minimal

consider a maximally unbalanced tree, i.e, a chain
topology. If there were two leaf nodes as shown i1 Fig. 7

Fig. 7: Chain plus child near leaf



Inform. Technol. J., 5 (3): 739-778, 2006

Fig. 8: Chain plus child near sink

and both of them detected an event, there would be no
timing problem since the event was detected by leaves at
the same tree level. If, however, the network were
organized as in Fig. 8 and both nodes again detected an
event, timing would be a major issue. In fact, the
differential between the levels of the leaf nodes would
dictate the timing skew. The parent node that 1s located
above both of these nodes would need to account for this
skew, A, as follows:

A =shde(l -1,) (2)

where shd 1s the Smgle Hop Delay, or the time, mcluding
aggregation and transmission time, that a message takes
to be transmitted from a node to its parent, |, 1s the level
of the higher node that aggregates data and 1, is the level
of the lower node whose data is to be aggregated. A is the
additional time that the aggregating node must wait to
aggregate data.

Assuming the network topology 18 communicated to
aggregating nodes during the sefup phase, the above
formula indicates to the aggregator how long it may have
to wait before delivering data to its parent. If a maximum
tolerable latency accompanies each data query command,
then the aggregator will be able to decide dynamically
whether 1t should wait to aggregate all data, or forward
whatever data it has after the appropriate timeout period.
This becomes even more useful when combined with the
different types of aggregation. In this case, the sink may
allow or disallow additional aggregation data at the cost
of query latency.

A Mult-Level Fusion Synchromization (MFS)
Protocol 1s suggested in (Yuan ef al., 2003). This accounts
for the aforementioned aggregation timing lag by making
a node broadcast a START message when it transmits
data that needs to be aggregated. Nodes that overhear
this message are to start their own timers, taking into
account their depth m the tree. This assumes that all
nodes will hear this START message, especially the
aggregator, which will then be able to compute the
expected arrival time for this message. Other nodes along
the path will be able to calculate the amount of time
allotted for them to send their relevant data to be
aggregated without 1t being considered tardy.
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On the other hand, there is, however, the chance that
nodes along the chain may not hear this START
command. In the worst case, the latency will reach the
upper bound as follows:

[w}

—1 _ .
L= Max—j-A:D-Max—M-A (3)

1}
=

If individual aggregators are expected to calculate
their aggregation periods, then there still must be some
sort of learning phase: either D is given or it must be
obtained empirically. We may require that each node
should send out hop count requests. Alternatively, this
may be performed when data queries are sent out. We
choose to use this latter method, as it keeps nodes
updated in a more timely manner, but only on demand
{(when a query 15 actually in flight instead of requiring an
additional periodic control broadcast).

The necessity of a timer based on this START
message was proposed in (Yuan et al, 2003) mainly
because the authors were considering data-push. It 1s
efficient to just start the timer when we receive a
response, since a node’s depth m the tree 13 already
known at that time.

Communication overhead estimation: In a WSN,
communication is the biggest drain on battery power
(Akyildiz et al., 2002). Accordingly, an estimation of the
energy-efficiency of an entire network hinges mainly on
the amount of communication that it performs. This
includes the overhead of (1) WSN configuration
information (determined by protocol overhead) and (2)
the data actually transmitted. Tt can be helped by minor
improvements such as eliminating a bit or two from
unnecessary protocol fields. As an example of protocol
overhead mmprovement, packet field length 1s mainly
protocol-independent. A protocol can be optimized to
transmit less possible mumber of bits that still allow
effective communication. However, the amount of data
actually transmitted is out of our control. Tf r bits of data
need to be sent, disregarding aggregation, compression
and similar optimizations, then r bits must be sent.
Regardless of how much energy we would like to save, a
network that does not communicate interesting data is
useless. This leaves only the number and size of control
packets to estimate. We aim to quantify the complexity of
communicating necessary control information to an entire
network.

Assume the depth of the DAT 1s D. The messages
must be retransmitted by every parent node 1n the tree.
Thus the number of transmissions needed to forward this
request is the number of nodes within D-1 hops, which we
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refer to as f (D-1), (f is a function describing the
relationship between the sensor amount and tree levels).
Leaf nodes do not need to retransmit the update request.

Most aggregation (and routing) schemes require
some sort of setup phase (Intanagonwiwat, 2002, Solis
and Obraczka, 2003; Chatterjea and Havinga, 2003). This
period is used to inform the nodes some imtial parameters.
Our schemes require very little additional overhead during
this setup phase. The only additional parameter that must
be transmitted is the depth of each node in the
aggregation tree. This may be discovered with the
equivalent of a single data query and a single response
from each of the nodes in the network. Based on our
protocol (see Section A), the setup phase is necessary, at
the very least, to distribute the depth of the tree, D. Thus
the complexity of this communication depends mainly on
the depth of the tree. Each node will be required to
transmit only two messages: one to downstream and one
to upstream (If we use full aggregation here, disregarding
latency, each node need only retin one message). Note
that in a full tree where each parent has ¢ children, a tree
with only depth D can encompass n nodes according to
the following formula:

4

This could easily be piggybacked on the network
topology management packets, or could be performed as
a separate transmission, basically as a specialized WSN
query. Considering that the clusterheads are able to
organized mto a tree, such protocel overhead 13 mmuscule
compared to the rest of the setup (Intanag onwiwat, 2002).
A simple binary tree could contain 50 clusterheads with a
depth of only 5 (Solis and Obraczka, 2003). The overhead
to create the tree in the first place would be on the order
of C(*) for a minimum spanning tree, or O(diameter) for a
Breadth First Search Tree (Chatterjea and Havinga, 2003).
Our setup overhead is only in the order of O(depth).

If ¢ 18 the number of children that each parent node
has, then there are c” leaf nodes. Here we assume a full
tree and it is actually an upper bound on the number of
leaves. There will be n nodes in the entire tree, where n is
defined as follows:

n- Yo s)

d=0

Aggregation amount estimation: We now analyze a
network orgamzed mto a tree topology in which each
aggregating node has exactly ¢ children. Our analysis here
assumes that only leaf nodes generate data and that
intermediate nodes simply forward their reports (if
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Fig. 9: Energy savings vs. Percentage of aggregation

intermediate nodes also generate data, then aggregation
can save even more energy ). At each level of the tree, the
number of messages that must be retransmitted by level
1+1 will be reduced according to the following formula:

m,,, :ml(cf(pcw+l) (6)

where: m, is the number of messages transmitted by

nodes at level 1 and

p 1s the probability that messages are aggregated.
Therefore, the total number of messages propagated

through the networle, M, is

Mz%ml(c—(pc%—l) (7

Figure 9 shows a network where ¢ 1s 4, p 18 0.5 (50%)
and n is 21. Dark nodes represent nodes whose data can
be aggregated Lighter nodes may not meet timing
requirements for aggregation

Suppose we do not use aggregation. If each of the
leaf nodes sensed an event, there would be 32 messages
transmitted. Each leaf node transmits a report. And each
of these responses is retransmitted by the intermediate
nodes. If messages from darker nodes are aggregated,
there will only be 28 messages transmitted. Note that the
leftmost two leaf nodes each report individually but their
parent need only transmit 3 reports to the root node.

SIMULATION RESULTS

Simulation setup: We have used (OPNET, 2006) to venify
the efficiency of our proposed timing control schemes.
The reason of choosing OPNET as the sensor network
simulation tool is due to its bug-free networking modules
and many built-in wireless communication components
such as IEEE 802.15-based MAC layer, AODV-based
MANET routing protocol, flexible antenna parameter
setup and so on.

We mmplement our data aggregation schemes above
the WSN Routing layer since the aggregation function
needs to interpret data queries, data responses and
sensor information from the application layer. The
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Fig. 12: (a) Number of responses reduced dynamically (b) number of responses increased dynamically

aggregate the data, it moves to the wait for responses
state. In this state it waits for responses unfil the timeout
period as specified in the data request packet. If a packet
ig received, the node transitions to the Process Packet
state where it reads the packet, matches the ID and adds
the information to a buffer if the packet iz a data response
to the current data request. After it processes the packet,
it transitions back to the wait for responses state.

When the timeout occurs, the node moves to the
Aggregation state where the aggregation function is
performed on the data. It should alzo be noted that an
optimization to the Wait for Responses state can be
added if the number of children of the node is known. If
the node receives responses from all of its children, it can
immediately transition to the aggregation state. After the
data iz aggregated, the node transitions to the Send
Response packet, where the packet is forwarded to the
routing layer. After the node sends the response, it
returns to theidle state.

The WSN sink is responsible for initiating data
aggregation. The application issues a request via the sink
for data from the sensor network along with the desired
number of responses and the type of aggregation to be
performed. From this information, the sink creates data
request packets that encapsulate the query and
aggregation parameters. The sink then forwards the data
request packets to its child nodes and in tum the request
is forwarded throughout the entire tree.

When generating data requests, the sink is assumed
to know the optimal number of packets to receive, which
is referred to as N_,. Based on our timing control
algorithm, the sink determines the appropriate timeout
period for the current round of aggregation.

After transmitting an initial data query, the zink waits
for responses from the sensor field. Thiz number is then

used to determine the adjusted timeout period for the next
round of aggregation. This includes comparing the actual
number of responses received from the network, N__, to
the optimal number of responses that the application
expected to receive, N_,. The optimal number of
regponges is application dependent and is preset in the
sink. If the number of responses received iz greater than
the desired number, the control algorithm will reduce the
timeout value, allowing less time for responses to be
collected. If the number of responses received is less than
desired, the control algorithm will increase the timeout
period, which will proportionally allow more time at each
level of the tree.

To analyze the performance of the system, the sink
issues data requests, which the nodes respond to. The
data that the sink collects consists of the number of data
requests sent, the number of responses received, the
optimal number of responses, the number of packets
received, the number of packets sent and the timeout
period.

We use time averaged plots to show number of
responses collected in the sink. Using a time average
allowed us to account for the outliers caused by
MAC-layer transmission collision problems. Figure 12 (a)
shows the results of a simulation scenario in which the
initial timeout value iz large. More results are received
than necessary (N_>N_J, so the timeout value is
shortened and the number of responses is reduced. Next,
a simulation scenario is constructed in which the initial
timeout value is too small to allow the optimal number of
responses to be received. The results from this simulation
(Fig. 12b) show that the number of responszes increases
until it reaches a steady state value near the optimal
number of responses. The timeout value also increases
until an optimal value is reached and then levels off.
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if (n_opt > n_responses) {
timeout period+t;
} else 1if (n_opt <n_responses) {
timeout_period--;}
Fig. 13: Timing control algorithm for scenario (a)
if(slow_start) {
/1 Slow start phase
if(abs(n_responses-n_opt) > DEVIATION) {
timeout_period += timeout_period;

telse {
timeout period = 0.5*timeout period;
slow start=0,

3

} else if(n_responses !=n_opt) {
// Not in slow start phase
// increase or decrease proportionally
timeout_period += (n_opt-n_responses)/(abs(n_opt-
IL_Tesponses));
H
Fig. 14: Timmg control algorithm for scenario (b)
Simulation scenarios: Based on our above OPNET

simulation models, we will study and compare the
following three different WSN data aggregation scenarios:

Scenario (a): In this scenario, we adopt the FSM Version
1 algorithm. Tf not enough responses are received by the
sink the aggregation timeout period will be increased by
a single time umt, The Pseudo-codes are shown as
follows (Fig. 13):

Scenario (b): In this scenario, the timing control algorithm
considers the variation between (1) the optimal number of
responses the sink expected to receive and (2) the actual
number received. We also introduce the idea of the
acceptable deviation (Fig. 14). This can prevent the timing
period from being changed dramatically unless there 1s a
large discrepancy between these two parameters.

In Scenario (b), another notable improvement
compared to Scenario (a) 13 the addition of a slow-start
phase. From the imtial query until the end of this
slow-start phase the timeout period increases
exponentially. When the difference between the optimal
number of responses and the number received drops
below the predefined acceptable deviation, the timeout
period is reduced by a small amount and slow-start phase
is ended. From that point on, the timeout period is
mcreased or decreased m direct proportion to the
difference between N, and N,
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if(slow _start) §
/f Slow start phase
timeout_period += mcrease factor*(n_opt-
IL_Tesporses);
if(n_responses > n_opt) §
slow start=0,
i
} else 1f{n_responses <=n_opt) {
/f Not in slow start phase
/f increase or decrease at a slower rate
timeout_period += 0.5*increase_factor*(n_opt-
IL_Tesporses);
} else if(n responses > n opt) {
timeout period += 2¥increase factor*(n opt-
IL_Tesporses);

}

Fig. 15: Timing control algorithm for scenario (c)

Scenario (C): In this scenario, the timing control
algorithm uses an increase factor as described in the
following equation:

Tn+1 - Tn + C(Nupt - Nrec) (8)

This is intended to account for the mathematical
relationship between the timeout period and the number
of responses FSM Version 3. The idea of a slow-start
phase used in Scenario (b) is maintained in Scenario (¢),
but the DEVIATION parameter is eliminated. Tt is expected
to fluctuate slightly above or below the optinal timeout
peried but to be more responsive to a small difference
from the optimal number of responses.

Once out of the slow-start phase the timeout period
15 increased or decreased based on the difference between
n opt and n responses. However, without the
DEVIATION parameter, it is necessary to mcrease and
decrease at different rates. A suitable ratio is determined
experimentally. Imtally, this algorithm is designed to
increase and decrease at the same rate, but 1t 1s found
that, on average, random wireless transmission errors
would cause the timeout period to gradually
(Fig. 15).

Each of these three scenarios 1s run under two sets of
simulation parameters. The data sink has 14 children and
each is programmed to respond to the simulated data
query with its sensed data. In the original simulations, the
sink requires 10 responses as its optimal number. This
allows a longer simulation and shows how each timing
algorithm performed during an extended period. As a
secondary simulation, the sink requests only 8 responses
from all of its cluldren. This represents a query where low

increase
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latency is slightly more important and sporadic wireless
transmizsion errors have less effect on the steady-state
performance of each algorithm.

Comparison resultsfor the above three data aggregation
scenarios: Figure 16 shows the number of responses
received by the sink as the simulation progressed. The
optimal number of responses for this simulation was 10.
The lowest line shows the performance of Scenario (a),
the middle line shows that of Scenario (b) and the
uppermost line shows the performance of Scenario (c). For
clarity, this plot shows the time average of the number of
responses received. Due to the realistic performance of
the wireless links, there were fluctuations throughout the
gimulation, which makes plotz of the raw data more
difficult to interpret but it can be seen that in all cases the
number of responses eventually converges toward the
goal of 10.

Because the average i taken, the inifial reaction time
of each algorithm wizibly affects the apparent
convergence time. As shown in Fig. 16 Scenario (a), the
linear FSM reacts the slowest and accordingly takes the
longest to converge. Scenario (b) improves the reaction
time gzignificantly. It can be seen that the number of
responses increases from zero much sooner than for
gcenario (a). The average number of responses received
approaches the desired number most quickly for scenario
{c). Since the goal iz to provide the desired number of
responses to the sink dynamically as quickly as possible,
the timing control algorithm used in scenario (¢) appears
to perform the best out of the three algorithms tested.

In Fig. 17, the frace that originates the lowest and
increases slowly iz the result of Scenario (a) algorithm.
The zolid line that appears to begin slightly higher results
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from Scenario (b) algorithm (Fig. 17). Both of these lines
stabilize around 400, or 40 milliseconds. In Fig. 17, the
most scattered plot is that of Scenario (c) algorithm. As
shown in Fig. 17 Scenario (c), the cost of quickly
increasing the number of responses toward the optimal
number can be seen in the fact that the plot of the timeout
period does not really stabilize as the other two scenarios
do. This iz expected as the difference between the optimal
number of responses and the number receivedis amplified
before affecting the timeout period.

Figure 18 shows that, although Scenario (c) appears
not to stabilize, the average fimeout period indeed
increases and approaches its final value most quickly out
of the three scenarios. As evidenced by Fig. 16, the
average number of responses also increases most quickly.

In the next simulation, the number of desired
regponges iz lowered to only 8 out of the 14 children.
Performance is similar for all three algorithms, but it is
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expected that more advantages would be obtained by a
simulation setup that could reach a stable operating state
more quickly. Under these conditions, the shortcomings
of Scenario (a) become more apparent. Though the
algorithm is successful in eventually providing the
desired number of responses, Scenario (b) and Scenario
{c) are much quicker to do so.

Figure 19 shows the how the timeout period is
updated by each of the three algorithms. The lowest line
shows the performance of Scenario (a) and is clearly linear
during its initial increase. The other marked line shows the
performance of Scenario (b), which, as expected, reacts
more quickly than Scenario (a). The most scattered plot
shows the timeout period as controlled by Scenario {c).
This line fluctuates less in the initial phase than Scenario
{c) line in Fig. 18 because transmission errors have less
impact when the sink only needs to receive responses
from 8 of itz children and this number of messages can be
more reliably delivered by the wireless links. This pointis
illustrated by considering a situation in which responses
were required from all 14 children. Even a single
transmission error would cause the timeout period to be
increased. However, if only 2 responses were required, an
average of up to 12 responses could be lost even under
stable operating conditions and still satisfy the sink’s
requirements.

Figure 20 shows the average number of responses
received in this simulation case (i.e., Nopt = &). Similar to
the observed fimeout periods and results discussed
previously (Fig. 19), both Scenario (b) and Scenario (c)
provide the desired number of responses with about the
same alacrity, with Scenario (c) being slightly quicker.
Results from Scenario (a) lag behind these two and its
trace iz the lowest plot of the three. Although the number
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of responses in Scenario (a) does not seem to reach an
acceptable level within the time range shown in Fig. 20,
the number of responses reaches 8 in about 20 simulation
time units (but the initial poor results lower the average).

DISCUSSION

From the above simulation results, it can be seen that
the design and implementation of a system involving
data aggregation and timing control could be
successful. All three algorithms accomplish the goal
of dynamically modifying the number of responses
received. Of the three, scenario (c) provides the
desired number of responses in the timeliest manner
under both simulation setups.

Specifically, it seems that using a DEVIATION
parameter will greatly help to stabilize the timeout
period by preventing itz change unless there is a
notable difference between the optimal and the actual
number of responses. This is most useful when either
gporadic (instead of bursty) wireless transmission
errors are expected or the optimal number of
responses is very close to the maximum number of
children nodes. In both of these cases, some
fluctuation in the number of messages received exists
even after the optimal timeout period has been
reached

Increasing or decreasing the timeout period based on
the number of responses is effective in its goal of
more quickly correcting the number of responses.
The two algorithms in which the idea was used, i.e.,
Scenario (b) and scenario (c), performed better in this
task than does scenario (a).
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Finally, wsing a multiplying increase factor also
helps scenario (¢) react more quickly to receiving a
sub-optimal number of responses. Since scenario (c)
lacks the DEVIATION parameter, it cammot be
concluded that the better performance of this
algorithm is due entirely to using an increase factor.
However, by examimng Fig. 17 and 19, it can be seen
that scenario (b) and scenario (¢) vary in their mutial
reaction times, which helps to significantly raise
scenario (c¢) average timeout period trace. The first
few timeout periods are very short and only a small
number of responses are received, which causes the
difference between the optimal and actual number of
responses to exceed the acceptable DEVIATION and
thus reduces its unportance.

These above simulation results indicate the
importance of the proposed mechanisms for creating
an efficient means of dynamically modifying the
number of responses received by the WSN smk. A
system that specifies an acceptable DEVIATION and
uses the variation between the optimal and actual
number of responses to update the timeout period, is
better than the linear FSM and far better than a static
guess of an aggregation timeout period. Using this
difference has been shown to be able to intelligently
increase or decrease the number of responses
recelved and a multiplying increase factor shortens
the reaction time of the algorithm. When wireless
transmission  ermrors  occur  frequently,  the
DEVIATION parameter can help to reduce
unnecessary changes in the timeout period. A
system that incorporates all of these ideas can
intelligently and effectively provide the number of
responses requested by the sink and the most
aggregation and energy savings possible within the
amount of time specified.

SENSOR HARDWARE EXPERIMENTS

We have used Crossbow sensor motes (Crossbow,
2006) to build our WSN hardware platform and have
carried out some experiments to verify the efficiency of
our FSM-based timing control scheme in WSN data
aggregation. A WSN node includes two parts (Fig. 21): (1)
microprocessor plus radio board (for sensor local
processing, TinyQOS (Crossbow, 2006) and wireless
transmissions). It is also called mote;, and (2) Sensor
board (for detecting light, temperature, humidity, sound
and other types of data). Typically, these sensor motes
have extremely low power (a few tens of milliwatts versus
tens of watts for a typical laptop computer). When
operating at 2% duty cycle (between active and sleep
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(Chuster head)

Fig. 21: Hardware setup. Cluster-based topology setup;
Note: Each node includes ‘sensor board’ (to
detect data) and ‘Mote’ (to process data and

transmit/receive packets)

modes), we can achieve a lifetime of about 6 months (on
a pair of AA batteries). We use MicaZ motes (Crossbow,
2006) that have TEEE 802.15.4 Physical MAC layers
modules for Zighee-compliance (Zigbee, 2006) purpose. A
Crossbow mote has a 4 MHz, 8 bit Atmel microprocessor.

In terms of data query implementation, we use a
routing tree that allows a W3N sink (we use a laptop) to
disseminate a query and collect query results. The routing
tree 1s formed as follows: The root (1.e., the sink) sends a
request. All child nodes that hear this request process it
and forward it on to their children and so on, until the
entire network has heard the request. Each request
contains a hop-count, or level indicating the distance from
the broadcaster to the root. To determine their own level,
nodes pick a parent node that is (by definition) one level
closer to the root than they are. This parent will be
responsible for forwarding the nede’s (and its children’s)
query results to the simk.

Figure 21 (Left diagram) shows our hardware
experimental topology. Tt includes a laptop (serving as a
WSN sink) and a few clusters of nodes. Each cluster has
a cluster-head node that is a Crossbow Mica2 sensor and
three cluster member sensors (we use Crossbow
Mica2Dot). We have built a DAT with 8 clusters. Each
DAT level has 1~3 cluster-heads.

To collect the query responses from all sensors, we
adopt TmyDB (TmyDB 2006) as the query interface that
has a friendly, windows-based user interface in the WSN
sink (Fig. 22). For instance, it could use a SQL-like query
syntax to collect sound, light and temperature data
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Fig. 23: The adjustment of waiting period in each aggregation round

(Fig. 22). However, we cannot directly use the middleware
layer zoftware of TinyDB since it does not any timing
control scheme in each free level. Due to itz convenient
Java-based software development modules, we have
added our FSM-based timing control protocol above its
routing layer.

We first investigated the waiting period T, (n is the
data aggregation round No.) adjustment algorithms bazed
on our proposed three different FSM schemes. We can
gee that the FSM Version 1 (i.e., FSM1 in Fig. 23) takes a
long time to reach a stable status in which the system
collects near optimal number of query response results.
This is because it simply increases/decreases waiting
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period by one time unit in each aggregation around. Thus
itz adjustment speed is the slowest among three FSMs. If
we use FSM Version 2 (i.e., FSM2 in Fig. 23), the system
can quickly increase the waiting period in the beginning
of the query operation. Note in the initial phase, the
number of collected query responses, N_, is far less than
desired one, N_, which is assumed to be 18 in our
experiments (FSM2 in Fig. 24). However, FSM Version 2
cannot adjust its waiting period at an evenly speed after
N..is close to N, due to its simple multiplicati on/division
by 2. From both Fig. 23 and 24, we can see that FSM
Version 2 causes large fluctuations for both waiting
period (Fig. 23) and N, (Fig. 24).
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FSM Version 3 has good timing control perform ance
because it adopts an auto-feedback control scheme that
1s similar to Internet TCP congestion control algorithm. In
the imitial adjustment phase, it behaviors like the TCP
slow-start phase, 1.e., quickly going close to the N, After
N, is close to N, it will slowly adjust the waiting period
so that the value of N, does not fluctuate much (FSM3 in
both Fig. 23 and 24).

Next, we nvestigate the efficiency of our timing
control scheme in terms of achieving good trade-off
between end-to-end query delay and query accuracy.
Suppose we do Not adopt the above proposed FSM-
based timing control scheme, all DAT levels just simply
wait for a constant duration, say, 20 sec, we then study
the value of collected number of query responses from
sensors. To reflect the actual harsh WSN commumncation
environments, we intentionally put some metal blockages
between sensors. Thus the transmission error rate will be
higher than the line-of-sight wireless communication case.

2 345 6 7 8 9101112131415 16 171819 20

Query task No.
Fig. 26: The query delay: (1) under our FSM and (2) Not using our FSM
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As shown in Fig. 25 (no-FSM case), the constant
waiting period causes very unpredictable N, due to the
high packet emror rate in wireless commumcation
environments and the quickly changing wireless link
quality (that can be measured by Signal-to-noise ratio).
However, ouwr FSM-based timing control scheme can
adaptively adjust the waiting periods based on last value
of N_,. and does not cause a large fluctuation of the trace
(Fig. 25, FSM3 curve).

Next, we change the WSN middleware layer to
investigate another no-timmng-control case: For each
1ssued SQL query command (Tmy, 2006), we just simply
wait until the sink (i.e., the laptop connecting to the WSN)
collects enough number of respenses, say, N, and then
record the end-to-end query delay (from the DAT leaves
sensors to the sink). We have conducted dozens of
query task tests and Fig. 26 shows the delay results for
20 query tasks we randomly choose from our tests).
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While our FSM-based timing control scheme can achieve
a controllable query delay, a query task without timimng
control scheme can have a highly vanable delay that is
typically larger than the delay in our scheme.

CONCLUSIONS

Data aggregation should be performed in WSNs
when possible because Redundant data transmissions
brings high commumecation overhead that consumes a
large amount of energy in WSNs. Current data
agpgregation schemes either require too much overhead or
cause unnecessary waiting delay m some aggregation
nodes. In this study, we have analyzed the 1ssue of timing
control when aggregating data in Wireless Sensor
Networks. We have shown, through mathematical
analysis, experiments, that the
aggregation waiting period, which 1s the most important
parameter for deciding the tradeoff between query
accuracy and response delay, can be updated adaptively
in an attempt to provide an appropriate number of data
query responses.

simulations and

Our future work is to include other WSN factors
(such as network density, sensor detection frequency,
mobility modes, etc.) in our timing control design so that
a better trade-off between query accuracy and end-to-end
query delay can be aclueved.
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