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Abstract: A family of eighth order and sixth order P-stable methods for solving second order initial value
problems is considered. The nonlinear algebraic system, which results on applying one of the methods in this

family to a nonlinear differential system, may be solved by using a modified Newton method. The present study,

mtroduces a local error estimation techmque based on the derivation of suitable formula pairs. Thus, to obtain
the local error estimate, we compute two approximations of the solution, one with a sixth order method and the

other with an eighth order method. The error estimate is then obtained by subtracting our two approximations.

The methods in each pair are chosen to have certamn features in common. They have the same iteration matrix

and some of the function evaluations are common to both methods. Finally numerical results are presented to

illustrate our local error estimation technicue.

Key words: Second order mnitial value problems, oscillation problems, combination of 8th and 6th order P-stable
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INTRODUCTION
We consider an extension of the class of direct

hybrid methods proposed by Cash (1981) for solving the
second order initial value problem

¥ = flty), y(0), y(0), given D

The basic method has the form:

yn+l_2yn+ Wl h2 {BD(YnH +X11 )+Yyn +Bl (ymocl +Yn—ccl )}
+h2 {BZ(Yn+ﬂL2+Yn-m2)+B3(Yn+m3+Yn-m3)} (2)

yniocl = Aiyn+l+BiYn+Ciyn—l+h2 {SiYn+1+qun+1liYn—l } » (3)

YH:tu:Z = R.tYn+1+LiYn+TiYn-l+h2 {YtYn+1+
ViYn+WiYn—1 } +h2 {ZiYn+oc1+XiYn—cc 1 } » (4)

YD:tnLB - DtYn+1+EiYn+GtYn-l+h2 {I_LYn+1+KtYn+MYn-1 }
+h2 {PtYn+ u:1+N:tYn-m 1+SiYn+ﬂL2+QiYn-m2 } (5)

Yn:f(tnBYn)a Ynilzf(tnﬂIDYnil)a ymmlzf(tnﬂﬂlhaymm):
Ynicczz f(tnjﬂzhaﬁmz): ymoﬂ:f(tniajhvynicﬂ)'

The methods proposed by Cash (1981) are given by
Eq. 2with B,=0, (3) and (4). Khival (1991), Khiyal and

Thomas (1997a) and Thomas and Khiyal (1992) have
derived eighth order, P-stable (Lambert and Watson, 1976)
methods of the form (2-5)

When the method (2-5) 1s applied to a nonlinear
deferential system (1), a nonlinear algebraic system must
be solved at each step. This may be solved by using a
modified Newton iteration scheme. The resulting iteration
matrix involves J, I°, I’ and I, where Jis an approximation
for the JTacobian matrix of f with respect to y. Since matrix
products are expensive, especially for large systems and
any sparsity in T will be weakened in ¥, T and I and any
ill-conditioning in T will be magmfied in its powers, we
wish to avoid the calculation of T4, T and J*. Khiyal (1991),
Khiyal and Thomas (1997a) and Thomas and Khiyal (1992)
have derived eighth order P-stable methods of the form
(2-5) for which the iteration matrix 1s a true perfect quartic.
This implies that at most one real matrix must be factorised
at each step and the formation of 7%, T’ and T is avoided.
In general, these eighth order methods require seven
function evaluations per iteration. Kluyal (1991), Khiyal
and Thomas (1997a) and Thomas and Khiyal (1992) have
derived methods which require only four function
evaluations per iteration.

Notation A method which requires m function
evaluations per iteration will be called an m-evaluation
method.

By taking P, = 0 in (2) and choosing the remaimng
parameters appropriately, several authors (Cash, 1981,
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Chawla and Rao, 1985) have derived sixth order methods
of the form (2-5) which are P-stable. The methods
proposed by Cash (1981) require five function evaluations
per iteration, m general. Cash (1984), Voss and Serbin
(1988) show how the number of function evaluations may
be reduced to four per iteration. The method proposed by
Cash (1981) 1s obtained by taking ¢, = 0 and requiring the
OIS (tups.Voime) to be coincident. Voss and Serbin (1988)
have modified this method in an attempt to obtain a four-
evaluation method with a true perfect cube iteration
matrix. (There 1s a typographical error 1 their paper and
the method which they derive 1s not sixth order accurate.
The correct version is given by Khiyal (1991).) For the
method proposed by Chawla and Rao (1985), the number
of fumetion evaluations per iteration 1s reduced to three by
requiring that v, ,, and y,,, are independent of y,,,. This
implies that f(t_,,.y,..) and f{t, ,..¥,..) must be computed
once per step rather than once per iteration. However,
the particular methods proposed by Chawla and Rao
(1985) do not have a perfect cube iteration matrix.
Finally, Thomas (1988) and Khiyal (1991) have derived
sixth order, P-stable, three-evaluation methods (of the
form (2-5) with B, =0) for which the iteration matrix is
a true perfect cube.

The present consider the sixth order methods of
Thomas (1988) and the eighth order methods of Khiyal
(1991), Khiyal and Thomas (1997a), Thomas and Kliyal
(1992). We give necessary and sufficient conditions for
there to exist

* Sixth order, P-stable, tlwee evaluation, two-step
methods with iteration matrix (I-th’)’,

+ Eighth order, P-stable, four evaluation, two-step
methods with iteration matrix (I-th*J)*.

The important point to note 1s that the methods may
be chosen so that the value of r is the same for both the
sixth and eighth order methods. This means that a saving
can be made m the amount of computational effort
mvolved when they are combined together. We derive
some particular formula pairs and discuss a local error
estimation technique. We present some numerical results
to illustrate the performance of the formula pairs.

THE METHODS

The Newton iteration scheme for eighth order
methods of the form (2-5) 1s given by

F'(y(prl)nﬂ)(y(p)nﬂ'y(prl)m-l) = _F(y(prl)nﬂ): P = 1: 2: (6)

Where

F(y) = y-2yty, -0 {Boflte y Bl nya ) +
FRLU AT VR O (AT o 0 (M Ay
A S LU A L G Y (A
BSf(tn+cc3:Yn+cc3)+BEf(tnroc3>Yn—cc3)} (7)

Yorar = Ay tBuyHCayth {s.f(t. v+
eTR QAR A e DI A T

Varoz = Ray Lyt Toya T { Yo f (L y VLA, v
WA, LY (e Y X 0 Yo )Y s

Varar = Day Byt Gy th? {HA vy,
+Mf(tn-l>Yn-1)+P:tf(tn+ml='Yn+ml)+Nif(tn-m1>Yn-nL1)
3 f (s 02, H et wp ¥ nwa)¥ s

and

F () = {Bet Pl AAA AR AR )+P(D. 4D )}
B T-{B (s, s )P, [ Y AY +A OLAX O+
AAZAZ )HP(HAT) + B[ AN AN+
A(PAP HR(QAQ)HR(SA+S )T
{Bals (X AKX+ (ZiAZ ) HBs[s (NAN-)
+5,(PAP ) HB(QAQUY X AAHZA)
HSAS Y ALAFZ AR TP [ (T
QX s 47 8.)HS+SI(X s +Z.5)]h T (8)

To avoid the calculation of T°, I and T* in (5}, Khiyal
and Thomas (1997a) choose the free parameters of the
method so that the iteration matrix may be factorised as a
true perfect quartic

HE RIS
where
=025+ f(A +A)+ (R +R )+ By(D. + D).
The necessary and sufficient conditions for this are

Bi(sats P Y AY HZAZ N AAAHP[HAHA
(PAPAAFA YHSASHRARD] = -6r°.P(2.+Z)
(st P (s, s P AP PSS [YoAY HZ+
ZAAA)] = 40 By(s, A8 WZAZN(SAS) =1 (9)

The resulting methods are P-stable if and only if

1+ [4r-1 /4]H {600 +1 /48]H [ 4°-1.5¢°

+r/12-1/1 440 |H [ *-r'+r¥/8—1/360+

1/R0640H > 0.1+[4r—1/1 2]H+[6r~1/3
+1/360]H [ 4r°-1/2+41/90-1 /201 60]H > 0 (10)

hold for all H. These conditions are satisfied providedr is
greater than or equal to the largest root (R) of the
polynomial equation
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r-r+?/8-1/360+1/80640 = 0, (11
because in this case the coefficients of the powers of H in
the mequalities (10) are all non-negative. (Note that R* =
0.8381 to four significant figures. )

The Newton iteration scheme for sixth order methods
of the form (2-5) with B, = 0 1s given by (3)

F'(Y@'l)m1)(Y(p)n+1-y(p'l)n+1) ='F(Y(prl)n+1)= p=L2, ..

Where

F(y) = y-2y4¥u-h’ { Boft oy ) Bof(ty 1Y)
FYEtyn) + Bt Yo a0 HB (s Yoas)
R 2 LUy oy 3 G AN (12)
Vot = AYIBYACY, +h* st .y)
ottty hf(t, a0,
Yooz = Ry Ly, Loy, Hh YAt Ly VL)
FW L1 Yo Zaf (o, Var o 2 (G 01, Vo )} 5

and

F(y) = T-{BrtB(AAAHP(RARINT-{B(s.+45))
H,[ Y. AY +A (AKX AL AZ ] RT-

Bols (XA s (ZAZ )T (13)

To avoid the calculation of I* and J°, Thomas (1988)
chooses the free parameters of the methed so that the
iteration matrix may be factorised as a true perfect cube

{I-th’T}?
where
r=(1/3) [B0+B1(A++A_)+32(R++R_)]-

The necessary and sufficient conditions for this are

Bi(s, s HPY AY A (X AOHPA(ZAZ ) = 30,

Bofs (ZAZ s (X AX)} =1 (14)
The resulting methods are P-stable if and only if
1+[3r-1/41H [ 3r*-3r/4+1 /A48]H *+
[-3r%4+1/16-1/1440]H >0,
1H3r-1/12]H 30 1/4+1/360]H' =0 (15

hold for all H. These conditions are satisfied provided r 1s
greater than or equal to the largest root (R") of the
polynomial equation

-3/ 4+1/16-1/1440 = 0, (16)

805

because in this case the coefficients of the powers of
H in the inequalities (15) are all non-negative. (Note that
R*=0.6564 to four significant figures.)

DERIVATION OF THE FORMULA PAIRS.

The four-evaluation, P-stable, eighth order methods
of the type derived by Kluyal (1991), Kluyal and Thomas
(1997a), Thomas and Khiyal (1992) may be combined
in a variable step code with appropriate three-evaluation,
P-stable, sixth order methods of the type derived by
Thomas (1988) and Khiyal (1991). In each formula pair, the
iteration matrix for the eighth order method is (I-th’T)*
while for the sixth order method, the iteration matrix is
{I-th’I)® and the value of 1 is the same for both. The local
error estimate 1s given by

Le,., = ylg]nﬂ'y[ﬁ]m-l (17)

where y*™,,, is the approximation for y(t.,)
obtained by the method of order 2m, m = 3 and 4.
Although  this performing the integration
with two methods on each step, this can usually be
achieved reasonably cheaply smnce most of the work
comes in solving linear systems of the form (I-th’Ty*y = b.
As the matrix (I-th’]) is common to both methods, no
extra LU factorisations are required. Now Le,., 15 an
estimate of the error m the lower order method. If we
add the local error estimate Le,,, to ¥ .|, we obtain y** ..
However, since the sixth order method i1s P-stable, we
could equally well accept these results to advance
the step.

The iteration matrix for the eighth order method is
(I-th’T)* where, to ensure P-stability, we require r=R’, the
largest root of the polynommal (11). The iteration matrix for
the sixth order methods is (I-th’J), where, to ensure P-
stability, we require r>R’, the largest root of the
polynomial (16). Since we are prepared to perform at most
one LU factorisation per step and since R™>R", we take
rzR’" for both methods.

Here we consider combinations of sixth and eighth
order methods which have other common features, with
the aim of obtaining further savings. We derive six
different pairs and presents some numerical results. Note
that other eighth order/sixth order formula pairs may be
derived in a similar way.

means

SHKS6A: The eighth order method 1s the method derived
by Khiyal (1991), Khiyal and Thomas (1997a,b) and
Thomas and Khiyal (1992) for which v,., and y,.,; are
independent of y,.,, ¥, 1s identically equal to ¥, and the
free parameters are chosenso thato, =1, o, = 1/2, B, =1,
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&, = (12151100 and r = R". For this method, we must
evaluate f(t, .5 Viws) and f(t,. .z Vi) once per step. With
this eighth order method, we combme a sixth order
method such that vy, ., 15 independent of y ., ¥ ,.,18
identically equal to ¥, , and f(t, ... ¥...) is evaluated once
per step. In general f(t, ,;,V..;) has to be evaluated once
per step for each of the sixth and eighth order methods.
However, here we choose t«, to be the same for both
methods and we also choose the coefficients in the
expression (4) for y,.,; to be the same for both methods.
This means that f(t, ,,.v,.,,) must be evaluated just once
per step and may then be used for both the sixth and
eighth order methods. The resulting formula pair is as
follows:-
Sixth order method given by Eq. (2-3) with

A =0s=0R=0Y=07=0B=0C=1,
g =0,u=01_=1-a,T_=a, P, = (a’a')/20,

By = 1/12-B-Poee’s, v = 1-2 B+Pi+B,), Z. = [-400e’,
(1-*) B/(1+a,- & )[120-3r+/4-1/360],

s, = CAPZ), A, = 1-128,-(1+e,-¢2,)/20/(1 -0%) B,
W =s., q.=1-A-25.B, = 2:2A., C, = A-1,

BR. = 3r-1/12+P,e,+B, (1-A,), L. = 1+e,-2R,,

T, = Ro-tty, WAX = (at’,-t6,)/6, V_= (el 2-(W_
XL Y, = (@ R 2-7, WAX, = YA Z-(W_
130, Ve = (e 2R YooZ W3,
B=la=1a-=_(1+2151)100andr =R  (18)

Eighth order method given by Eq. (2-5) with

0,s.=0,R.=0Y =072_=0D_=0H_=0,
0,5=0,¢,=1,B=0,C=1,q=0,u=0,
1-tt,, T_= ¢ty B = 1-tt,, W_+X_= (”,-ct,)/6,
G_= as, By = (13-420%)/840( e -0, ) (e’ s-¢%,),
B, = (13-42a%,)/840(a* -, (e -as), By = 1/12-P,-
Bzazz'Bjazj,Y: 1-2(Be P, +P+Ps), Q_=17/3360
Baot(or’ 0t M. = (e -a,)/6-00,Q N, A = oy, 1ts)
(5163 3034290 -35) (e )(420%-13),
Ay =ty + 1), AP, = 1/30-f-A.3,- A4,
S, = (11/84-120)/60P,ct’ (1-0%), Zo =17(14et,-02,)
3360B, 1+, et )(A-1), 8, =-1/B,S. 2 A, = A-125.,
Co= A1, PP =B Z.-(Apar's) BS/(A-D), w = s,
G = 1-Aus,-u,, B, = 2-2A,, A, = [Bo(1-0s+(28+3¢r,)/
168-17(e’ A0, 1)1 1 20 +1) + By(1 -0 (A 430s.)]
IBtsot,), Y, =7+ (A )18, R, = A-12(Y.47,),
X, = Z.-X,, BiD. = 4r-Bo-PiA-B.R., H, =P,-eLS.+
(A-D)12, L, = 14e,-2R,, T, = Ro-tt,, W. = Y,-W._,
E =14+a:-2D,, V, = (¢’ 4, W2-R.-Y,-W-Z.-X,,
v, = (@02 W-X_ N, =P,.N_ Q.= $,-Q,

= {002 M N-Q, M, = H-M_ K, = (e ta,)/2
—D PLl\/LN—P Q+ S+,G =Dty o= 5, & = (-1
+/2151%100, B,=1, =R’ 13-350,-290+51 a*-Oct+

A
P
L.
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29a,0t,-200,0%, + 292, + 1300,-42¢5,0%, = 0
and N_ and X_ are free parameters. (19)

SHKS86B: In this formula pair, the eighth order methed 1s
the method derived by Khiyal (1991), Khiyal and Thomas
(1997a), Thomas and Khiyal (1992) for which v,.,; and y...s
are independent of V,..\, Vous = Voo @ = 1, 013 = 1/2, B, =1,
¢, = {-1+/2151%/100 and r=R’". For this method we must
evaluate f(t_,;, Via) and f(t,,; ¥..) once per step. We
combine this method with a sixth order method for which
Voo 18 Independent of y,., and ¥,,, = ¥,,. The resulting
formula pair 1s as follows:-
Sixth order method given by Eq. (2-4) with

A=0,5.=0R=0Y=07Z=0¢=1,L =0,
T =1 V=0, W=0 X ~= OBflocl,C,:ccl,
B, = (e -e" )20, By = 112-B-Br’s, v = 1-2(By+
Bt B, w = (o -0, V6, PoZ., = [120°-3r41/4-
13601/, s, = A2, X, = Z., u, = s.-u,

A = b (Q+a)-12s., B, = 1+0,-2A, C = A-¢),
q = (¢’ -a,)2u, q, = (ot21+0:1)/2—A+-25++u,,

T. = Ro-1, BR. = 3r-1/12+B2 +Bu(-AL),

B,Y. = (cf,-0t,-1/240(1-0> B, 1-Ro-12¢2, 2.1 2,
L,=22R, W, =Y, V,=1R,-2Y-27,. 3, =1,
@, =1, ¢ = (-15/2151 100 and r = R", (20)

Eighth order method given by Eq. (2-5) with

A=0s=0R=0Y=07=0D=0H-=0,
P_= OS—OOLZIL—OT—IV 0, W_=0,
X =0,C =a,B_=1-a, B, = (13-42a’,)/840(xc* -e*,)
(o5t By = (13-420% /840(ars-a” ) ) ™, ),

u_ = (o -0,)/6, By = 1/12 Pro PP’ y = 1-2
(BotP BP0, N_=17/3360 Bsas(e’-ar,), A; = )
(o, +1), M= (a®,-a.)/6-Q-ct, N, A, = o’ (e, +ct,)
(51a%+1 304, +29,-35)/ (0,41 (4202, -13),

A, = 1/30-BABoAsPy BoZ. = 17/3360e,(1+at,)
(1-tts), 52 = -1/Bs8. 70, Au = M-125,, PiP. = -BuZt
(11/84-126)/600% (1-62), S, = (1-0% 4, )(11/84-12r)
60Ps(1-0%)(1-A4), B, = 1+a,+2A,, C, = A,-t,,

w, =s.-u, q, = (@ ha)2-A-s-u, g = (o002 -,
Ag = [Bylo e ot 188, 4 284 30,)/168-17

(o’ e, 1)1 20, +1) + Bull-,) 18P (as-1),

Y, = 6 (2-5602)Z./3-hy 18 + Ay R, = Ar12(Y, + 1200,
X, =Z.,B.D, = 4r-B-BA-pR,, H. = -’ P,-S.+
(D12, L= 20R, T =R, B = 1, W= ¥,
G =y, G. =Dty V. = 1-R.-2Y.-2Z._ E, = 1 +a,-2D.,
N, =P,-N,, Q, = 8. Q,, M. =H.-M, K, = (¢’ +a;)/
2-D,-H,-M,-N,-P,-Q,-8,, K_= (¢%,-¢t,))2-M -N-Q ,
oy =%, o, = (-1/2151)/100, B, =1, 1= R, 13-35
52902451 o -Oc, +29¢, ¢ ,-20a, %, +29¢ 7 +1 3¢,
o;-420% 0% = 0 and Q_ is a free parameter. (21)
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SHKS86C: The eighth order method in this pair is the
method derived by Khiyal (1991), Khiyal and Thomas
(1997a), Thomas and Khiyal (1992) for which v, ,, and
Voo are independent of vy, the points f(t.., Vi)
and f(t,,., V..,) are coincident, «, =0, ¢;=1/2, B,=1,
¢, = (-2+/119)/30 and r = R". For this methed we must
evaluate f(t, ., v.,) and f{t v .2 once per step. We
combine this method with a sixth order method for which
Voo 18 independent of y,,, and the points (.. Vue) and
(thazs Youz) are coincident. The resulting formula pair is as
follows:-

Sixth order method given by Eq.(2-3) with

;=% A =0,B.=1-¢,C_ =0, s.=0,

q. = (3a’ 20,-a’ V6, u_= (o’ a6,

BoZ, = [-120+30-1/4+1 3601 26, (1+¢,2¢%),

X =7,X=X,7 =7, =10/2p7,,

A, =20 -a,-12s,, B, = 14+a,-2A,. C, = A-a,,

B = (e’ -0’ )20, By = 1/12-Bye”, v = 1-2(Be+
BB, @ = (8o +3c-11e° ) )/6+10s,,

u, = s, (' -0,)/6, PR =Er-Po-PrA )2,

B.Y. = 1/720-Bys./21 B, &’ 778, V. = R.-2Y.+Z.),
T,.=R,R =R, T_=R,L.=1-2R,,L_=L,,
W, =Y, Y =Y, W =Y, V.=V, B =1,
@, = (-2+/119/30, ¢, = 0 and r = R’ (22)
Eighth order method given by Eq. (2-5) with

A=0s5=0D=0H=0P=00Q+5 =0,
G_= o, u = {(e’-a,)/6, C_= ¢, B_=1-a,

B, = (13-420%,)/840(a* o’ ) -e”)), By = (13-42a Y
840 (o' -er?y) (o -e?y), B = 1-ts, q = (0’ -0t,)/2-u.,

Bo = 112-P,* -Puer’s, v = 1-2(Bo+ PP,
N_=17/3360 Pses{e’ -a), A, = By (e -2 o, )+
(a*-20°4a,) + 12P; (0 -0 INL, M. = (-0, )/6-0, N,
As = [24e/(0” - D[ (e H1DA/2Po-18(e,-1) (20 -
@2,-30,-1)Z, ], LPy(S,HS) = 108r-864r° 125921+
Bi(ee® ot 3 Ba(ats-aty), (2B,ZABNO( 2~ -t ) = 0,
5, = 12, Z.(SHS) A, = 200, -01,-125., B, = 1+e,-2A.,
u = s-u, G = Ay, g = (070 V2-A-s.u,

P, = N~(S,+S)0A,/B,(2¢7 -et,-c ), N, = PN,

Q. = 8,125, B Dy = Pae® 1P (oA 200, -

o’ BN, G, = Dty K= (0%-00,)/2-M -N_ B, = 1+
o-2D,, H, = Qa’s-e5-D0 )/ 2-¢7, P+l - N,

M, =H,-M, L, = 1-2R,, K, = (¢, + ¢;)2-D,-H, -
MLNLP,-2(8,-5.0, BiR. = 20-(By + By + BaDN2,

Y, = R/2-¢3Z.44,/24P,, V. = R,-2Y.-2Z.. T, = R.,
X =2, X-=X,Z2 =2, W,=Y ,R=R,L =L,
T =T,Y =Y.,V =V, W =W, 13(1+atec )
64a’,-Oc, o840 0?29 o -2 20, %51 ey = O
@ =0, ¢ =%, o = (-2+/119Y30,p,= 1, =R’
and S_1s a free parameter.

>

(23)
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SHKS86D: For the eighth order method derived by Khival
(1991), Khiyal and Thomas (1997a), Thomas and Khiyal
(1992) for which y,, and v, are independent of y,.,,
Vow=Vw O = (-20/119)/30, o, = 0,2;,=1/2,3,=1 and
r = R". For this method we must evaluate fit_,,, y,,,) and
(s Vias) once per step. We combine this method with
a sixth order method for which y, ,, 1s independent of y,.,
and ¥, =¥, The resulting formula pair 1s as follows:-
Sixth order method given by Eq. (2-4) with

A=0B =1-t,C =w,s_=0, q =3’ -2a,-a’ V6,
u =6, R.=0,T_=0,L_=1,Y_=0, W_=0,
Vo=0,X_=0,Z_= 0, B, = (c-¢' )20, By = 1/12-B %,
v =12 Bt PrtPad, Ba 2. = [120-36 + r/4-1/360/

o, (20’ -a,-1), X, = 7,8, = T2, AL = 200 -0,-1 28,
B, = 1+¢,-2A., C = Aty @ = (S +3’-110’, )
6+ 10s,, u, = s, <&’ -,)/6, B,R, = 3r-B-f A,

B,Y. = 1/360-Bs,1/4-p, &’ Z.., V. = R-2(Y.A4Z.),
T.=R.L,=1-2R,, W, =Y,, B,= 1,
&, = (-2+/119Y30, ¢, = Oandr = R". (24)
Eighth order method given by Eq. (2-5) with

A=0s=0R=0L=1,T_=0,Y_=0,V_=0,
X=07Z=0D=0H=0,P =0,5=00G =,
u_={e’ - )6, Co= oy, Bo=1-ay, g = (o-0t )21,
E_=1-a;, B, = (13-420%)/840(a* -0 e’ - ),

B.= (13-42a%)/840(e s, o’ -5, P = 1/12-3,

ol -Paee’s, ¥ = 1-2(BytPy+BAPs). N = 17/3360p;
os(o-ce,), Body = Pl -20 o HPa(a’ 20 )
+12B(0-0® INL ML= (%,-0)/6-a0, N, A, = [120, /(e
—ct-D)I[ (e +1)A-18 (a-1) (20 -0 -3 -1)Z, ],

5, =-1'/B, 7.8, W_= 0, (B,Z,+ BN -et,-ct*,) = 0,
AaBaS.s = 10808641 +25920+ B (ot -0t ol smr’s),
A =20 -¢-12s,, B, = 1400,-2A,, u, = 5,0,

C, = Ay, g = (00 40,)/2-A, -0, Py = N-S.A/
(20 om0 ), PaesDy = Bae®sHPoe (o -A 2000 o)
BN, N, = PN, Q, = 8,0, G = Duetes,

K_= (¢ -e,)2-M-N-Q_ B, = 1 + ;2D

H = 2¢*-a-D)/12-a) P, + (¢® -0, N, M, = H.-M,
X, =Z7,L.=1-2R,, K, = (¢;+¢;)/2-D,-H,-M,-N,-
P.-S.-Q,, V. =R,-2Y,-2Z.. T.=R,, W. = Y.,

B.R. = 4r-(BPA+PD,), Y, = -R/12-03 7, +4,/12,
13 (14, +o-o0? )-640 590, o +84e o 4290 o5-22
o5, =0, 0,=0, a, =%, a, = (-2+/119)/30,
B;=1,r=R"and Q_is a free parameter. (25)

SHKSB6FE: Here, the eighth order method 1s the method
derived by Khiyal (1991), Khiyval and Thomas (1997a),
Thomas and Khiyal (1992) for which v,., and y,.,; are
independent of .., the points f{t,.,1, Yio) and f{tu, Your)
are comcident, ¢, = 0, ©; = 1/2, @, = (-2+/119Y30, B, = 1
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and r = R". For this methed we must evaluate f(t, . ¥, ,.)
and f(t,.3, Vi.a) once per step. We combine this method
with a sixth order method for which y, , 1s independent of
Yar1 and the pOiIltS (toveat ymccl) and (t waly oy ATE
coincident. The resulting formula pair is as follows:-
Sixth order method given by Eq. (2-3) with

R=0T=0,L =10, X +Z =0, = (@’-u")20,
By =112-P,0%,, Z, + 7. = [240c,{1+er,)p, (140,
)P ][F-rY4 + 1748 — 1/4320], ¥ = 1-2(Bs+PBs).
W_= (¢'-0,)/6, Y_ = 0. A. = [1/8-31¥2-1/7201/B,
(ZAZHN_ = (3, -20,-c°, /6, 3, = (14+¢,-¢%,)/480¢,
(1+e)P-AJ12,B, = 1-2A,  C.= A X, = Z,+27,
W =8, ¢ =-A-28,, A=A, B =B, C_.=C,,s_=s,,
BR. = 3r-1/12 + B,a’-2B AL 9= Qo u_= U,

Y, = (20’2 R)12, Ty = Rt Ly = 1 + 2R,
W, = Y-W, V, = R-2Y,-2(Z A7)+ 3e, 20,6,
Bi=1,c,= (211930, ¢, = 0,1 =R and

Z_1s a free parameter. (26)

Eighth order method given by Eq. (2-5) with

R =0Y =0X+7_=0D_=0H_=0,8.=0,

B, = (13-420%,)/840(a %)) (as-a’), ;= (13-
420%)/840(er" 0% (e -02,), By = 1/12 -BLo” - ot

¥ = 1-2(BoHBHBPs), Qo= 17/3360P:es(e’-et).

My = BZ(CC42—2OC32+062)+B3(0643-20€33+0€3)+1 233(052—0622)
QLNAP =0, M = (a’-0,)/6-0,Q, 247 =17}
(1+e,-a?,)3360B, 4, (e,me )1+ ), W= (o,-, /6,
Vo= (a2 2-Wo, B = 1-0s, Ko = (a55-03)/2-M--Q-,
Ay = 1200, -0°)-153(1 +0 -7, V1 40P e -0 (1 4ex,),
G= sy, L= 1-tt;, T_= aty, Agf353, = 108r-864r'+2592r*
B o), Q. = 8,-Q, Bu(PAP) = -By(Z.
+Z0-P B8 (20% 0wt ) Ay, 8, = TV 2B,8.(Z A7),

A, =125, 40/2B R, = [1/12+H(cs-1) Pt (2P, A-4r)
F20Bse o' e DQ NV Boloee), X = ZA4Z X, C = A,
w, =s,, N, =P+P-N_ B, =1-2A,, q, =-A,-2s,,

Y, = (26%-0,-R)12, T, =Ri-¢t, A= A, B_=B.,
C=C.s.=s.u=-u,L =1+a,-2R, W,=Y,-W,_
Q.= G Vi = (0840, 2-Ro-Y -W-2(Z,47),

B.D. = 4r-(BA 2B, A, +B,R.), B, =1+a,-2D.,

G, = D.-t5, H = Qos-0-D) 1 20,8 H e -a,)Q).,
M., = H.-M_, K, = (¢;+¢,)/2-D,-H,-M.-8,-Q.-
2(P,+P ), 13(1 +ee, et )-64 0t -9t 0+ 84 o+
29a%,0,-220,0% 510, = 0, ¢, = 0, oy = ¥, ¢, = (-2
+/119y30, B, =1, r=RK andZ and P

are free parameters. @27

SHKSG6F: In this formula pair, the eighth order method is
the method derived by Khiyal (1991), Khiyal and Thomas
(1997a), Thomas and Khiyal (1992) for whichy, , and v,
are mdependent of Y1, Vaw = ¥ &6, = O, &t = (-2+/119)/30,

o, = 1/2, B, = 1 and r = R". For this method we must
evaluate f(t, ... Vi.0) and f(t...V..:) once per step. We
combine this method with a sixth order method for which
Vome 18 independent of y ., and § .7V ., The resultng
formula pair is

Sixth order method given by Eq. (2-3) with

R=0T=a, L=1-qa, 2 =0, Y.=0, A =0,
B=1,C=0s5=0gqg=0u=0,B=(c")?20,
Z.=[2400,(1 +er )P/ Fe-* )P, | [P-r¥/ 441/48-1 /43201,
B=1/12-Pyer’y v = 1-2 By + By + B, AL = [1/4-30
1360132, s:=(1+a-0%, 1 240a (1 +a,)p, — A/12,
B, =1-2A,, B,R, = 3r-1/12+B,0° - BAL L, = 1+0,-2R,,
T.=R.-t,, C. = A, Y, = (2’0, R)A12, W_= (et~
a6, W, =Y -W_ q. =-A.-2s,,w =5, X, =Z,-X,
VX, = (04w, 2-R-Y -W.-Z,, V.+X_ = 3’
20,-¢%,006, B, = 1, &, = (-2+/119)/30, ¢, =0, r =R’
and X_is a free parameter. (28)

Eighth order method given by Eq. (2-5) with

A =0,B.=1,C_=0,5_.=0,q.=0,u_=0,R_=0,

Y =0,2.=0D_=0H =0,5=0P_ =0,

B.= (13-42a%,)/840( e’ e’ s-a*,), B = (13-42e,)/
840(cr’ o) e e®y), By = 1/12-Bpe’ P, ¥ = 1-2
(BatPrBotPs), Q= 17/3360P0:(a’-0;), A = Pala’,
=208 0, HPs(ert 20 o)1 2B (e -0, M= (e
- W6-0, 0, B = 1t Ay = 12 (e',-ct®)-153(1+cx,
o) 140B L)1 +er,), G =, L= 1-0,, 7., = 173,
{(1+er-a? ) 3360P, A eo-es (1), 5. =-1YPsS. 2.,
W=, Com AL T = o AS, = 108P-864r+2502r'+
B’ et HPs(al-ats), A =-128,+4/P, By = 1-2A,,
B.P. = -B.7.B.P:S.2a’ e Ay, K= (o0, )/2-M -
Q-N_, Q. = S,-Q_, R. = [1112+(ee,-1 )Pt ( Py, -4r)
+20Bs0(e - ) Q) Bolet-ets), g =-A-2s,, V_= (-
W2 W XY, = 20, -R12, PuDy = Ar-(BytPA,
HRRL L, = 14e, 2R, T. = Ry-¢t, W, = Y.-W,

X, = Z,-X, M, = H-M., G. = Doty H, = (26250,
12638, He )0, V. = (Y 2-RL-Y W7, X,
E, = 1+¢,-2D,, N, = P,-N_ K, = (0%+0,)/2-Dy-H,-M, -
S.-Q,-P. N, W= (a,-¢t, W2, 1301+ Fee,-6%))-64e?,-
9, e, H84a’, e 2907 ,00,-220,005-5 10, = 0,

@, =0, ¢, = %, dy =(-2+/119)30, B, = 1,1 =R

and X_and N_ are free parameters. (29)

Observe that, for all the pairs derived, f(t, ;,V.u) 18
common to both the sixth and eighth order methods.

NUMERICAL RESULTS

We present some numerical results for the formula
pairs. We are mainly concerned with solving oscillatory
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stiff initial value problems. We have tried a number of
explicit scalar (nonstiff) test problems of the form (1).
They give similar results and so we restrict our attention
to one oscillatory example.

Example 1: §+sinh(y) =0, y(0) =1, ¥(0) = 0.
This 15 a pure oscillation problem whose solution has
maximum amplitude umty and period approximately six.
To verify that our techniques work for systems, we
use as a test problem a moderately stiff system of two
equations.

Example 2: §, + sinh(y, + y;) = 0, y,(0) = 1, y,(0) = 0,
FH10%, =0, y,(0y=107%, y,(0) = O

For this example we have deliberately mtroduced
coupling from the stiff (linear) equation to the nonstiff
(nonlinear) equation. Our intention here is that the stiff
oscillatory component y; should be present only at the
noise level as otherwise we would expect to choose the
stepsize to resolve ..

Both Examples 1 and 2 have been solved for te[0,6]
and both were also used by Khiyal and Thomas (1997a).
Following Khiyal and Thomas (1997a), the stepsize 1s
chosen imtially to be h=1 as this is more or less on scale
for the problems. However, to ensure that the iterations
set up by the starting technique converge and that the
local error test i1s satisfied, this stepsize 13 reduced
automatically by the codes.

The error at the end point is obtained by comparing
the computed solution with the solution obtained by
using a fixed step code with a small stepsize for Example
1 and for the first equation of Example 2. For the second
equation of Example 2, we have used the exact solution.
We denote the error at the end pomt by MAXERR where
for the scalar equation it 1s Error at t = 6 and for the
system 1t 1s |Error at t = 6.

We present the results for the cases where the
maximum number of iterations permitted for the direct
hybrid method, PMAX, 15 10. As we have seen, at least
one extra starting value 1s required by all our methods. We
allow the methods which are used for the starting
technique to take a maximum of ten iterations to achieve
convergence. This mitial relaxation of PMAX for the
starting techmque 1s designed to avoid rejecting steps at
this stage simply because convergence is slow.

In each case, we present some statistics on the
performance of the methods. These are important when
comparing the cost of the methods. The notation used in
the Tables are as follows.

*  Number of evaluations of the differential equations
right hand side f, FCN;,

¢ Number of evaluations of the JTacobian dt=ady, JCB;

»  Number of iterations overall, NIT;

¢+  Number of iterations on steps where the iteration
converges, NSIT,

»  Number of steps overall, NST;

*  Number of successful steps to complete the
integration, NSST;

»  Number of failed steps, NFST;

»  Number of steps where the stepsize 1s changed,
NCST,

»  Number of LU factorisations of the iteration matrix,
NFAC,

»  Number of function evaluations required on a per
step basis, rather than on each iteration, NFP;

¢+  Number of iterations overall for the higher order
method, NITH.

The results are given in Table 1-8. The cost of the
starting techmque 1s not mcluded in the tables. We
present the results for the case where the eighth order
method 1s used to advance the step. (We have also tested
an approach in which the sixth order method is used to
advance the step but this is more expensive, in general.)
Thus, the sixth order method is used as a predictor for the
eighth order method and to form the error estimate. As a
predictor for the sixth order method, we use an interpolant
of degree five. That is, we define y ,,= p,(t,+h), where
Ps.a(t) 18 the polynomial of degree five which interpolates
to (L Voir ¥oie 1= 0, 1, 2. This predictor can be used only
if information from two previous steps 1s available. On a
change of stepsize, we need to compute approximations
for y and ¢ at previous pomts. We obtain these
approximations by using the polynomial of degree eight,
Ds.(t), which interpolates to (t,i, Vi ¥ai)s 1=0,1, 2, 3 and
for which p,(t,,) = ¥,.. Note that this interpolant has the
same order (locally) as the eighth order direct hybrid
method.

Before we can employ this error estimation technique,
we need a special starting technique to obtain the values
Vi, Vs s and y,. Thus we take four steps with the eighth
order, four stage implicit Runge-Kutta method. To solve
the resulting system of nonlinear equations, we use the
tteration scheme proposed by Cooper and Butcher (1983).

Having completed four steps with a uniform stepsize,
we form an estimate of the local error. If this 1s too big,
we reduce the stepsize and retum to the start. If the local
error test is satisfied, we use the eighth order direct hybrid
method for subsequent steps. At the end of each step, we
form the error estimate TLe,.,. The stepsize for the next step
(or for the repeated step in the case of an error test failure)
is given by
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Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHKS86F
MAXERR 1.19x10~* 2.80x1077 5.77x1073 1.54x1073 9.25x107F 5.15x107F
FCN 254 217 201 291 506 242
JCB 1 1 1 2 1 1
NIT 05 54 08 78 116 05
NSIT 56 54 54 58 112 57
NST 20 19 19 21 52 16
NSST 17 18 17 18 51 14
NCST 4 2 4 3 1 4
NFST 3 1 2 3 1 2
NFPS 38 37 37 39 104 31
NITH 21 18 20 18 54 16
Table 2:Result For Example 2. Initially H=1.0, PMAX =10, TOL =10

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHKS86F
MAXERR 3.71x107* 3.63x107* 7.28x107° 7.25%107° 2.12x1074 8.98x10~*
FCN 3342 4364 4162 4162 2748 4086
JCB 2 12 [ [ 2 10
NIT 832 1083 1040 1040 684 1021
NSIT 778 991 999 999 678 951
NST 273 363 344 344 231 336
NSST 264 344 333 333 230 319
NCST 10 15 8 8 1 12
NFST 9 19 11 11 1 17
NFAC 15 44 22 22 4 38
NFPS 544 721 084 o84 462 0006
NITH 302 394 358 358 234 357
Table 3: Result for Example 1. Initially H=1.0, PMAX =10, TOL =107°

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHEKS86F
MAXERR 3.90x107¢ 1.03x107¢ 1.85x10°¢ 1.86x107¢ 1.81x107¢ 1.60x10~3
FCN 368 301 338 338 1627 473
JCB 1 1 1 1 1 1
NIT 99 93 92 92 360 131
NSIT 85 92 83 83 320 86
NST 23 28 20 20 173 24
NSST 21 27 19 19 163 19
NCST 3 1 2 2 11 8
NFST 2 1 1 1 10 5
NFPS 46 55 40 40 346 48
NITH 25 27 22 22 183 32
Table 4: Result for Example 2. Initially H= 1.0, PMAX =10, TOL =10"°

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHEKS86F
MAXERR 3.51x107F 9.40x10~¢ 2.96x107° 2.87x107¢ 1.38x107¢ 1.62x107¢
FCN 3340 5585 4013 4085 5585 3698
JCB 1 5 10 9 3 8
NIT 831 1392 999 1016 1360 921
NSIT 777 1347 929 952 1339 867
NST 272 464 328 336 499 3
NSST 265 456 316 325 495 295
NCST 10 7 11 10 4 8
NFST 7 8 12 11 4 9
NFAC 11 18 31 28 9 24
NFPS 544 928 655 671 998 607
NITH 303 481 361 366 507 328

h =h(TOL/2Le,, )",

where TOL is the local error tolerance and h is the
current stepsize. We do not allow the stepsize to decrease
by more than a factor p, or ncrease by more than a factor
;. These restrictions help to avoid large fluctuations in
the stepsize caused by local changes in the error estimate.
Also, we do not increase the stepsize at all unless it can
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be mcreased by a factor of at least p,, where p,<p;. This
restriction is designed to avoid the extra function and
Tacobian evaluations involved in changing the stepsize
unless a worthwhile increase 1s predicted. Following
Thomas (1987), n our tests we take p,= 0.1, p, = 2 and
ps = 10.

Comparing the results given in Table 1-8 with those
presented by Khiyal and Thomas (1997a), for which a



Inform. Technol. J., 5 (5): 803-812, 2000

Table 5: Result for Example 1. Initially H=1.0, PMAX =10, TOL = 1078

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHKS86F
MAXERR 4.33x1077 4.43%1077 2.82x1077 2.82x1077 3.27x1073 1.23x107°
FCN 1348 1345 861 861 5705 976
JCB 1 1 1 1 1 1
NIT 356 355 228 428 1275 259
NSIT 201 218 173 173 1219 168
NST 82 83 55 55 022 00
NSST 58 63 47 47 608 45
NCST 36 32 14 14 16 23
NFST 24 20 8 8 14 15
NFPS 104 166 110 110 1244 120
NITH 116 114 67 67 636 79
Table 6: Result for Example 2. Initially H= 1.0, PMAX =10, TOL =107%

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHKS86F
MAXERR 1.55x1077 1.81x1077 3.02x1077 3.02x1077 1.20%1077 2.67x1077
FCN 3609 3847 4282 3629 8226 3630
JCB 1 7 10 [ 1 [
NIT 900 956 1068 907 1829 906
NSIT 863 903 967 827 1829 844
NST 298 319 346 202 913 297
NSST 292 311 328 278 913 280
NCST 11 10 23 20 2 15
NFST V] 8 18 14 0 11
NFAC 12 22 42 31 3 26
NFPS 596 038 092 584 1826 594
NITH 313 341 386 324 913 318
Table 7: Result for Example 1. Initially H=1.0, PMAX =10, TOL =107!"

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHKS86F
MAXERR 7.07=x10 2.73x101 1.02x107° 1.02x107° 6.22x10°! 5.28x1073
FCN 1160 1202 1070 1070 15750 1151
JCB 1 1 1 1 1 1
NIT 308 315 283 283 3508 305
NSIT 280 304 272 272 3436 266
NST 77 85 73 73 1736 76
NSST 72 83 71 71 1718 69
NCST 8 4 4 4 20 10
NFST 5 2 2 2 18 7
NFPS 154 170 146 146 3472 152
NITH 82 87 75 75 1754 84
Table 8: Result for Example 2. Initially H= 1.0, PMAX =10, TOL =1071°

Methods SHKS86A SHKS86B SHKS86C SHKS86D SHKS86E SHEKS86F
MAXERR 5.43x107° 8.04x10~° 1.67x10~° 1.67x10~° 1.34x1077 1.67x10~°
FCN 6888 7143 6076 5941 20152 7079
JCB 2 7 13 10 1 [
NIT 1718 1783 1519 1485 4479 1770
NSIT 1674 1733 1411 1398 4475 1730
NST 569 590 487 479 2238 583
NSST 504 582 471 467 2237 577
NCST 8 8 16 13 2 7
NFST 5 8 16 12 1 [
NFAC 11 22 42 32 3 18
NFPS 1138 1180 974 958 4476 1166
NITH 596 0l4 545 28 2239 603

predictor-corrector approach 1s used to estimate the local
error, we find that in general the formula pair approach is
cheaper for Example 2 while the predictor corrector
approach is usually cheaper for example 1. However, even
for Example 1, the formula pair approach requires fewer
steps than the predictor-corrector approach but is more
expensive overall because the integration has to be
performed with two (P-stable) methods on each step.
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We believe that the performance of all these methods
would be improved considerably by using a more
satisfactory  interpolant. At present, we use the
interpolating polynomial of degree eight, ps,(t) to
calculate the back values on a change of stepsize. We
notice that when the stepsize 13 mcreased during the
computation, the approximations calculated by p, (t) are
unfortunately not very good (since this is extrapolation
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rather than interpolation) and this means more
computational effort is required to ensure convergence of

the iterations.
CONCLUSIONS

In the study, we have derived some formula pairs,

consisting of a sixth order and an eighth order direct

hybrid method. The two methods in each pair have been
chosen to have some features in common, so that the
computational cost of using the formula pair i1s reduced.
The formula pairs provide an estimate of the local error
and this allows the stepsize to be varied so that the size of
the local error is controlled.
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