http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (5): 851-859, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Finding Hamiltonian Cycle in Polynomial Time

Khadija Riaz and Malik Sikander Hayat Khiyal
Department of Computer Science, International Islamic University, Islamabad, Pakistan

Abstract: One of the big mysteries in contemporary computer science 1s whether P=NP. Finding a Hamiltonian
cycle m a graph 15 one of the classical NP-complete problems. Complexity of the Hamiltoman problem m
permutation graphs has been a well-known open problem. No solution exists to get HC in polynomial time and
there are no such conditions to decide the probability of HC exists (Neapolitan and Naimipour, 1996). In this
study the authors prove that Hamiltonian cycle in an undirected graph can be found in polynomial time, and
thus the problem i1s a discrete problem. Authors present valid conditions to tell m advance, while entering the
graph input, that HC does not exist. A polynomial time algorithm for constructing a Hamiltonian cycle is also

presented.

Key words: Discrete structure, graphs, algorithms, Hamiltoman cycle

INTRODUCTION

Hamiltoman Cycle Problem is a problem on graphs
formalized by Swr Willam Rowan Hamiltonnh a
mathematician of 19th century in Treland. Hamiltonian
circuit for a graph G is a sequence of adjacent vertices and
distinct edges in which every vertex of graph G appears
exactly once (Fig. 1). A Hamiltonian Graph 1s a graph that
has a Hamiltonian cycle. The problem is, whether there is
a circuit passing all the points of a given graph or not. In
the case of a graph whose number of points 1s N, the
number of such circuits 1s NI at most (Nasu, 1999). The
simplest way to examine whether there is a circuit
satisfying the request is to check all the paths thoroughly
in round robin and its calculation cost amounts to the
order N! of exponential time algorithms. This method has
been used in Brute Force Algorithm (Neapolitan and
Naimipour, 1996).

On the time complexity bases, there are two types of
problems. Polynomial ttme P and non deterministic
polynomial time NP problems. P is a set of all decision
problems that can be solved by polynomial time
algorithms For example, the problem of determimmng
whether a key 18 present mn an array. A polynomial time
non deterministic algorithm (NP) is a nondeterministic
algorithm whose verification stage is a polynomial time
algorithm. So the NP (non-deterministic polynomial)
decision problems can be solved by polynomial time
nondeterministic algorithms. There is a group of problems
which is not certified whether any polynomial time
algorithms exist or not and they are called NP —Complete

Input

Output
Fig. 1: Input and output of Hamiltoman cycle

problems (Neapolitan and Naimipour, 1996). Finding a
Hamiltonian cycle in a graph is one of the classical NP-
complete problems. Now the question 1s, whether there
exist a determuustic algorithm which finds HC m
polynomial time or not. This problem is a challenge for
mathematicians for a long time of one century. A problem
13 NP 1if 1t 1s easy to check the correctness of a claimed

Corresponding Author:
Islamabad, Pakistan

Malik Sikander Hayat Khiyal, Department of Computer Science, International Islamic University,

Inform. Technol. J., 5 (5): 851-859, 2000

solution. In other words the solution can be checked in
polynomial time. This does not say it is easy to find a
solution. Thus a problem which 1s both NP (verifiable in
nondetermimstic polynomial time) and NP-Hard (any other
NP-problem can be translated into this problem) is NP
complete problem In the current study we present an
algorithm which runs m polynomial time. We have
mmposed certain conditions; these conditions make this
problem a pure discrete problem.

Algorithm is along the following lines:

When we are standing at a node, we select the next
node by using some conditions. These selection
conditions make the algorithm polynomial. We use
backtracking process when some blocking conditions
occur during processing. But the selection conditions
(selection of the next node) are such that they have
minimized the probability of backtracking. In general HC
in a graph is found without backtracking because of these
selection conditions. The backtracking process mostly
occurs 1n graphs where no HC exists or in symmetric
graphs. Even in these graphs some specific nodes, called
the junction nodes, participate in backtracking process.
We use the term ‘junction‘to refer a node from which an
adjacent node of least degree 1s selected as next node,
while there are more than one nodes of least degree
adjacent to that node. And by “degree” we mean the
number of nodes adjacent to a node. The degree of a node
varies during processing. All nodes of a symmetric graph
are not junction nodes because the degree of each node
varies, and hence they will not participate in backtracking
process. Preprocessing conditions tell in advance that
HC does not exist, but do not tell about its presence. If a
graph has no HC, our algorithm will accurately report this
m fast polynomial time. If all the preprocessing conditions
are true and processing starts while the HC in the graph
does not exist, 1n this case soon we will encounter cne of
the blocking conditions. This condition will start the
backtracking from the last junction node. If HC does not
exist then the junction storage will become empty and no
node would be there to bear backtracking.

So we find the solution of following basic problems
related to Hamiltonian cycle.

* Polynomial time algorithm for finding Hamiltonian
cycle.

+ Valid conditions to decide the probability of HC exist.
The problem of HC was invented by Sir William
Rowan Hamilton in 1859 as a game. Since 1936, some
progress has been made in this field. For certain special
graphs several efficient algorithms exists e.g. Polynomial
algorithm for 4-comected planar graphs (Nishizeki and

852

Chiba, 1988), Polynomial algorithm for quasi-transitive
digraphs (Gutin, 1994). But for general graphs, no efficient
algorithm exists (Neapolitan and Naimipour, 1996). The
problem 1s still NP-complete for perfect graphs, planar
bipartite graphs, grid graphs, 3-connected planar graphs.
Some sufficient and necessary conditions for a graph to
have HC have been given. Some of these conditions are
listed below (Balakrishnan, 1997).

A necessary condition for a graph to be Hamiltonian
If G=(V.E) 1s Hamiltoman and if W is any nonempty
proper subset of V, the graph G-W has at most | W|
components.

Ore’s Theorem: A sufficient condition for a graph to
be Hamiltonian (Ore, 1960). A simple graph with n
vertices (where 11>2) 1s Hamiltonian if the sum of the
degrees of every pair of non adjacent vertices is at
least n.

Dirac’s Theorem: A sufficient condition for a
graph to be Hamiltoan (Chartran and Oellermann,
1993). A simple graph with n vertices (where n>2) is
Hamiltonian if the degree of every vertex is at
least n/2.

If G 1s a 2-connected graph such that for every pair
of nonadjacent nodes u and v, |d(u)+d(v)|>=(2n-1)/3
then G is Hamiltonian (Fraudee, Gould, Jacobsen and
Schelp, 1989).

All Hammltonian graphs are biconnected, although the
converse is not true (Skiena, 1990).

Classification of algorithms: There are two mamn classes
of algorithms according to Hamiltonian problem:

» Heurnistic algorithms (Pdsa, UHC, DHC, HAM, etc)
» Backtrack algorithms (595HAM, KTC, MultiPath)
Heuristic algorithm VS our algorithm: An improved
version of heuristic Algorithm for HC is given in
{Altschuler, 2000). This algorithm runs in at most N” time,
if there 1s no HC, the given algorithm will report this in
polynomial time. If there is a Hamiltonian cycle and the
algorithm finds it, it will do so in polynomial time. The
only danger 1s if there is a Hamiltomian cycle but the
algorithm does not find it, reporting the mcorrect result
that there is no HC. How could this happen? Tt might be
that the Hamiltonian cycle has so low probability that
it 18 not found even upon iterating the simulated
annealing algorithm. Alternatively, as more roads are
excluded, the probability of finding a Hamiltonian might
be reduced because a subset of the excluded roads is
necessary as "intermediate states”" toward progressing to

an Hamiltonian cycle. So the advantage of Heurstic

Inform. Technol. J., 5 (5): 851-859, 2000

&)

Fig. 2: Symmetric graph with junction nodes

1-7-6-2-34-5-1
4
Junction
1
/ 2
7 /
4 / ?
6
o —_
5 ©4

Fig. 3: Graph and its Hamiltonian Cycle

algorithm is that it is Fast, Linear or low-order polynomial
time algorithm but the disadvantage 1s that, it does not
always find the HC. Our Algorithm presented here finds
HC in polynomial time but with no such danger. As we are
not excluding edges from our graph, we only mark the
edges where we do not want to go, and then in
backtracking process we can demark those edges. Our
algorithm is restricted in selecting the next node during

Processing.
Backtracking algorithms VS our algorithm:
Backtracking algorithms search all the potential

solutions and then see whether a HC exists or not.
The main advantage of Backtracking algorithms is that
it finds all
existence but at the same time there is a severe

solutions and can decide about its
disadvantage that it 1s a worst case, it needs exponential
time. Also it takes a long time to process (Neapolitan and
Naimipour, 1996).

853

Tn our algorithm, only junction nodes may participate
1n backtracking. From a junction node, selection of next
node depends on how the graph has been entered as
input. During the processing when a blocking condition
encounters, it causes backtracking. These blocking
conditions normally occur in the graphs where no HC
exist and may be in the symmetric graphs. Because of the
selection conditions, HC 1is often found without
backtracking. In the case when no HC exists or as in the
symmetric graphs, not all nodes are junction nodes. As an
example, consider Fig. 2, here we have 24 nodes and
according to our algorithm, only 5 nodes are junction
nodes.

In non symmetric graphs, there can be junction
nodes, but backtracking does not normally occur. See
graph of Fig. 3.

Thus we have reduced the chances of backtracking,
by implementing the selection conditions (selection of
next node) and blocking conditions. The selection
conditions are such that if at a junction node we select a
wrong path, soon a blocking condition will encounter.
And we will have to move back to that junction node to
select the right path. Tt implies that we are using
backtracking with limitations i.e., we are finding HC
accurately, but avoiding its disadvantage ie long

processing time.
OUR ALGORITHM

We have implemented our algorithm in C language. Tt
gives correct results for all types of graphs mcluding
perfect graphs, planar bipartite graphs, grid graphs, 3-
commected planar graphs. The algorithm 1s presented here.

Preprocessing conditions: Our algorithm simplifies the
given graph by removing parallel edges and self-loops
looking Then
preprocessing conditions are checked. If any of these

before for Hamiltonian circuit.
conditions is met, the graph will not have Hamiltonian

circuit.

No node should have degree 1.
No node should have more than two adjacent nodes
having degree 2.

Other wise the processing will precede.

Processing:
Step 1: Select a node of highest degree from the graph, to
start traveling. We call this node the Starting node. Store

Inform. Technol. J., 5 (5): 851-859, 2000

1 (starting node) St-stack

Fig. 4: Input of the graph and St-stack nodes

the adjacent nodes of Starting node in a stack, we call this
St-stack (Fig. 4).

Step 2: Select one of the St-stack nodes and name 1t as
next node according to the following priorities:

» The St-stack node having least degree.

¢ If nodes having least degree are more than one,
select anyone of them as next node. And add current
node in the stack junction

Step 3: Go to next node and delete it from the St-stack.
Mark the comnecting edge between the starting node and
While

Step 5: (Next node # Starting Node)

1
St-stack
(Current node)
3 5 3
5
8
Fig. 5. Processing on the graph
N O O O O I S
Fig. 6: Hamil

next node, from the graph. Now the next node becomes
the current node (Fig. 5) .

Step 4: As we proceed from one node to the next, add all
visited nodes in a stack called hamil. Up to now in our
example two nodes have been visited. Hamil stores the
nodes of complete HC (Fig. 6).

If (we are standing at a St-stack node and some other nodes are left which have

not been processed vet) Then

¢

Mark the connecting edge between St-stack node and the staring node (we do not

select the starting node as next node).

3

Note: Marking of an edge is similar to deleting the edge, only the difference is, we can
restore a marked edge in backtracking. “Adjacent” means adjacent to the current

node.
/*Selection Conditions :

In section selecting condition below, we select next node from the adjacent nodes of the

current node, in order of the following conditions. After a next node has been selected in one
of the following steps, remaining steps will not work */

Selecting condition:

1. If (we are standing at St-stack node while there is no node (including St-stack

nodes) left which has not been processed) Then

{

select starting node as next node

}

2. If (There 1s an adjacent node of degree 2, to the current node) then

{

Inform. Technol. J., 5 (5): 851-859, 2000

If (There are more than one adjacent node having degree 2) then

Call Backtrack()
Else If (There is only one adjacent node of degree 2) then
d
Select that node as next node
If (This selected node is St-stack node) then
d
If (One St-stack node left while all other nodes of the graph have been processed) then
The selected node is next node
If (One St-stack node left while some other nodes of the graph are also there which have not been
processed vet) then
Call Backtrack().
5
H
i
3. If (There 1s one St-stack node adjacent to the current node) then
{

If (The stack (St-stack) have more than one nodes) then
pick this node as next node. And delete 1t from the stack (St-stack)

Else If (The stack (St-stack) have only one node left) then

¢
/f there are two possibilities
If (All other nodes of the graph have been processed) then
Choose this node as next node and delete it from the
stack St-stack
If (Some nodes of the graph are left which have not been

processed vet) then

Mark this connecting edge (b/w current node and St-stack
node(we are not taking it as next node)

H

i

else jf (there are more than one St-stack nodes adjacent to the current node)

select the St-stack node with least degree
/fif there are more than one St-stack nodes of least degree then do not add this
/f current node 1n the stack “junction”.
// Fourth Condition, select a node with the least degree
If (next node has not been selected yet in the previous steps) then
{
select anode with least degree
If (there are more than one nodes having least degree) then
place this Current node in a stack called “junction”

i
4. If (no next node has been selected because there is no appropriate adjacent node) then
call Backtrack().
4.2.2. /* A next node has been selected in previous step. next node will become current
node, after following changes */
* All the edges from current node (on which we are standing) to all its adjacent nodes are marked , this path
in future will not be taken . Tt means there is no path from any vertex to come back at this node.
¢ Decrement the degree of all adjacent nodes by one (except the previous node from which we have shifted at
this node).
* Add Current node to the stack hamil

855

Inform. Technol. J., 5 (5): 851-859, 2000

Now rename next node as current node.

Endwhile

Procedure Backtrack ()

¢

If (The stack ” TUNCTION™ is empty) then

Stop processing and prompt that it 1s not Hamiltonian circuit

/1 Other wise all the following reverse processing will be carried out:

Take the last node from the stack junction as current node

Select this current node from the stack hamil.

/* From this node till the last stored node in the stack hamil, the reverse

changes occur, these changes are as described below. we should keep in mind that if here the current node
1s Starting node then we will neither increment the degree of St-stack nodes nor demark the edges. We
mcrement the degree of only those nodes which we have decremented in previous processing and demark
only those edges which we have been marked */

» In the graph start from current node and start demarking all previously marked edges, to the last

node of hamil.

s TIncrement degree of adjacent nodes by one

» After all the reverse changes have occurred, the next alternative node adjacent to the current node is chosen

as next node

» Ifthere i1s no more alternative path after selecting next node, this node 1s deleted from the stack, junction.

¢ TIf current node is staring node then after selecting next node delete current node from the stack junction(As
we are checking only two paths from start, if blocking conditions occur on both of the paths then HC will not

exist)

¢ The new next node selected is sent back for further processing

End of Algorithm

OUR ALGORITHM IS POLYNOMIAL TIME
ALGORITHM

Al NP-Complete problems appear to be difficult. We
are not aware of any polynomial time algorithms to solve
such problems. However, there is no proof that
polynomial time algorithms do not exist! (Standish, 1994).

Backtracking on each node is the reason for HC
problem to have exponential time complexity.

Without using backtracking finding HC n polynomial
time is not possible. But problem can be made polynomial
if we reduce the chances of backtracking to such an extent
that only small number of nodes involve in backtracking.
This can happen by selecting proper nodes as next node
to find the complete cycle.

In our algorithm, we do not select a next node
randomly we impose certain selection conditions which
helps us in selecting exact node in the cycle. In our
algorithm backtracking may occur only on the junction
nodes. Junction nodes are those nodes where we select
a next node by using fourth selection condition i.e a next
node having least degree, while there are some other

adjacent nodes having least degree. This node 1s stored
in stack “junction”, it may involve in backtracking. At a
junction node to proceed further, if we make a wrong
decision some blocking condition will encounter. And
there would be backtracking up to that junction node. If
we encounter a problem where there is a need to
backtrack, while the stack junction is empty, we will
prompt a message that no HC exists. It also can happen
that the stack junction has many nodes, but no
backtracking occurs, it usually happens in non symmetric
graphs. And it also happens that from the nodes stored in
junction only one or two last nodes bear backtracking
while all other nodes do not.

If all the preprocessing conditions are true and
processing starts while the HC in the graph does not exist,
in this case soon we will encounter one of the following
problems

+ No two adjacent nodes of a node (other then starting
node) should have degree 2

» Stack node with degree 2 while some other nodes are
left which have not processed yet.

856

Inform. Technol. J., 5 (5): 851-859, 2000

1 2 3 4
i q g
8 9
5] 0 10
P { g
15 16
74 d 12
13 14
G3 (Grid graph)

4
G6
Output:
Graph Results
Gl HC 1-18-20-7-5-4-6-8-10-9-16-17-19-13
-15-11-12-14-3-2-1
Tunction nodes 1-18-20-4
Backtracking No Backtracking
G2 HC 1-2-4-6-3-5-1
Tunction nodes 1-4-6
Backtracking No Backtracking
G3 HC 8-2-1-5-6-7-13-15-16-14-12-11-
10-4-3-9-8

Tunction nodes 8

Backtracking No Backtracking

G4 HC 3-2-1-9-8-10-11-6-7-4-5-3

Tunction nodes 11

Backtracking No Backtracking

G5 HC HC does not exist

Junction nodes 3 (Starting node)

Backtracking Backtracking occurs only on the
starting node i.e., 3, two paths are
checked from starting node. If
both are ended by blocking
conditions then we prompt that
HC not exist and we do not

further check any path.

G6 HC HC does not exist
Junction nodes 7 (Starting node)
Backtracking Backtracking occurs only on the

starting node i.e., 7, two paths are
checked from starting node. If
both are blocked by blocking
conditions then we prompt that
HC not exist and we do not

further check any path.

Inform. Technol. J., 5 (5): 851-859, 2000

CONCLUSIONS

Our algorithm provides a successful and reliable
mechamsm for finding HC m polynomial time.

ACKNOWLEDGMENTS

The authors wish to thank Almighty Allah who
enabled them to do such type of study. We are thankful
for the inspiration, wisdom and constructive criticism
of Dr. Zagham Mehmood We are grateful to
Mr. Muhammead Nadeem, for his techmcal help in writing
the program in C++ We are also grateful to Dr. Khalid
Rashid for his moral support and encouragem ent.

REFERENCES

Altschuler, E.I.., 2000. Suggestion for a fast Heuristic
for the Hamiltoman cycle problem. Arxiv: physics/
0007098 v1 30.

Balakrishnan, V.K., 1997, Graph Theory Including
Hundreds of Solved Problems. Schaum Series,
McGraw Hill Publishing Co.

Chartran, G. and O.R. Oellermann, 1993. Applied and

Algorithmic Graph Theory. McGraw Hill, New York.

859

Fraudee, R.J., R.S. Goulb, M.S. Jacobsen and R.H. Schelp,
1989. Neighborhood unions
properties m graphs. J. Combin. Theory, 47: 1-9.

Gutin, G., 1994. Polynomial algorithms for finding
Hamiltonian paths and cycles in quasi-transitive
digraphs. Aust. I. Combin., 10: 231-236.

Nasu, M., 1999 A study of Hamiltonian Circuit
problem, the fourth draft, April 4, 1996 to August 18,
1999, Baba Laboratory Inc. Ltd. (www.geocities. com/
babalabo)

Neapolitan, R.E. and K. Naimipour, 1996. Foundations Of
Algorithms using C++ psedocode. 2nd Ed. Jones and
Barlett Publishers, Sudbury, UK.

Nishizeki, T. and N. Chiba, 1988. Plannar Graphs: Theory
and Algorithms. North Holland Mathematics Studies
140, Amsterdam.

Skiena, S., 1990. Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica.
Addison Wesley, Reading city, CA.

Standish, T.A., 1994. Data Structure, Algorithms, and
Software Principles. Addison-Wesley, Reading.

Ore, O., 1960. A note on Hamiltoman Circuits. Amer.
Math. Monthly, 67: 55.

and Hamiltonian

	ITJ.pdf
	Page 1

